首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The goal of the study was to evaluate the changes in the thermal state of the body during a maximal aerobic test on a bicycle ergometer on the basis of the dynamics of the skin temperature on the forehead. Twenty male athletes regularly training in various sports (skiers, rock-climbers, boxers, etc.) participated in our study. The forehead’s skin temperature was recorded using a NEC TH9100 Infrared Thermal Imaging Camera. These results were put together with the data on the heart rate, gas exchange, and lactate concentration in peripheral blood, as well as with anthropometrical parameters. It was shown that on the basis of the dynamics of the skin temperature at the maximal workload, the subjects could be divided into two groups of different sizes. In the first group (two-thirds of all subjects, most of the athletes of this group practiced endurance sports), after a temperature decrease, a smooth temperature increase took place until exhaustion. In the second group (one-third of all subjects, athletes of various sports specializations), from the beginning of active sweat evaporation, the temperature decreased until exhaustion. In the first group, the lactate threshold (a blood lactate concentration of 4 mmol/l) corresponded to the beginning of the increase in temperature after its decrease as a result of sweat evaporation. In the second group, the lactate threshold corresponded to the phase of the decrease in temperature during active sweat evaporation. The differences between the groups were expressed in the correlations of the measured parameters; in a number of cases, the inversions of the signs of correlation were found. At the same time, no significant differences in the parameters of working capacity were found between two groups. All these findings indicate the possibility of at least two successful strategies of urgent adaptation of the thermoregulatory system to intense muscular work.  相似文献   

2.
In 100 adult men the area of the face and neck where beard was growing was measured and compared to that of glabrous skin on the forehead and calvaria. In the population as a whole, forehead area was found to be proportional to bearded area. Forehead and calvaria sweat rate was measured on 10 baldheaded male subjects and compared with that of 10 hairy control subjects during mild hyperthermia. Bald skin was found to sweat more than twice as much as hairy skin. In the light of these results the hypothesis that baldness is a thermoregulatory adaptative process is proposed.  相似文献   

3.
Three male humans were subjected repeatedly to 20 min exercise on a bicycle ergometer: twice when hydrated normally and twice when dehydrated. Tympanic (Tty) and oesophageal (Tes) temperatures were recorded and sweat rates on forehead and back were measured. Dehydration did not change the forehead sweat rate, but on the back it reduced significantly, resulting in an increase of Tes. However, Tty was decreased by dehydration. 20 min after the end of exercise subjects were allowed to drink water in order to trigger the potohidrotic response. A potohidrotic response was noted on the back of dehydrated subjects only. It is concluded that dehydration results in active inhibition of sweating on the body but not on the forehead, where evaporation is needed for selective cooling of the brain.  相似文献   

4.
To evaluate the role of beta-adrenergic receptors in the control of human sweating, we studied six subjects during 40 min of cycle-ergometer exercise (60% maximal O2 consumption) at 22 degrees C 2 h after oral administration of placebo or nonselective beta-blockade (BB, 80 mg propranolol). Internal temperature (esophageal temperature, Tes), mean skin temperature (Tsk), local chest temperature (Tch), and local chest sweat rate (msw) were continuously recorded. The control of sweating was best described by the slope of the linear relationship between msw and Tes and the threshold Tes for the onset of sweating. The slope of the msw-Tes relationship decreased 27% (P less than 0.01), from 1.80 to 1.30 mg X cm-2 X min-1 X degree C-1 during BB. The Tes threshold for sweating (36.8 degrees C) was not altered as the result of BB. These data suggest that BB modified the control of sweating via some peripheral interaction. Since Tsk was significantly (P less than 0.05) reduced during BB exercise, from a control value of 32.8 to 32.2 degrees C, we evaluated the influence of the reduction in local skin temperature (Tsk) in the altered control of sweating. Reductions in Tch accounted for only 45% of the decrease in the slope of the msw-Tes relationship during BB. Since evaporative heat loss requirement during exercise with BB, as estimated from the energy balance equation, was also reduced 18%, compared with control exercise, we concluded that during BB the reduction in sweating at any Tes is the consequence of both a decrease in local Tsk and a direct effect on sweat gland.  相似文献   

5.
The purpose of this investigation was to determine whether sweat lactate secretion during exercise [approximately 70% maximum O2 consumption (VO2max), 60 min] differed in active vs. sedentary female subjects. Sweat rate, total sweat lactate secretion, and sweat lactate concentration were monitored in a group of sedentary (VO2max = 41.0 +/- 1.62 ml X kg-1 X min-1) and active (VO2max = 51.2 +/- 3.20 ml X kg-1 X min-1) women. Sweat rate was significantly (P less than 0.05) greater in the active subjects. There was a significant difference between groups in total amount of sweat lactate secreted (P less than 0.05), with the active group secreting less lactate (29.8 +/- 5.03 mmol, mean +/- SE) than the sedentary group (50.2 +/- 6.61 mmol). Concomitant with the lower total sweat lactate secretion in the active subjects was a significantly (P less than 0.05) more dilute sweat lactate concentration (42.6 +/- 14.08 vs. 100.4 +/- 32.37 mM). In these female subjects, sweat lactate concentration was inversely correlated (r = -0.79, P less than 0.01, n = 10) to sweat rate. It is concluded that total sweat lactate loss is significantly less in active than in sedentary women and that the active subjects secrete a greater quantity of lactate dilute sweat.  相似文献   

6.
Body temperature regulation was studied in 6 male subjects during an acclimation procedure involving uninterrupted heat exposure for 5 successive days and nights in a hot dry environment (ambient temperature = 35 degrees C, dew-point temperature = 7 degrees C; air velocity = 0.2 m.s-1). Data were obtained at rest and during exercise (relative mechanical workload = 35% VO2max). At rest, hourly measurements were made of oesophageal and 4 local skin temperatures, to allow the calculation of mean skin temperature, and of body motility and heart rate. During the working periods these measurements were made at 5 min intervals. Hourly whole-body weight loss was measured at rest on a sensitive platform scale while in the working condition just before starting and immediately after completing the bicycle exercise. The results show that, in both exercise and at rest, the successive heat exposures increased the sweat gland output during the first 3 days. Afterwards, sweat rate decreased without any corresponding change in body temperature. For the fixed workload, the sweat rate decline was associated with a decrease in circulatory strain. Adjustments in both sweating and circulatory mechanisms occur in the first 3 days of continuous heat exposure. The overall sweat rate decline could involve a redistribution of the regional sweating rates which enhances the sweat gland activities of skin areas with maximal evaporative efficiencies.  相似文献   

7.
We tested the hypothesis that local sweat rates would not display a systematic postadaptation redistribution toward the limbs after humid heat acclimation. Eleven nonadapted males were acclimated over 3 wk (16 exposures), cycling 90 min/day, 6 days/wk (40 degrees C, 60% relative humidity), using the controlled-hyperthermia acclimation technique, in which work rate was modified to achieve and maintain a target core temperature (38.5 degrees C). Local sudomotor adaptation (forehead, chest, scapula, forearm, thigh) and onset thresholds were studied during constant work intensity heat stress tests (39.8 degrees C, 59.2% relative humidity) conducted on days 1, 8, and 22 of acclimation. The mean body temperature (Tb) at which sweating commenced (threshold) was reduced on days 8 and 22 (P < 0.05), and these displacements paralleled the resting thermoneutral Tb shift, such that the Tb change to elicit sweating remained constant from days 1 to 22. Whole body sweat rate increased significantly from 0.87 +/- 0.06 l/h on day 1 to 1.09 +/- 0.08 and 1.16 +/- 0.11 l/h on days 8 and 22, respectively. However, not all skin regions exhibited equivalent relative sweat rate elevations from day 1 to day 22. The relative increase in forearm sweat rate (117 +/- 31%) exceeded that at the forehead (47 +/- 18%; P < 0.05) and thigh (42 +/- 16%; P < 0.05), while the chest sweat rate elevation (106 +/- 29%) also exceeded the thigh (P < 0.05). Two unique postacclimation observations arose from this project. First, reduced sweat thresholds appeared to be primarily related to a lower resting Tb, and more dependent on Tb change. Second, our data did not support the hypothesis of a generalized and preferential trunk-to-limb sweat redistribution after heat acclimation.  相似文献   

8.
The purpose of this study was to evaluate the role of knit structure in underwear on thermoregulatory responses. Underwear manufactured from 100% polypropylene fibres in five different knit structures (1-by-1 rib, fleece, fishnet, interlock, double-layer rib) was evaluated. All five underwear prototypes were tested as part of a prototype clothing system. Measured on a thermal manikin these clothing systems had total thermal resistances of 0.243, 0.268, 0.256, 0.248 and 0.250 m2.K.W-1, respectively (including a value for the thermal resistance of the ambient environment of 0.104 m2.K.W-1). Human testing was done on eight male subjects and took place at ambient temperature (Ta) = 5 degrees C, dew point temperature (Tdp) = -3.5 degrees C and air velocity (Va) = 0.32 m.s-1. The test comprised a repeated bout of 40-min cycle exercise (315 W.m-2; 52%, SD 4.9% maximal oxygen uptake) followed by 20 min of rest (62 W.m-2). The oxygen uptake, heart rate, oesophageal temperature, skin temperature, Ta, Tdp at the skin and in the ambient air, onset of sweating, evaporation rate, non-evaporated sweat accumulated in the clothing and total evaporative loss of mass were measured. Skin wettedness was calculated. The differences in knit structure of the underwear in the clothing systems resulted in significant differences in mean skin temperature, local and average skin wettedness, non-evaporated and evaporated sweat during the course of the intermittent exercise test. No differences were observed over this period in the core temperature measurements.  相似文献   

9.
Sweat efficiency is defined as the ratio between evaporative and sweat rates. The work was carried out on two resting subjects acclimatised to humid heat. Body sweat rate and rate of sweat loss by dripping were recorded separately by continuous weighing. Evaporation from the skin was obtained by the difference between the two weight loss curves. The subjects were exposed for 75 minutes to increases in humidity levels as constant air temperatures (42, 44, 46, or 48 degrees C). The amplitude of the increases was successively equal to 7.5, 15.0, 22.5 or 50.0 mb of water vapor pressure. During the 75 minutes preceding each increase the water vapor pressure of the air was maintained at 20.0 mb. 1. Sweat efficiency decreases prior to complete wetting of the skin surface. The inter-individual mean value of the wetted skin area threshold over which sweat efficiency is less than 1 is around 60%. 2. Sweat efficiency is linearly related to the reciprocal of the required wetted skin area (see article). These results are compared with those of other authors. The differences observed are explained in terms of physiological or physical variables involved in the sweat rate control or in the evaporative sweat loss. These include wetness of skin, posture, activity of subjects and the velocity of air over the skin surface.  相似文献   

10.
To investigate the effects of hyperthermia and facial fanning during hyperthermia on hand-grip exercise performance and thermoregulatory response, we studied eight male subjects, aged 20-53 years. Subjects exercised at 20% of maximal hand-grip strength in the sitting position under three conditions: normothermia (NT), hyperthermia without fanning (HT-nf) or with fanning at 5.5 m X sec-1 wind speed (HT-f). Hyperthermia (0.5 degrees C higher oesophageal temperature than in NT) was induced by leg immersion in water at 42 degrees C. Mean exercise performance was markedly reduced from 716 contractions (NT) to 310 (HT-nf) by hyperthermia (P less than 0.01) and significantly (P less than 0.05) improved to 431 (HT-f) by facial fanning. Hyperthermic exercise was accompanied by significant increases in forearm blood flow (71%) and the local sweat rate on the thigh (136%) at the end of exercise compared with that in NT. Heart rate (HR) and rating of perceived exertion (RPE) increased during exercise and were higher in HT-nf than in NT at any given time of exercise. Oesophageal, tympanic (Tty) and mean skin temperatures were also significantly higher in HT-nf than in NT. Facial fanning caused a marked decrease in forehead skin temperature (1.5-2.0 degrees C) and a slight decrease in Tty, HR and PRE compared with that in HT-nf at any given time of exercise. These results suggested that hyperthermia increased thermoregulatory demands and reduced exercise performance. Facial fanning caused decreases in face skin and brain temperatures, and improved performance.  相似文献   

11.
The body heat balance, measured by a thermometric method, was investigated in humans subjected to endogenous and exogenous heat load. The purpose of the present study was to test the concept of heat exchange by a servomechanism in human thermoregulation. Two series of experiments were performed on male volunteers. In series I 15 subjects performed physical exercise (50% VO2 max) for 60 min at a constant ambient temperature of 25 degrees C. In series II 16 subjects rested in a climatic chamber where the ambient temperature was elevated over 30 min from 22 to 42 degrees C and kept stable at this level during the subsequent 60 min. It was found that in both series of experiments the sweating rate followed an exponential curve exhibiting an inertial course. Heat was stored in the body mainly at the beginning of experiment. In series I the net body heat load of 125 W/m2 was equalized by sweat evaporation, beginning after 40 min of the exercise. In series II the net body heat load of 80 W/m2 was equalized in the same way, starting after 35 min of the constant high ambient temperature. In both series of experiments the amount of heat stored in the body calculated from the body heat balance was quite close to the amount of heat calculated from the calorimetric equation. It is concluded, that under the present experimental conditions, heat loss from the body by sweat evaporation seems to be a regulated variable in the human thermoregulatory system. The observed increase in rectal temperature may result from an inertial course of the sweating reaction.  相似文献   

12.
Thermoregulation during exercise in relation to sex and age   总被引:1,自引:0,他引:1  
The thermoregulatory responses to 1 h exercise of 14 male (age range 18--65 year) and 7 female (age range 18--46 year) athletes and 4 (3 male and 1 female) non-athletic subjects have been investigated in a moderate environment (Tdb = 21 degrees C, Twb = 15 degrees C and rh less than 50%) and analysed in relation to age, sex, and maximum aerobic power output (VO2max). The maximal sweat loss (Msw max) under the given conditions was closely related (r = + 0.90) to VO2max and for a given relative work load (%VO2max), rectal (Tre) and mean skin (Tsk) temperatures was the same in all subjects. Sweat loss (Msw) was linearly related to total heat production (H) and to peripheral tissue heat conductance (K) and if expressed in relative terms (%Mswmax) was linearly related to Tre. For a given Tre relative sweat rate was identical in the groups studied. From these results it would seem that during exercise Tre rises to meet the requirements of heat dissipation by establishing a thermal gradient from core to skin and stimulating sweating in proportion to maximal capacity of the system. Thus provided the thermal responses to work were standardised using the appropriate physiological variables, there was no evidence to be found for differences in thermoregulatory function which could be ascribed to sex or age.  相似文献   

13.
This study was designed to determine whether patients with McArdle's disease, who do not increase their blood lactate levels during and after maximal exercise, have a slow "lactacid" component to their recovery O2 consumption (VO2) response after high-intensity exercise. VO2 was measured breath by breath during 6 min of rest before exercise, a progressive maximal cycle ergometer test, and 15 min of recovery in five McArdle's patients, six age-matched control subjects, and six maximal O2 consumption- (VO2 max) matched control subjects. The McArdle's patients' ventilatory threshold occurred at the same relative exercise intensity [71 +/- 7% (SD) VO2max] as in the control groups (60 +/- 13 and 70 +/- 10% VO2max) despite no increase and a 20% decrease in the McArdle's patients' arterialized blood lactate and H+ levels, respectively. The recovery VO2 responses of all three groups were better fit by a two-, than a one-, component exponential model, and the parameters of the slow component of the recovery VO2 response were the same in the three groups. The presence of the same slow component of the recovery VO2 response in the McArdle's patients and the control subjects, despite the lack of an increase in blood lactate or H+ levels during maximal exercise and recovery in the patients, provides evidence that this portion of the recovery VO2 response is not the result of a lactacid mechanism. In addition, it appears that the hyperventilation that accompanies high-intensity exercise may be the result of some mechanism other than acidosis or lung CO2 flux.  相似文献   

14.
Graded cutaneous vascular responses to dynamic leg exercise   总被引:2,自引:0,他引:2  
The cutaneous vascular conductance-esophageal temperature (CVC-Tes) relationship was examined at five work loads (75-200 W) in each of four men to find whether there is a role for exercise intensity in the control of skin blood flow (SkBF). Several factors contributed to our evaluation of the CVC-Tes relationship during work. Laser-Doppler velocimetry (LDF) provided a continuous measure of SkBF that is not influenced by underlying muscle blood flow. Local warming to 39 degrees C at the site of measurement of SkBF provided a consistent skin temperature and facilitated observation of changes in LDF. Mean arterial pressure was measured noninvasively once per minute to calculate CVC. Supine exercise minimized baroreceptor-induced cutaneous vasoconstriction. Our major finding was that the internal temperature at which CVC began to rise during exercise (CVC threshold) was graded with work load beyond 125 W (P less than 0.05). In that range the CVC threshold increased by 0.16 degrees C for every increment of 25 W. The CVC threshold was never reached at the highest work load in three of the four subjects. There was no consistent effect of work load on the slope of the CVC-Tes relationship or on the internal temperature at which sweating began during exercise (sweat rate threshold). We conclude that the level of work beyond 125 W affects the CVC-Tes relationship in a graded fashion, principally through shifts in threshold.  相似文献   

15.
Thermoregulation and cardiovascular drift were studied under conditions of prolonged exercise in a warm environment (dry bulb temperature 31.7 +/- 0.3 degrees C, rh 44.7 +/- 4.7%) during beta-adrenergic blockade. Fourteen subjects performed 90-min rides on a cycle ergometer at a work rate equivalent to 40% of their control maximal O2 uptake under each of three treatments provided in a randomized double-blind manner: atenolol (100 mg/day), propranolol (160 mg/day), and a placebo. Exercise during the propranolol trial resulted in significantly higher forearm vascular resistance values and significantly lower forearm blood flows (FBF) compared with the placebo trial. However, the significantly lower FBF during propranolol did not significantly alter the rectal temperature (Tre) response to prolonged exercise. In addition, both beta-blockers produced lower FBF for any given Tre, suggesting that beta-adrenergic blockade affects FBF through nonthermal factors. The slight differences in Tre, despite the large differences in FBF between the various treatments, are apparently the result of an enhanced sweat loss and a lower mean skin temperature during exercise with beta-blockade. The uncoupling of FBF and sweat loss provides evidence of independent regulation. The reduction in FBF at any given Tre was concomitant to lower blood pressure values during beta-blockade and suggests that baroreflexes provide significant input to the control of skin blood flow when both pressure and temperature maintenance are simultaneously challenged.  相似文献   

16.
Two complementary techniques were employed to assess the soft tissue response to applied pressure. The noninvasive methods involve the simultaneous measurement of the local tensions of oxygen and carbon dioxide (tcPO2 and tcPCO2) and the collection and subsequent analysis of sweat collected from the sacrum, a common site for the development of pressure sores. All tests were performed on able-bodied subjects. Results have indicated that oxygen levels (tcPO2) were lowered in soft tissues subjected to applied pressures of between 40 (5.3 kPa) and 120 mmHg (16.0 kPa). At the higher pressures, this decrease was generally associated with an increase in carbon dioxide levels (tcPCO2) well above the normal basal levels of 45 mmHg (6 kPa). There were also considerable increases, in some cases up to twofold, in the concentrations of both sweat lactate and urea at the loaded site compared with the unloaded control. By comparing selected parameters, a threshold value for loaded tcPO2 was identified, representing a reduction of ~60% from unloaded values. Above this threshold, there was a significant relationship between this parameter and the loaded/unloaded concentration ratios for both sweat metabolites. These parameters may prove useful in identifying those subjects whose soft tissue may be compromised during periods of pressure ischemia.  相似文献   

17.
To examine the compensatory effects of work-induced thermal load and symmetrically applied local cooling on local sweat rates, two kinds of experiment were carried out on eight male subjects in a climatic chamber: 1) Experiments at 36 degrees C ambient temperature with a work load of about 25 W by the right leg. 2) Experiments at 36 degrees C ambient temperature with a work load of about 25 W by the right leg as in 1., but with additional compensatory cooling of the left leg controlled throughout by heat balance calculations at 75-85 W, equal to the heat produced in the working leg, the necessary air temperature being dependent on local sweat rate. Work load without cooling brought about a significant increase in core temperatures, metabolism, heart rate and local sweat rates. With unchanged local skin temperatures local sweat rate increase was higher in the working leg. Therefore the existence of muscle thermoreceptors should be assumed, the afferent information from which is processed and weighted in a different way to that provided by skin receptors. Work load combined with additional cooling reduced local and mean skin temperatures and heart rate, but had no significant influence on core temperature or metabolism. However, local sweat rate was generally lower in both thighs, with a major reduction in the cooled leg confirming control of local sweat rate by local temperature.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
An integration-type laser-Doppler flowmeter, equipped with a temperature-load instrument, for measuring skin blood flow (ILD-T), and analytical parameters developed in a previous study were used to compare changes in the skin blood flow in the forehead and cheek in elderly subjects (in their 60s and 70s) with those in younger subjects (in their teens to 50s). Age-related differences in skin blood flow in the forehead and cheek in response to cooling were evaluated in 90 healthy women in their teens to 70s (mean age: 17.2 +/- 0.33 years for teenagers; 24.3 +/- 0.76 years for those aged 20-29 years; 34.8 +/- 1.12 years for those aged 30-39 years; 43.3 +/- 0.78 years for those aged 40-49 years; 53.8 +/- 1.13 years for those aged 50-59 years; 63.5 +/- 0.55 years for those aged 60-69 years; 72.2 +/- 0.70 years for those aged 70-79 years). The measurement was performed continuously for 5 min: for 1 min at a sensor temperature of 30 degrees C, for 2 min after the setting of the sensor temperature had been changed to 10 degrees C, and for 2 min after the temperature setting had been cancelled. The parameters analyzed were (1) skin temperature in a resting state before measurement ( T(rest)), (2) mean skin blood flow in 1 min at a sensor temperature of 30 degrees C ( F(30 degrees C)), (3) minimum skin blood flow at a sensor temperature of 10 degrees C ( F(min)), (4) slope of the blood flow plot during the period from the beginning of cooling at 10 degrees C to F(min) ( S(fall)), (5) time required for the sensor temperature to reach 10 degrees C (Delta t(s)), (6) maximum skin blood flow during the period from the end of cooling to the end of measurement ( F(max)), (7) slope of the blood flow plot during the period from F(min) to F(max) ( S(rise)), (8) rate of decrease of the skin blood flow during cooling: FDR = ( F(min)/ F(30 degrees C))x100, (9) recovery rate of the skin blood flow after the end of cooling: FRR = ( F(max)/ F(30 degrees C))x100. When correlations among the above nine parameters were evaluated by combining all age groups, significant correlations ( P < 0.01) were observed between F(30 degrees C) and F(min), F(30 degrees C) and F(max), F(30 degrees C) and S(fall), F(min) and F(max), and F(max) and S(rise) in the forehead. In the cheek, significant correlations ( P < 0.01) were observed in all these combinations except between F(max) and S(rise). When these analytical parameters were compared among the age groups, F(30 degrees C), T(rest), F(max), and S(rise) decreased significantly ( P < 0.02 for F(30 degrees C) and T(rest), P < 0.01 for F(max) and S(rise)) and S(fall) increased significantly ( P < 0.03) in the forehead with aging. However, no significant change with aging was observed in FDR, Delta t(s), F(min), and FRR. In the cheek, FDR increased significantly ( P < 0.03), and S(rise) decreased significantly ( P < 0.01) with aging. However, no significant change with aging was observed in F(30 degrees C), T(rest), F(max), S(fall), Delta t(s), F(min), and FRR. Thus, the decrease in the skin blood flow during cooling showed no marked quantitative change with age, but, with aging, the rate of this decrease was clearly reduced in the forehead. In the cheek, on the other hand, the skin blood flow decreased markedly with aging, but no clear change was observed in the rate of this decrease. By using ILD-T and examining various parameters obtained, the skin hemodynamics in the forehead and cheek during cooling from 30 degrees C to 10 degrees C could be analyzed, and differences in the hemodynamics between the forehead and cheek and between elderly and younger individuals were clarified. This instrument is expected to be clinically useful.  相似文献   

19.
We attempt to determine whether the decrease in Na+ reabsorption and the increase in K+ secretion in sweat of cystic fibrosis patients (CF) were associated with changes in glandular anaerobic metabolism evaluated by forehead sweat lactate excretion rate. 6 CF and 11 normal (C) children, 5 months to 14 years old, were exposed to external thermal load (45 degrees C). The data showed that: 1) Na+, K+ and Cl- concentrations in CF are constant at any flow rate (Qsw); 2) In both groups the excretion rates of Na+, K+ and Cl- increased linearly with Qsw but the slopes in CF were significantly higher than in C (p less than 0.001); 3) Lactate excretion rate increased with Qsw as in CF and C with the same slope. We suggest that an increase in energy expenditure of Na+ - K+ exchange and an active secretion of K+ by the duct could explain the normal energy metabolism that we observed in CF sweat glands.  相似文献   

20.
Changes in sweat rate on the palm and on the general body surface in response to stepwise increases and decreases in work load during exercise on a bicycle ergometer were examined in relation to body temperature and heart rate in six male subjects (three trained and three untrained), in an attempt to evaluate thermal and nonthermal factors responsible for those changes. In all the untrained subjects, a transient, marked increase in palmar sweat rate was observed upon an abrupt increase (and occasionally upon an abrupt decrease) in work, while an increase in sweat rate on the general body surface was also rapid and marked. On the other hand, in all the trained subjects, palmar sweat rate was low and hardly showed a substantial increase in response to an abrupt increase in work load, to which sweating on the general body surface responded slowly by a gradual increase. While sweat rate on the general body surface showed a significant correlation with esophageal temperature and with heart rate, palmar sweat rate was not correlated with esophageal temperature but was significantly correlated with heart rate. Moreover, repeated increases and decreases in work load often led to progressive weakening of palmar sweating due apparently to the development of habituation. The present results suggest that responses of sweating to stepwise changes in work load are not solely dependent upon the thermoregulatory mechanism but are affected considerably by increase and decrease in psychic excitement and/or those in discharges of the sympathetic nervous system accompanying changes in work load.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号