首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Generation of electric (delta psi) and chemical (delta pH) components of electrochemical proton gradient delta muH+, in plasma membrane vesicles of Heracleum sosnovskyi phloem cells was investigated. ATP-dependent generation of delta psi at pH 6.0 in the presence of Mg2+ and K+ was established with the help of fluorescent probes AU+ and ANS-. Protonophore CCCP and proton ATPase inhibitor DCCD suppressed generation, whereas oligomycin, the inhibitor of mitochondrial ATPases did not affect it. Measurings of delta psi value indicated its oscillations within the limits from 10 to 60 mV. ATP-dependent generation of delta pH was established by means of fluorescent probe 9-AA. The effect was eliminated by CCCP and stimulated by K+, that may testify to the transformation of a part of delta psi into delta pH at antiport H+/K+. Existence of H+-ATPase in the plasma membranes of higher plant cells insuring generation of delta muH+ is supposed.  相似文献   

2.
The redistribution fluorescent dye diS-C(3)(3) responds to yeast plasma membrane depolarisation or hyperpolarisation by Delta psi-dependent outflow from or uptake into the cells, reflected in changes in the fluorescence maximum lambda(max) and fluorescence intensity. Upon membrane permeabilisation the dye redistributes between the cell and the medium in a purely concentration-dependent manner, which gives rise to Delta psi-independent fluorescence responses that may mimic Delta psi-dependent blue or red shift in lambda(max). These lambda(max) shifts after cell permeabilisation depend on probe and ion concentrations inside and outside the cells at the moment of permeabilisation and reflect (a) permeabilisation-induced Delta psi collapse, (b) changing probe binding capacity of cell constituents (inverse to the ambient ionic strength) and (c) hampering of probe equilibration by the poorly permeable cell wall. At low external ion concentrations, cell permeabilisation causes ion outflow and probe influx (hyperpolarisation-like red shift in lambda(max)) caused by an increase in the probe-binding capacity of the cell interior and, in the case of heat shock, protein denaturation unmasking additional probe-binding sites. At high external ion levels minimising net ion efflux and at high intracellular probe concentrations at the moment of permeabilisation, the Delta psi collapse causes a blue lambda(max) shift mimicking an apparent depolarisation.  相似文献   

3.
The electrical potential (delta psi) and proton gradient (alpha pH) across the membranes of isolated bovine chromaffin granules and ghosts were simultaneously and quantitatively measured by using the membrane- permeable dyes 3,3'dipropyl-2,2'thiadicarbocyanine (diS-C3-(5)) to measure delta psi and 9-aminoacridine or atebrin to measure delta pH. Increases or decreases in the delta psi across the granular membrane could be monitored by fluorescence or transmittance changes of diS-C3- (5). Calibration of the delta psi was achieved by utilization of the endogenous K+ and H+ gradients, and valinomycin or carbonyl cyanide-p- trifluoromethoxyphenylhydrazone (FCCP), respectively, with the optical response of diS-C3-(5) varying linearly with the Nernst potential for H+ and K+ over the range -60 to +90 mV. The addition of chromaffin granules to a medium including 9-aminoacridine or atebrin resulted in a rapid quenching of the dye fluorescence, which could be reversed by agents known to cause collapse of pH gradients. From the magnitude of the quenching and the intragranular water space, it was possible to calculate the magnitude of the alpha pH across the chromaffin granule membrane. The time-course of the potential-dependent transmittance response of diS-C3-(5) and the delta pH-dependent fluorescence of the acridine dyes were studied simultaneously and quantitatively by using intact and ghost granules under a wide variety of experimental conditions. These results suggest that membrane-permeable dyes provide an accurate method for the kinetic measurement of delta pH and delta psi in an amine containing subcellular organelle.  相似文献   

4.
Mitochondrial membrane potential (delta psi(m)) was determined in intact isolated nerve terminals using the membrane potential-sensitive probe JC-1. Oxidative stress induced by H2O2 (0.1-1 mM) caused only a minor decrease in delta psi(m). When complex I of the respiratory chain was inhibited by rotenone (2 microM), delta psi(m) was unaltered, but on subsequent addition of H2O2, delta psi(m) started to decrease and collapsed during incubation with 0.5 mM H2O2 for 12 min. The ATP level and [ATP]/[ADP] ratio were greatly reduced in the simultaneous presence of rotenone and H2O2. H2O2 also induced a marked reduction in delta psi(m) when added after oligomycin (10 microM), an inhibitor of F0F1-ATPase. H2O2 (0.1 or 0.5 mM) inhibited alpha-ketoglutarate dehydrogenase and decreased the steady-state NAD(P)H level in nerve terminals. It is concluded that there are at least two factors that determine delta psi(m) in the presence of H2O2: (a) The NADH level reduced owing to inhibition of alpha-ketoglutarate dehydrogenase is insufficient to ensure an optimal rate of respiration, which is reflected in a fall of delta psi(m) when the F0F1-ATPase is not functional. (b) The greatly reduced ATP level in the presence of rotenone and H2O2 prevents maintenance of delta psi(m) by F0F1-ATPase. The results indicate that to maintain delta psi(m) in the nerve terminal during H2O2-induced oxidative stress, both complex I and F0F1-ATPase must be functional. Collapse of delta psi(m) could be a critical event in neuronal injury in ischemia or Parkinson's disease when H2O2 is generated in excess and complex I of the respiratory chain is simultaneously impaired.  相似文献   

5.
Bloodstream forms of Trypanosoma brucei were found to maintain a significant membrane potential across their mitochondrial inner membrane (delta psi m) in addition to a plasma membrane potential (delta psi p). Significantly, the delta psi m was selectively abolished by low concentrations of specific inhibitors of the F1F0-ATPase, such as oligomycin, whereas inhibition of mitochondrial respiration with salicylhydroxamic acid was without effect. Thus, the mitochondrial membrane potential is generated and maintained exclusively by the electrogenic translocation of H+, catalysed by the mitochondrial F1F0-ATPase at the expense of ATP rather than by the mitochondrial electron-transport chain present in T. brucei. Consequently, bloodstream forms of T. brucei cannot engage in oxidative phosphorylation. The mitochondrial membrane potential generated by the mitochondrial F1F0-ATPase in intact trypanosomes was calculated after solving the two-compartment problem for the uptake of the lipophilic cation, methyltriphenylphosphonium (MePh3P+) and was shown to have a value of approximately 150 mV. When the value for the delta psi m is combined with that for the mitochondrial pH gradient (Nolan and Voorheis, 1990), the mitochondrial proton-motive force was calculated to be greater than 190 mV. It seems likely that this mitochondrial proton-motive force serves a role in the directional transport of ions and metabolites across the promitochondrial inner membrane during the bloodstream stage of the life cycle, as well as promoting the import of nuclear-encoded protein into the promitochondrion during the transformation of bloodstream forms into the next stage of the life cycle of T. brucei.  相似文献   

6.
A lipophilic fluorescent cation diS-C3-(5) and rotenone suppress the oxygen consumption rate of thymocytes in similar concentrations. Seventy percent inhibition corresponds to an inhibitor:cytochrome a molar ratio of about 1:1. Addition of uncouplers decreases the inhibition of respiration by diS-C3-(5) (but not rotenone). FCCP in similar concentrations increases O2 consumption in the absence of diS-C3-(5) and the diS-C3-(5) fluorescence intensity in the presence of TMPD in thymocyte suspensions. In most thymocyte preparations, oligomycin (0.05-0.1 microgram/mL) increases the fluorescence of diS-C3-(5) and further addition of TMPD (50-100 microM) decreases the fluorescence. Addition of NaCN (400 microM) after oligomycin leads to a fluorescence increase that is hardly affected by subsequent addition of 0.2 microM FCCP. Nigericin (10-50 nM) decreases the diS-C3-(5) fluorescence. The data indicate that the diS-C3-(5) fluorescence associated with mitochondrial transmembrane potential (delta psi m) may be an essential part of the diS-C3-(5) fluorescence in lymphocyte suspensions. The changes of the diS-C3-(5) fluorescence intensity in the presence of TMPD after FCCP addition reflect delta psi m.  相似文献   

7.
Aminoglycoside antibiotics such as streptomycin and tobramycin must traverse the bacterial cytoplasmic membrane prior to initiating lethal effects. Previous data on Escherichia coli, Staphylococcus aureus, and Bacillus subtilis have demonstrated that transport of aminoglycosides is regulated by delta psi, the electrical component of the proton motive force. However, several laboratories have observed that growth of bacterial cells can occur in the apparent absence of delta psi, and we wished to confirm these studies with E. coli and further investigate whether transport of aminoglycosides could occur in the absence of a membrane potential. Treatment of acrA strain CL2 with the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP) dissipated delta psi, decreased intracellular ATP levels, and resulted in cessation of growth; after a variable period of time (3 to 7 h), growth resumed, ultimately achieving growth rates comparable to those of untreated cells. Absence of delta psi in these cells was confirmed by absence of [3H]tetraphenyl phosphonium+ uptake as measured by membrane filtration, lack of flagellar motion, and inability of these cells to transport proline (but not methionine). Regrowth was associated with restoration of normal intracellular ATP as measured by luciferin-luciferase bioluminescence assay. Unlike unacclimatized CL2 cells treated with CCCP, these cells transported [3H]tobramycin similarly to untreated cells; aminoglycoside-induced killing was seen in association with transport. These studies suggest that under certain circumstances aminoglycoside transport can be driven by ATP (or other high-energy activated phosphate donors) alone, in the absence of a measurable delta psi. delta uncBC mutants of CL2 incapable of interconverting delta psi and ATP were treated with CCCP, resulting in dissipation of delta psi but no alteration in ATP content. Despite maintenance of normal ATP, there was no transport of [3H] bramycin, confirming that under normal growth conditions ATP has no role in the transport of aminoglycosides.  相似文献   

8.
The relationship between the magnitude of the transmembrane electrical potential and the uptake of [14C]gentamicin was examined in wild-type Staphylococcus aureus in the logarithmic phase of growth. The electrical potential (delta psi) and the pH gradient across the cell membrane were determined by measuring the equilibrium distribution of [3H]tetraphenyl-phosphonium and [14C]acetylsalicylic acid, respectively. Incubation in the presence of the H+-ATPase inhibitor N,N'-dicyclohexylcarbodiimide (DCCD) led to an increase in delta psi with no measurable effect on the pH gradient at external pHs ranging from 5.0 to 6.5, and the effect on delta psi was DCCD concentration dependent. In separate experiments, gentamicin uptake and killing were studied in the same cells under identical conditions. At pH 5.0 (delta psi = -140 mV), no gentamicin uptake occurred. In the presence of 40 and 100 microM DCCD, delta psi was increased to -162 and -184 mV, respectively, and gentamicin uptake was observed in a manner that was also dependent on the DCCD concentration. At pH 6.0 (delta psi = -164 mV), gentamicin uptake occurred in the absence of the carbodiimide but was enhanced in a concentration-dependent fashion by 40 and 100 microM DCCD (delta psi = -174 and -216 mV, respectively). In all cases increased gentamicin uptake was associated with an enhanced bactericidal effect. The results indicate that initiation of gentamicin uptake requires a threshold level of delta psi (-155 mV) and that above this level drug uptake is directly dependent on the magnitude of delta psi.  相似文献   

9.
Light-dependent Na+ and H+ transports, membrane potential (delta psi) and motility have been studied in the cells of the marine cyanobacterium Oscillatoria brevis. In the presence of a protonophorous uncoupler, carbonyl cyanide-m-chlorophenylhydrazone, the intracellular Na+ level is shown to increase in the dark and decrease in the light. The Na+/H+ antiporter, monensin, stimulates the dark CCCP-dependent [Na+]in increase and abolishes the light-dependent [Na+]in decrease. Na+ ions are necessary for the fast light-induced delta psi generation and H+ uptake by the cells. This uptake is inhibited by monensin being resistant to CCCP. Monensin sensitizes the delta psi level and the motility rate to low CCCP concentrations. The obtained data are consistent with the assumption that O. brevis possesses a primary Na+ pump which utilizes (directly or indirectly) the light energy.  相似文献   

10.
The relationship between the average membrane potential (delta psi av) and sensitivity to complement action of the Schistosoma mansoni parasite was explored. The average membrane potential was estimated by measuring the uptake of [3H]tetraphenyl phosphonium ([3H]Ph4P+). The parasites take up Ph4P+ indicating the existence of a negative internal plasma potential which is in part dependent on the transmembrane K+ gradient, maintained by an active Na+/K+-ATPase. Values for Ph4P+ uptake could be corrected for mitochondrial accumulation by employing the protonophore carbonylcyanide m-chlorophenylhydrazone (CCCP), which collapses the mitochondrial potential. The plasma membrane potential derived by this technique was in the range of -60 mV. Transformation of this parasite, from its early cercaria stage to the adult worm, was associated with changes in the average membrane potential. The apparent hyperpolarization, which accompanies transformation, may be related to changes in ionic permeability and morphology which occur concomitantly. Complement acting through both the classical and alternative pathways was found to affect the potential of the parasite in its early development stages. The correlation between effects on delta psi av and sensitivity to complement action, indicates that the complement-induced changes in delta psi av are indeed tightly associated with its mode of action. Treatment of the parasite with complement resulted in net hyperpolarization of the membrane indicating that hyperpolarization rather than depolarization of the membrane is linked to the primary non-lethal action of complement.  相似文献   

11.
We have reported recently (Chinopoulos et al., 1999 J. Neurochem. 73, 220 228) that mitochondrial membrane potential (delta(psi)m) in isolated nerve terminals is markedly reduced by H2O2 in the absence of F0F1-ATPase working as a proton pump. Here we demonstrate that delta(psi)m reduced by H2O2 (0.5 mM) in the presence of oligomycin (10 mM), an inhibitor of the F0F1-ATPase, was able to recover by the addition of catalase (2000 U). Similarly, a decrease in the NAD(P)H level due to H2O2 can be reversed by catalase. In addition, H2O2 decreased the ATP level and the [ATP]:[ADP] ratio measured in the presence of oligomycin reflecting an inhibition of glycolysis by H2O2, but this effect was not reversible. The effect of H2O2 on delta(psi)m in the presence of the complex I inhibitor, rotenone, was also unaltered by addition of catalase. These results provide circumstantial evidence for a relationship between the decreased NAD(P)H level and the inability of mitochondria to maintain delta(psi)m during oxidative stress.  相似文献   

12.
The addition of ATP to bovine neurohypophysial secretory granules suspended in isotonic sucrose medium induces a positive polarization, delta psi, of their interior without affecting their internal pH. In KCl-containing media, ATP failed to generate large delta psi but induced a pH gradient (delta pH; interior acidic). These observations are consistent with the existence in the neurosecretory granule membrane of an ATP-dependent inward electrogenic H+ translocase (H+ pump), capable in KCl-containing media of acidifying the granule matrix by H+-Cl- cotransport. The delta psi and delta pH generated by the H+ pump, defined as the ATP-induced changes sensitive to the H+ ionophore carbonyl cyanide m-chlorophenylhydrazone (CCCP), were blocked by N,N'-dicyclohexylcarbodiimide, an inhibitor of all H+ pumps, and were insensitive to oligomycin, a mitochondrial ATPase inhibitor. In sucrose medium, measurements were complicated by a Donnan equilibrium reflecting the presence in the granule of peptide hormones and neurophysins which resulted in a CCCP-resistant resting delta pH. In KCl-containing media, the Donnan equilibrium was destroyed since the membrane is permeable to cations, but under these conditions a CCCP-resistant K+-diffusion potential was observed. The ATP-induced delta psi was also monitored by the extrinsic fluorescent probe bis(3-phenyl-5-oxoisoxazol-4-yl)pentamethine oxonol. The hypothesis of a granule H+ pump is further supported by the presence of an oligomycin-resistant ATPase in the preparation and the ultrastructural localization of such an activity on the granule membrane. The H+ pump has been found in both newly formed and aged neurosecretory granules. Its possible physiological function is discussed with reference to that of chromaffin granules, with which it has many similarities.  相似文献   

13.
It is possible to select transmembrane potential (delta psi)-altered mutants in Streptococcus pneumoniae on the basis of their resistance to the antifolate methotrexate. Comparison of such a mutant strain ( amiA9 ) with its parent was used to evaluate the role of delta psi in the uptake of certain amino acids. The delta psi-dependent uptake of isoleucine, leucine, valine, and asparagine showed a reduced maximum velocity of uptake, and decrease in the transport constant of the energy-dependent, delta psi-independent uptake of lysine, methionine, and glutamine was observed. No reduction of the intracellular pool of ATP or of lactate excretion could be detected in the mutant strain. Moreover, studies on membrane preparations suggest that the phenotype expressed by the amiA mutation is not a consequence of alteration of its ATPase activity or susceptibility to N,N'-dicyclohexylcarbodiimide. Therefore, it is unlikely that the amiA mutation affects the H+ F1F0 ATPase which is involved in the establishment of the proton motive force in anaerobic bacteria. We propose that another function contributes to delta psi in S. pneumoniae. The amiA gene may be the structural gene of that function.  相似文献   

14.
The bioenergetics of amino acid transport system A was studied in two Chinese hamster ovary (CHO) cell lines, the parent line CHO-PEOT/1 and CHY-1, a mutant of the former exhibiting a low activity of the same transport system. The steady-state transmembrane distribution ratio of the cationic amino acid L-arginine (RARG) was employed as an indicator of membrane potential (delta psi). Evidence for the reliability of RARG to measure delta psi can be summarized as follows: (1) L-arginine transmembrane distribution increased under conditions of cell hyperpolarization and decreased under conditions of cell depolarization; (2) L-arginine distribution conformed closely to that expected for a probe of delta psi in conditions in which delta psi depends largely on the transmembrane potassium gradient; and (3) the value of delta psi obtained through a valinomycin null point experiment (-72.7 mV) was very similar to the value calculated from L-arginine distribution using the Nernst equation (-73.4 mV). The transmembrane gradient of sodium electrochemical potential (delta mu Na), the driving force for the operation of system A, was slightly higher in the mutant cell line CHY-1. In the same line, the intracellular level of the specific system A substrate MeAIB at steady state was also higher. Studies of the rheogenicity of system A in the two lines indicated that the depolarization associated with the entry of substrates of system A was proportional to the amount of amino acid taken up by the cells. Kinetic analysis showed that the low activity of system A in the mutant cell line was referrable to a decrease in transport Vmax. It is concluded that neither a decrease in energy available for the operation of system A nor a decreased efficiency of coupling of the system to delta psi is responsible for the defect observed in the mutant line.  相似文献   

15.
1. A depolarisation of the membrane of rat liver mitochondria, as measured with the safranine method, is seen during Ca2+ uptake. The depolarisation is followed by a slow repolarisation, the rate of which can be increased by the addition of EGTA or phosphate. 2. Plots relating the initial rate of calcium ion (Ca2+) uptake and the decrease in membrane potential (delta psi) to the Ca2+ concentration show a half-maximal change at less than 10 micron Ca2+ and a saturation above 20 micron Ca2+. 3. Plots relating the initial rate of Ca2+ uptake to delta psi are linear. 4. Addition of Ca2+ chelators, nitriloacetate or EGTA, to deenergized mitochondria equilibrated with Ca2+ causes a polarisation of the mitochondrial membrane due to a diffusion potential created by electrogenic Ca2+ efflux. 5. If the extent of the response induced by different nitriloacetate concentrations is plotted against the expected membrane potential a linear plot is obtained up to 70 mV with a slope corresponding to two-times the extent of the response induced by valinomycin in the presence of different potassium ion gradients. This suggests that the Ca2+ ion is transferred across the membrane with one net positive charge in present conditions.  相似文献   

16.
Structural and functional changes in wheat root cells under the action of protonophores-carbonyl cyanide m-chlorophenylhydrazone (CCCP) were studied. After addition of 0.5 mM CCCP we observed K+ ions uptake from the incubation medium, stimulation of O2 uptake which correlated with the occurrence of condensed mitochondria in the cells (1, 4, 6 h of incubation), and an insignificant increase of heat in roots. Taking into account the protonophoric properties of CCCP, we assume what the observed changes may be associated with the activation of a reverse energy dependent transport of H+ ions from the cytoplasm, due partially to H(+)-ATPase function intensification. The addition of diethylstibestrol (DES), a specific inhibitor of plasma membrane H(+)-ATPase, completely eliminated the stimulating effect of CCCP, that confirms the earlier assumption.  相似文献   

17.
The effect of a protonophoric uncoupler (CCCP) on the different cellular compartments was investigated in yeast grown aerobically on lactate. These cells were incubated in a resting cell medium under three conditions; in aerobiosis with lactate or glucose or in anaerobiosis with glucose as energetic substrate. For each condition, in vivo 31P NMR was used to measure pH gradients across vacuolar and plasma membrane and phosphorylated compound levels. Respiratory rate (aerobic conditions) and TPP+ uptake were measured independently. Concerning the polyphosphate metabolism, spontaneous NMR-detected polyphosphate breakdown occurred, in anaerobiosis and in the absence of CCCP. In contrast, in aerobiosis, polyphosphate hydrolysis was induced by addition of either CCCP or a vacuolar membrane ATPase-specific inhibitor, bafilomycin A1. Moreover, polyphosphates were totally absent in a null vacuolar ATPase activity mutant. The vacuolar polyphosphate content depended on two factors: vacuolar pH value, strictly linked to the vacuolar H(+)-ATPase activity, and inorganic phosphate concentration. CCCP was more efficient in dissipating the proton electrochemical gradient across vacuolar and mitochondrial membranes than across the plasma membrane. This discrepancy can be essentially explained by a difference of stimulability of each proton pump involved. As long as the energetic state (measured by NDP + NTP content) remains high, the plasma membrane proton ATPase is able to compensate the proton leak. Moreover, this ATPase contributes only partially to the generation of delta pH. The maintenance of the delta pH across the plasma membrane, that of the energetic state, and the cellular TPP+ uptake depend on the nature of the ATP-producing process.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Potential-sensitive fluorescent probes oxonol V and oxonol VI were employed for monitoring membrane potential (Delta(psi)) generated by the Schizosaccharomyces pombe plasma membrane H(+)-ATPase reconstituted into vesicles. Oxonol VI was used for quantitative measurements of the Delta(psi) because its response to membrane potential changes can be easily calibrated, which is not possible with oxonol V. However, oxonol V has a superior sensitivity to Delta(psi) at very low concentration of reconstituted vesicles, and thus it is useful for testing quality of the reconstitution. Oxonol VI was found to be a good emission-ratiometric probe. We have shown that the reconstituted H(+)-ATPase generates Delta(psi) of about 160 mV on the vesicle membrane. The generated Delta(psi) was stable at least over tens of minutes. An influence of the H(+) membrane permeability on the Delta(psi) buildup was demonstrated by manipulating the H(+) permeability with the protonophore CCCP. Ratiometric measurements with oxonol VI thus offer a promising tool for studying processes accompanying the yeast plasma membrane H(+)-ATPase-mediated Delta(psi) buildup.  相似文献   

19.
The fluorescent dye 3,3'-dipropylthiadicarbocyanine, diS-C(3)(3), is a suitable probe to monitor real changes of plasma membrane potential in yeast cells which are too small for direct membrane potential measurements with microelectrodes. A method presented in this paper makes it possible to convert changes of equilibrium diS-C(3)(3) fluorescence spectra, measured in yeast cell suspensions under certain defined conditions, into underlying membrane potential differences, scaled in the units of millivolts. Spectral analysis of synchronously scanned diS-C(3)(3) fluorescence allows to assess the amount of dye accumulated in cells without otherwise necessary sample taking and following separation of cells from the medium. Moreover, membrane potential changes can be quantified without demanding calibration protocols. The applicability of this approach was demonstrated on the depolarization of Rhodotorula glutinis yeast cells upon acidification of cell suspensions and/or by increasing extracellular K(+) concentration.  相似文献   

20.
Energy coupling of L-glutamate transport in brain synaptic vesicles has been studied. ATP-dependent acidification of the bovine brain synaptic vesicles was shown to require CI-, to be accelerated by valinomycin and to be abolished by ammonium sulfate, nigericin or CCCP plus valinomycin, and K+. On the other hand, ATP-driven formation of a membrane potential (positive inside) was found to be stimulated by ammonium sulfate, not to be affected by nigericin and to be abolished by CCCP plus valinomycin and K+. Like formation of a membrane potential, ATP-dependent L-[3H]glutamate uptake into vesicles was stimulated by ammonium sulfate, not affected by nigericin and abolished by CCCP plus valinomycin and K+. The L-[3H]glutamate uptake differed in specificity from the transport system in synaptic plasma membranes. Both ATP-dependent H+ pump activity and L-glutamate uptake were inhibited by bafilomycin and cold treatment (common properties of vacuolar H(+)-ATPase). ATP-dependent acidification in the presence of L-glutamate was also observed, suggesting that L-glutamate uptake lowered the membrane potential to drive further entry of H+. These results were consistent with the notion that the vacuolar H(+)-ATPase of synpatic vesicles formed a membrane potential to drive L-glutamate uptake. ATPase activity of the vesicles was not affected by the addition of Cl-, glutamate or nigericin, indicating that an electrochemical H+ gradient had no effect on the ATPase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号