共查询到20条相似文献,搜索用时 15 毫秒
1.
Itoh H Shimada A Ueguchi-Tanaka M Kamiya N Hasegawa Y Ashikari M Matsuoka M 《The Plant journal : for cell and molecular biology》2005,44(4):669-679
The rice SLR1 (SLENDER RICE 1) gene encodes a DELLA protein that belongs to a subfamily of the GRAS protein superfamily and that functions as a repressor of gibberellin (GA) signaling. Based on the constitutive GA response phenotype of slr1 mutants, SLR1 has been thought to be the sole DELLA-type protein suppressing GA signals in rice. However, in rice genome databases we identified two sequences homologous to SLR1: SLR1-like1 and -2 (SLRL1 and -2). SLRL1 and SLRL2 contain regions with high similarity to the C-terminal conserved domains in SLR1, but lack the N-terminal conserved region of the DELLA proteins. The expression of SLRL1 was positively regulated by GA at the mRNA level and occurred preferentially in reproductive organs, whereas SLRL2 was moderately expressed in mature leaf organs and was not affected by GA. Transformation of SLRL1 into the slr1 mutant rescued the slender phenotype of this mutant. Moreover, overexpression of SLRL1 in normal rice plants induced a dwarf phenotype with an increased level of OsGA20ox2 gene expression and diminished the GA-induced shoot elongation, suggesting that SLRL1 acts as a repressor of GA signaling. Consistent with the fact that SLRL1 does not have a DELLA domain, which is essential for degradation of DELLA proteins, a level of SLRL1 protein was not degraded by application of gibberellic acid. However, the repressive activity of SLRL1 against GA signaling was much weaker than a truncated SLR1 lacking the DELLA domain. Based on these characteristics of SLRL1, the functional roles of SLRL1 in GA signaling in rice are discussed. 相似文献
2.
Inbar Maymon Yaarit Greenboim-Wainberg Sivan Sagiv Joseph J. Kieber Menachem Moshelion Neil Olszewski David Weiss 《The Plant journal : for cell and molecular biology》2009,58(6):979-988
Specific plant developmental processes are modulated by cross-talk between gibberellin (GA)- and cytokinin-response pathways. Coordination of the two pathways involves the O-linked N -acetylglucosamine transferase SPINDLY (SPY) that suppresses GA signaling and promotes cytokinin responses in Arabidopsis. Although SPY is a nucleocytoplasmic protein, its site of action and targets are unknown. Several studies have suggested that SPY acts in the nucleus, where it modifies nuclear components such as the DELLA proteins to regulate signaling networks. Using chimeric GFP–SPY fused to a nuclear-export signal or to a glucocorticoid receptor, we show that cytosolic SPY promotes cytokinin responses and suppresses GA signaling. In contrast, nuclear-localized GFP–SPY failed to complement the spy mutation. To examine whether modulation of cytokinin activity by GA and spy is mediated by the nuclear DELLA proteins, cytokinin responses were studied in double and quadruple della mutants lacking the activities of REPRESSOR OF GA1-3 (RGA) and GA-INSENSITIVE (GAI) or RGA, GAI, RGA Like1 (RGL1) and RGL2. Unlike spy , the della mutants were cytokinin-sensitive. Moreover, when GA was applied to a cytokinin-treated quadruple della mutant it was able to suppress various cytokinin responses. These results suggest that cytosolic SPY and GA regulate cytokinin responses via a DELLA-independent pathway(s). 相似文献
3.
The ubiquitin-proteasome system (UPS) in plants, like in other eukaryotes, targets numerous intracellular regulators and thus modulates almost every aspect of growth and development. The well-known and best-characterized outcome of ubiquitination is mediating target protein degradation via the 26S proteasome, which represents the major selective protein degradation pathway conserved among eukaryotes. In this review, we will discuss the molecular composition, regulation and function of plant UPS, with a major focus on how DELLA protein degradation acts as a key in gibberellin signal transduction and its implication in the regulation of plant growth. 相似文献
4.
Takeshi Izawa 《The Plant journal : for cell and molecular biology》2021,105(2):431-445
Molecular genetic studies using Arabidopsis thaliana as a model system have overwhelmingly revealed many important molecular mechanisms underlying the control of various biological events, including floral induction in plants. The major genetic pathways of flowering have been characterized in-depth, and include the photoperiod, vernalization, autonomous and gibberellin pathways. In recent years, novel flowering pathways are increasingly being identified. These include age, thermosensory, sugar, stress and hormonal signals to control floral transition. Among them, hormonal control of flowering except the gibberellin pathway is not formally considered a major flowering pathway per se, due to relatively weak and often pleiotropic genetic effects, complex phenotypic variations, including some controversial ones. However, a number of recent studies have suggested that various stress signals may be mediated by hormonal regulation of flowering. In view of molecular diversity in plant kingdoms, this review begins with an assessment of photoperiodic flowering, not in A. thaliana, but in rice (Oryza sativa); rice is a staple crop for human consumption worldwide, and is a model system of short-day plants, cereals and breeding crops. The rice flowering pathway is then compared with that of A. thaliana. This review then aims to update our knowledge on hormonal control of flowering, and integrate it into the entire flowering gene network. 相似文献
5.
Brassinosteroid (BR) and gibberellin (GA) are two groups of plant growth regulators essential for normal plant growth and development. To gain insight into the molecular mechanism by which BR and GA regulate the growth and development of plants, especially the monocot plant rice, it is necessary to identify and analyze more genes and proteins that are regulated by them. With the availability of draft sequences of two major types, japonica and indica rice, it has become possible to analyze expression changes of genes and proteins at genome scale. In this review, we summarize rice functional genomic research by using microarray and proteomic approaches and our recent research results focusing on the comparison of cDNA microarray and proteomic analyses of BR- and GA-regulated gene and protein expression in rice. We believe our findings have important implications for understanding the mechanism by which BR and GA regulate the growth and development of rice. 相似文献
6.
Hirano K Kouketu E Katoh H Aya K Ueguchi-Tanaka M Matsuoka M 《The Plant journal : for cell and molecular biology》2012,71(3):443-453
When the gibberellin (GA) receptor GIBBERELLIN INSENSITIVE DWARF 1 (GID1) binds to GA, GID1 interacts with DELLA proteins, repressors of GA signaling. This interaction inhibits the suppressive function of DELLA protein and thereby activates the GA response. However, how DELLA proteins exert their suppressive function and how GID1s inhibit suppressive function of DELLA proteins is unclear. By yeast one-hybrid experiments and transient expression of the N-terminal region of rice DELLA protein (SLR1) in rice callus, we established that the N-terminal DELLA/TVHYNP motif of SLR1 possesses transactivation activity. When SLR1 proteins with various deletions were over-expressed in rice, the severity of dwarfism correlated with the transactivation activity observed in yeast, indicating that SLR1 suppresses plant growth through transactivation activity. This activity was suppressed by the GA-dependent GID1-SLR1 interaction, which may explain why GA responses are induced in the presence of GA. The C-terminal GRAS domain of SLR1 also exhibits a suppressive function on plant growth, possibly by directly or indirectly interacting with the promoter region of target genes. Our results indicate that the N-terminal region of SLR1 has two roles in GA signaling: interaction with GID1 and transactivation activity. 相似文献
7.
为探索DELLA蛋白缺失对拟南芥耐旱能力的影响,对拟南芥野生型Ler和DELLA蛋白缺失突变体della进行干旱处理,测定存活率、萌发率、离体叶片的失水率、脯氨酸、可溶性糖和丙二醛含量,并对发挥植物细胞脱水保护功能的胚胎晚期丰富蛋白编码基因LEA和ABA应答基因LOX3、COR15b、COR413的表达量进行了检测。结果表明:(1)干旱21d后复水,della突变体的存活率明显高于野生型Ler;(2)della突变体在含甘露醇的固体培养基上的萌发率显著高于Ler;(3)della突变体离体叶片的失水速率明显低于Ler;(4)干旱胁迫后,della突变体脯氨酸、可溶性糖和丙二醛含量的积累低于Ler;(5)干旱胁迫后,della突变体的LEA基因上调表达程度高于Ler,而ABA应答基因上调表达程度低于Ler。研究表明,DELLA蛋白的缺失有助于提高植物抗旱能力。 相似文献
8.
Peipei Xu Wei Ma Jing Liu Jinbo Hu Weiming Cai 《The Plant journal : for cell and molecular biology》2021,108(4):977-991
Plants resist infection through an innate immune response, which is usually associated with slowing of growth. The molecular mechanisms underlying the trade-off between plant growth and defense remain unclear. The present study reveals that growth/defense trade-offs mediated by gibberellin (GA) and salicylic acid (SA) signaling pathways are uncoupled during constitutive overexpression of transgenic AtRAN1 and AtRAN1Q72L (active, GTP-locked form) Arabidopsis plants. It is well known that the small GTP-binding protein Ran (a Ras-related nuclear protein) functions in the nucleus–cytoplasmic transport of proteins. Although there is considerable evidence indicating that nuclear–cytoplasmic partitioning of specific proteins can participate in hormone signaling, the role of Ran-dependent nuclear transport in hormone signaling is not yet fully understood. In this report, we used a combination of genetic and molecular methods to reveal whether AtRAN1 is involved in both GA and SA signaling pathways. Constitutively overexpressed AtRAN1 promoted both elongation growth and the disease resistance response, whereas overexpression of AtRAN1Q72L in the atran2atran3 double mutant background clearly inhibited elongation growth and the defense response. Furthermore, we found that AtRAN1 coordinated plant growth and defense by promoting the stability of the DELLA protein RGA in the nucleus and by modulating NPR1 nuclear localization. Interestingly, genetically modified rice (Oryza sativa) overexpressing AtRAN1 exhibited increased plant height and yield per plant. Altogether, the ability to achieve growth/defense trade-offs through AtRAN1 overexpression provides an approach to maximizing crop yield to meet rising global food demands. 相似文献
9.
10.
11.
A spontaneous rice mutant, erect leaf1 (elf1–1), produced a dwarf phenotype with erect leaves and short grains. Physiological analyses suggested that elf1–1 is brassinosteroid-insensitive, so we hypothesized that ELF1 encodes a positive regulator of brassinosteroid signaling. ELF1, identified by means of positional cloning, encodes a protein with both a U-box domain and ARMADILLO (ARM) repeats. U-box proteins have been shown to function as E3 ubiquitin ligases; in fact, ELF1 possessed E3 ubiquitin ligase activity in vitro. However, ELF1 itself does not appear to be polyubiquitinated. Mutant phenotypes of 2 more elf1 alleles indicate that the entire ARM repeats is indispensable for ELF1 activity. These results suggest that ELF1 ubiquitinates target proteins through an interaction mediated by ARM repeats. Similarities in the phenotypes of elf1 and d61 mutants (mutants of brassinosteroid receptor gene OsBRI1), and in the regulation of ELF1 and OsBRI1 expression, imply that ELF1 functions as a positive regulator of brassinosteroid signaling in rice. 相似文献
12.
Liu-Min Fan Xiaoyan Feng Yu Wang Xing Wang Deng 《植物学报(英文版)》2007,49(6):731-741
In the past decade, significant knowledge has accumulated regarding gibberellin (GA) signal transductlon In rice as a result of studies using multiple approaches, particularly molecular genetics. The present review highlights the recent developments In the identification of GA signaling pathway components, the discovery of GA-Induced destructlon of GA signaling repressor (DELLA protein), and the possible mechanism underlying the regulation of GA- responsive gene expression in rice. 相似文献
13.
Djakovic-Petrovic T de Wit M Voesenek LA Pierik R 《The Plant journal : for cell and molecular biology》2007,51(1):117-126
Plants can sense neighbour competitors through light-quality signals and respond with shade-avoidance responses. These include increased shoot elongation, which enhances light capture and thus competitive power. Such plant-plant interactions therefore profoundly affect plant development in crowded populations. Shade-avoidance responses are tightly coordinated by interactions between light signals and hormones, with essential roles for the phytochrome B photoreceptor [sensing the red:far red (R:FR) ratio] and the hormone gibberellin (GA). The family of growth-suppressing DELLA proteins are targets for GA signalling and are proposed to integrate signals from other hormones. However, the importance of these regulators has not been studied in the ecologically relevant, complex realm of plant canopies. Here we show that DELLA abundance is regulated during growth responses to neighbours in dense Arabidopsis stands. This occurs in a R:FR-dependent manner in petioles, depends on GA, and matches the induction kinetics of petiole elongation. Similar interactions were observed in the growth response of seedling hypocotyls and are general for a second canopy signal, reduced blue light. Enhanced DELLA stability in the gai mutant inhibits shade-avoidance responses, indicating that DELLA proteins constrain shade-avoidance. However, using multiple DELLA knockout mutants, we show that the observed DELLA breakdown is not sufficient to induce shade-avoidance in petioles, but plays a more central role in hypocotyls. These data provide novel information on the regulation of shade-avoidance under ecologically important conditions, defining the importance of DELLA proteins and GA and unravelling the existence of GA- and DELLA-independent mechanisms. 相似文献
14.
15.
Robertson M 《The Plant journal : for cell and molecular biology》2003,34(1):39-46
A barley SPINDLY protein, HvSPY, is a negative regulator of gibberellin (GA) action. It is also found to be a positive regulator of the promoter of a barley dehydrin (Dhn) gene which is abscisic acid (ABA) upregulated. To investigate whether HvSPY acts through the ABA signaling pathway to upregulate the Dhn promoter, functional characterization was carried out by co-bombardment experiments. These experiments used Dhn promoter-GUS reporter constructs and an effector construct to overexpress HvSPY protein in barley aleurone. ABA dose-response experiments with and without HvSPY overexpression showed that the induction by HvSPY occurred in addition to the ABA effect. Gibberellic acid (GA3) did not reduce the induction by ABA, but it had a small, although significant, effect on the ability of HvSPY to upregulate. The induction of promoter activity of Dhn by HvSPY required the intact protein, and a small deletion in the tetratricopeptide repeat (TPR) region reduced this ability significantly. When a promoter region containing an element for ABA responsiveness was mutagenized or deleted, the mutant promoters lost ABA responsiveness but remained responsive to HvSPY. In addition, HvSPY did not increase promoter activities of other ABA-upregulated genes. Taken together, these results indicate that HvSPY and ABA both regulate promoter activity of Dhn, and that HvSPY acts independently of the ABA signaling pathway. 相似文献
16.
Plant growth is regulated by bioactive gibberellin (GA), although there is an unexplained diversity in the magnitude of the GA responses exhibited by different plant species. GA acts via a group of orthologous proteins known as the DELLA proteins. The Arabidopsis genome contains genes encoding five different DELLA proteins, the best known of which are GAI and RGA. The DELLA proteins are thought to act as repressors of GA-regulated processes, whilst GA is thought to act as a negative regulator of DELLA protein function. Recent experiments have shown that GA induces rapid disappearance of nuclear RGA, SLR1 and SLN1 (DELLA proteins from rice and barley), suggesting that GA signalling and degradation of DELLA proteins are coupled. However, RGL1, another Arabidopsis DELLA protein, does not disappear from the nucleus in response to GA treatment. Here, we present evidence suggesting that GAI, like RGL1, is stable in response to GA treatment, and show that transgenic Arabidopsis plants containing constructs that enable high-level expression of GAI exhibit a dwarf, GA non-responsive phenotype. Thus, GAI appears to be less affected by GA than RGA, SLR1 or SLN1. We also show that neither of the two putative nuclear localisation signals contained in DELLA proteins are individually necessary for nuclear localisation of GAI. The various DELLA proteins have different properties, and we suggest that this functional diversity may explain, at least in part, why plant species differ widely in their GA response magnitudes. 相似文献
17.
18.
Exploiting DELLA Signaling in Cereals 总被引:1,自引:0,他引:1
Karel Van De Velde Philip Ruelens Koen Geuten Antje Rohde Dominique Van Der Straeten 《Trends in plant science》2017,22(10):880-893
19.