首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
一类传染病模型的扩散性质   总被引:8,自引:2,他引:6  
讨论了扩散对传染病模型的阈值的影响、扩散对传染病模型中染病者人数的影响以及扩散对传染病模型的平衡点的几何性质的影响.  相似文献   

2.
讨论了一类具有非线性密度制约的食饵-捕食者扩散规模型,运用线性化方法和Lyapunov函数法分别讨论该反应扩散模型唯一正平衡点的局部渐近稳定性和全局渐近稳定性.  相似文献   

3.
具有周期系数和连续时滞的扩散模型的周期解   总被引:7,自引:0,他引:7  
本文讨论了具有周期系数和连续时滞的竞争扩散模型,得到了保证其存在唯一周期解及全局渐近稳定的充分条件.  相似文献   

4.
全扩散透皮吸收药物动力学模型   总被引:1,自引:0,他引:1  
本文以Fick第一、第二扩散定律为工具,在TTS、角质层边界上以质量平衡关系确定边界条件,建立了一种新的双层透皮吸收扩散模型.该模型克服了以往扩散模型中药物从TTS一级或零级释放假设的片面性,讨论了Guy等提出的室模型和Kubota等提出的扩散模型的应用条件,同时还证明了中心室存在拟稳态药物水平以及TTS、角质层交界面分配系数、TTS中初始药物浓度、TTS使用面积和药物半衰期长短是设计TTS必须考虑的关键参数.  相似文献   

5.
一个受到开发的扩散种群的持续与灭绝条件   总被引:2,自引:0,他引:2  
本文讨论了一类服从Logistic增长规律,且受到开发或捕食的扩散种群动态模型:的渐近性质,得到了具有重要生物学意义的结果.即当开发或捕食率时,种群稳定持续,否则趋于灭绝.  相似文献   

6.
研究了在周期变化环境中具有扩散及种群密度可能发生突变的两竞争种群动力系统的数学模型.模型由反应扩散方程组以及初边值及脉冲条件组成.文章建立了研究模型的上下解方法,获得了一些比较原理.利用脉冲常微分方程的比较定理以及利用相应的脉冲常微分方程的解控制和估计所讨论模型的解,研究了系统模型的解的渐近性质.  相似文献   

7.
应用一些Banach空间之间较详细的插值结果,讨论了竞争-竞争-互惠交错扩散模型古典解的整体存在性.  相似文献   

8.
讨论了两斑块间脉冲扩散的单种群动力学模型,利用离散动力系统频闪映射理论,得到了种群持续生存的充分条件.结论31,1~了现实的生物种群动力学性质,也丰富了脉冲微分方程理论.  相似文献   

9.
具有常数收获率的竞争扩散系统的研究   总被引:3,自引:0,他引:3  
对具有常数收获率的竞争扩散系统进行研究,分别讨论了有扩散和没有扩散时系统所获得的收获,进而得到扩散对收获的影响.  相似文献   

10.
讨论了一类捕食者具有三个阶段结构和Beddington型功能性反应,食饵可以在两个斑块间扩散的非自治捕食者-食饵系统.运用Liapunov函数方法,得到了该系统一致持续生存的充分条件.对于该模型的周期系统,讨论了存在唯一、全局渐近稳定的周期解的条件.  相似文献   

11.
In the plasma membrane of animal cells, many membrane-spanning proteins exhibit lower lateral mobilities than glycosylphosphatidylinositol (GPI)-linked proteins. To determine if the GPI linkage was a major determinant of the high lateral mobility of these proteins, we measured the lateral diffusion of chimeric membrane proteins composed of normally transmembrane proteins that were converted to GPI-linked proteins, or GPI-linked proteins that were converted to membrane-spanning proteins. These studies indicate that GPI linkage contributes only marginally (approximately twofold) to the higher mobility of several GPI-linked proteins. The major determinant of the high mobility of these proteins resides instead in the extracellular domain. We propose that lack of interaction of the extracellular domain of this protein class with other cell surface components allows diffusion that is constrained only by the diffusion of the membrane anchor. In contrast, cell surface interactions of the ectodomain of membrane-spanning proteins exemplified by the vesicular stomatitis virus G glycoprotein reduces their lateral diffusion coefficients by nearly 10-fold with respect to many GPI-linked proteins.  相似文献   

12.
The membrane skeleton, a network of structural proteins attached to the cytoplasmic surface of the plasma membrane, hinders lateral diffusion of integral proteins. 2. In some types of cells, such as epithelial cells and nerve cells, the obstruction of lateral diffusion by the membrane skeleton is one of the mechanisms by which proteins are localized to domains on the cell surface. 3. The effect of the membrane skeleton on lateral diffusion may involve steric hindrance, transient binding or both. Three pictures of the effect are reviewed, the discrete barrier model, the continuous barrier model and the transient binding model. 4. Experiments to distinguish the models are discussed.  相似文献   

13.
An investigation has been carried out of the relationship between changes in the fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) and concomittant changes in the lateral diffusion of proteins and lipid probes in membranes. Plasma membranes from lymphocytes and a CH1 mouse lymphoma line were treated with up to 70 mol% (relative to the total membrane phospholipid) of oleic or linoleic fatty acids. Under these conditions the fluorescence polarization of DPH decreased by between 8 and 15% which, in the framework of the microviscosity approach, suggests a membrane fluidity change of between 20 and 50%. The lateral diffusion coefficients of surface immunoglobin and the lipid probes 3,3′-dioctadecylindocarbocyanine and pyrene were also measured in these membranes using the fluorescence photobleaching recovery technique and the rate of pyrene excimer formation. The diffusion rates were found to be unaffected by the presence of free fatty acids. Hence despite large ‘microviscosity’ changes as reported by depolarization of DPH fluorescence, lateral diffusion coefficients are essentially unchanged. This finding is consistent with the idea that perturbing agents such as free fatty acids do not cause a general fluidization of the membrane but act locally to alter, for example, protein function. It is also consistent with the suggestion that lateral mobility of membrane proteins is not modulated by the lipid viscosity.  相似文献   

14.
Lateral diffusion of wild-type and mutant Ld antigens in L cells   总被引:10,自引:8,他引:2       下载免费PDF全文
《The Journal of cell biology》1984,99(6):2333-2335
We have compared the lateral diffusion of intact transmembrane proteins, wild-type H-2Ld antigens, with that of mutants truncated in the cytoplasmic domain. Diffusion coefficients and mobile fractions were similar for all molecules examined, from wild-type Ld antigens with 31 residues on the cytoplasmic side of the plasma membrane to mutants with only four residues in the cytoplasmic domain. This result limits ways in which the lateral diffusion of a major histocompatibility antigen, a transmembrane protein, can be constrained by interactions with other molecules.  相似文献   

15.
Cholesterol and glycosphingolipid-enriched membrane domains, termed lipid rafts, were proposed to play important roles in trafficking and signaling events. These functions are inhibited following putative disruption of rafts by cholesterol depletion, commonly induced by treatment with methyl-beta-cyclodextrin (MbetaCD). However, several studies showed that the lateral diffusion of membrane proteins is inhibited by MbetaCD, suggesting that it may have additional effects on membrane organization unrelated to cholesterol removal. Here, we investigated this possibility by comparison of the effects of cholesterol depletion by MbetaCD and by metabolic inhibition (compactin), and of treatment with alpha-CD, which does not bind cholesterol. The studies employed two series of proteins (Ras and influenza hemagglutinin), each containing as internal controls related mutants that differ in raft association. Mild MbetaCD treatment retarded the lateral diffusion of both raft and non-raft mutants, whereas similar cholesterol reduction (30-33%) by metabolic inhibition enhanced selectively the diffusion of the raft-associated mutants. Moreover, alpha-CD also inhibited the diffusion of raft and non-raft mutants, despite its lack of effect on cholesterol content. These findings suggest that the widely used treatment with CD to reduce cholesterol has additional, cholesterol-independent effects on membrane protein mobility, which do not necessarily distinguish between raft and non-raft proteins.  相似文献   

16.
Lateral diffusion coefficients of PEG-ylated lipids with three different molecular weight PEG groups (1000, 2000 and 5000) were measured in magnetically-aligned bicelles using the stimulated echo (STE) pulsed field gradient (PEG) 1H nuclear magnetic resonance (NMR) method. At concentrations below the PEG “mushroom-to-brush” transition, all three PEG-ylated lipids exhibited unrestricted lateral diffusion, with lateral diffusion coefficients comparable to those of corresponding non-PEG-ylated lipids and independent of PEG molecular weight. At concentrations above this transition, lateral diffusion slowed progressively with increasing concentration of PEG-ylated lipid as a result of surface crowding. As well, the lateral diffusion coefficients exhibited a pronounced decrease with increasing PEG group molecular weight and a diffusion-time dependence indicative of obstructed diffusion. We conclude that, while lateral diffusion of PEG-ylated lipids within lipid bilayers is determined primarily by the hydrophobic anchoring group, when crowding at the lipid bilayer surface becomes significant, the size of the extra-membranous domain, in this case the PEG group, can influence lateral diffusion, leading to decreased diffusivity with increasing size and producing obstructed diffusion at high crowding. These findings imply that similar considerations will pertain to lateral diffusion of membrane proteins with large extra-membranous domains.  相似文献   

17.
It is postulated that lipophilic ligands reach their sites of action on membrane-bound functional proteins through fast lateral diffusion across the membrane bilayer. We have shown using NMR experiments that such ligands when incorporated in a membrane system assume a preferred orientation and conformation. While occupying a specific location within the bilayer, these molecules undergo fast lateral diffusion which allows them to engage in productive interactions with their respective protein sites of action. The proposed model is discussed using a group of classical and non-classical cannabinoids as well as the endogenous cannabinoid ligand anandamide.  相似文献   

18.
Lavi Y  Gov N  Edidin M  Gheber LA 《Biophysical journal》2012,102(7):1543-1550
Lateral heterogeneity of cell membranes has been demonstrated in numerous studies showing anomalous diffusion of membrane proteins; it has been explained by models and experiments suggesting dynamic barriers to free diffusion, that temporarily confine membrane proteins into microscopic patches. This picture, however, comes short of explaining a steady-state patchy distribution of proteins, in face of the transient opening of the barriers. In our previous work we directly imaged persistent clusters of MHC-I, a type I transmembrane protein, and proposed a model of a dynamic equilibrium between proteins newly delivered to the cell surface by vesicle traffic, temporary confinement by dynamic barriers to lateral diffusion, and dispersion of the clusters by diffusion over the dynamic barriers. Our model predicted that the clusters are dynamic, appearing when an exocytic vesicle fuses with the plasma membrane and dispersing with a typical lifetime that depends on lateral diffusion and the dynamics of barriers. In a subsequent work, we showed this to be the case. Here we test another prediction of the model, and show that changing the stability of actin barriers to lateral diffusion changes cluster lifetimes. We also develop a model for the distribution of cluster lifetimes, consistent with the function of barriers to lateral diffusion in maintaining MHC-I clusters.  相似文献   

19.
Summary Lateral diffusion measurements have been made on lipids and proteins in the plasma membrane of live protoplasts derived from rose (Rosa sp. Paul's Scarlet) suspension-cultured cells. Two different fluorescent lipid probes exhibited markedly different diffusion rates, indicating possible heterogeneity in the lipid domain of the membrane. Membrane proteins were labeled directly with covalently-reactive fluorophores, and factors that might perturb the lateral diffusion of these labeled proteins were investigated. Treatment of the protoplasts with various cytoskeleton-disrupting drugs generally had little effect on protein diffusion, although treatment with oryzalin, a microtubule-disrupting drug, did slightly reduce the mobile fraction of membrane proteins. Elevation of the CaCl2 concentration in the medium from 1 mM to 10 mM significantly reduced the mobile fraction of membrane proteins and also increased the fraction of protoplasts that were able to regenerate cell walls and divide in culture. These results are discussed in relation to reported evidence of lipid domains in the plasma membranes of other cells and protoplasts. The relative importance of lipid domains and membrane-cytoskeleton interaction in governing protein diffusion is considered.Abbreviations D lateral diffusion coefficient - RCA Ricinus communis agglutinin - BPA Bauhinia purpurea agglutinin - DTAF dichlorotriazinylaminofluorescein - FTSC fluorescein-5-thiosemicarbazide - C18-Fl 5-(N-octadecanoyl)aminofluorescein - LY-Chol Lucifer yellow conjugate of cholesterol, i.e., dilithium 4-amino-N-[(-(carbo(5-cho-lesten-3-yl)oxy)hydrazinocarbonyl)amino]-1,8-naphthalimide-3,6-disulfonate - APM amiprophosmethyl - DMSO dimethylsulfoxide - FPR fluorescence photobleaching recovery - sd standard deviation - FRAF fluorescence redistribution after fusion - M mobile fraction  相似文献   

20.
Ras-membrane interactions play important roles in signaling and oncogenesis. H-Ras and K-Ras have nonidentical membrane anchoring moieties that can direct them to different membrane compartments. Ras-lipid raft interactions were reported, but recent studies suggest that activated K-Ras and H-Ras are not raft resident. However, specific interactions of activated Ras proteins with nonraft sites, which may underlie functional differences and phenotypic variation between different Ras isoforms, are unexplored. Here we used lateral mobility studies by FRAP to investigate the membrane interactions of green fluorescent protein-tagged H- and K-Ras in live cells. All Ras isoforms displayed stable membrane association, moving by lateral diffusion and not by exchange with a cytoplasmic pool. The lateral diffusion rates of constitutively active K- and H-Ras increased with their expression levels in a saturable manner, suggesting dynamic association with saturable sites or domains. These sites are distinct from lipid rafts, as the activated Ras mutants are not raft resident. Moreover, they appear to be different for H- and K-Ras. However, wild-type H-Ras, the only isoform preferentially localized in rafts, displayed cholesterol-sensitive interactions with rafts that were independent of its expression level. Our findings provide a mechanism for selective signaling by different Ras isoforms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号