首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The fluorescent dye 3,3'-dipropylthiadicarbocyanine, diS-C(3)(3), is a suitable probe to monitor real changes of plasma membrane potential in yeast cells which are too small for direct membrane potential measurements with microelectrodes. A method presented in this paper makes it possible to convert changes of equilibrium diS-C(3)(3) fluorescence spectra, measured in yeast cell suspensions under certain defined conditions, into underlying membrane potential differences, scaled in the units of millivolts. Spectral analysis of synchronously scanned diS-C(3)(3) fluorescence allows to assess the amount of dye accumulated in cells without otherwise necessary sample taking and following separation of cells from the medium. Moreover, membrane potential changes can be quantified without demanding calibration protocols. The applicability of this approach was demonstrated on the depolarization of Rhodotorula glutinis yeast cells upon acidification of cell suspensions and/or by increasing extracellular K(+) concentration.  相似文献   

2.
The redistribution fluorescent dye diS-C(3)(3) responds to yeast plasma membrane depolarisation or hyperpolarisation by Delta psi-dependent outflow from or uptake into the cells, reflected in changes in the fluorescence maximum lambda(max) and fluorescence intensity. Upon membrane permeabilisation the dye redistributes between the cell and the medium in a purely concentration-dependent manner, which gives rise to Delta psi-independent fluorescence responses that may mimic Delta psi-dependent blue or red shift in lambda(max). These lambda(max) shifts after cell permeabilisation depend on probe and ion concentrations inside and outside the cells at the moment of permeabilisation and reflect (a) permeabilisation-induced Delta psi collapse, (b) changing probe binding capacity of cell constituents (inverse to the ambient ionic strength) and (c) hampering of probe equilibration by the poorly permeable cell wall. At low external ion concentrations, cell permeabilisation causes ion outflow and probe influx (hyperpolarisation-like red shift in lambda(max)) caused by an increase in the probe-binding capacity of the cell interior and, in the case of heat shock, protein denaturation unmasking additional probe-binding sites. At high external ion levels minimising net ion efflux and at high intracellular probe concentrations at the moment of permeabilisation, the Delta psi collapse causes a blue lambda(max) shift mimicking an apparent depolarisation.  相似文献   

3.
4.
5.
A lipophilic fluorescent cation diS-C3-(5) and rotenone suppress the oxygen consumption rate of thymocytes in similar concentrations. Seventy percent inhibition corresponds to an inhibitor:cytochrome a molar ratio of about 1:1. Addition of uncouplers decreases the inhibition of respiration by diS-C3-(5) (but not rotenone). FCCP in similar concentrations increases O2 consumption in the absence of diS-C3-(5) and the diS-C3-(5) fluorescence intensity in the presence of TMPD in thymocyte suspensions. In most thymocyte preparations, oligomycin (0.05-0.1 microgram/mL) increases the fluorescence of diS-C3-(5) and further addition of TMPD (50-100 microM) decreases the fluorescence. Addition of NaCN (400 microM) after oligomycin leads to a fluorescence increase that is hardly affected by subsequent addition of 0.2 microM FCCP. Nigericin (10-50 nM) decreases the diS-C3-(5) fluorescence. The data indicate that the diS-C3-(5) fluorescence associated with mitochondrial transmembrane potential (delta psi m) may be an essential part of the diS-C3-(5) fluorescence in lymphocyte suspensions. The changes of the diS-C3-(5) fluorescence intensity in the presence of TMPD after FCCP addition reflect delta psi m.  相似文献   

6.
The rate and extent of uptake of the fluorescent probe diS-C3(3) reporting on membrane potential inS. cerevisiae is affected by the strain under study, cell-growth phase, starvation and by the concentration of glucose both in the growth medium and in the monitored cell suspension under non-growth conditions. Killer toxin K1 brings about changes in membrane potential. In all types of cells tested,viz. in glucose-supplied stationary or exponential cells of the killer-sensitive strain S6/1 or a conventional strain RXII, or in glucose-free exponential cells of both strains, both active and heat-inactivated toxin slow down the potential-dependent uptake of diS-C3(3) into the cells. This may reflect “clogging” of pores in the cell wall that hinders, but does not prevent, probe passage to the plasma membrane and its equilibration. The clogging effect of heat-inactivated toxin is stronger than that exerted by active toxin. In susceptible cells,i.e. in exponential-phase glucose-supplied cells of the sensitive strain S6/1, this phase of probe uptake retardation is followed by an irreversible red shift in probe fluorescence maximumλ max indicating damage to membrane integrity and cell permeabilization. A similar fast red shift inλ max signifying lethal cell damage was found in heat-killed or nystatin-treated cells.  相似文献   

7.
The fluorescence of the voltage sensitive dye, diS-C3-(5), has been analyzed by means of synchronous excitation spectroscopy. Using this rather rare fluorescence technique we have been able to distinguish between the slightly shifted spectra of diS-C3-(5) fluorescence from cells and from the supernatant. It has been found that diS-C3-(5) fluorescence in the supernatant can be selectively monitored at exc = 630 nm and em= 650 nm, while the cell associated fluorescence can be observed at exc= 690 nm and em = 710 nm. A modified theory for the diSC3-(5) fluorescence response to the membrane potential is presented, according to which a linear relationship exists between the logarithmic increment of the dye fluorescence intensity in the supernatant, In I/I°, and the underlying change in the plasma membrane potential, p=pp. The theory has been tested on human myeloid leukemia cells (line ML-1) in which membrane potential changes were induced by valinomycin clamping in various K+ gradients. It has been demonstrated that the membrane potential change, p,can be measured on an absolute scale. Offprint requests to: J. Plasek  相似文献   

8.
A fluorometric assay for mitochondrial membrane potential in permeabilized yeast cells has been developed. This method involves permeabilizing the plasma membrane and measuring the distribution of a mitochondrial membrane potential sensitive probe 3,3'-dipropylthiadicarbocyanine iodide (DiSC(3)(5); DiSC(3)). In permeabilized cells, DiSC(3) fluorescence decreased when introduced into energized mitochondria and increased three- to sixfold when the mitochondrial membrane potential was dissipated by the chemical uncoupler carbonylcyanide m-chlorophenyl hydrazone. Plasma membrane potential was abolished by permeabilization, as shown by a lack of polarization of the plasma membrane induced by K(+) and glucose. Uncoupling protein 1 (UCP1), a mitochondrial H(+) transporter, was used as a model for method validation. The fluorescence intensity responded vigorously to specific modulators in UCP1-expressing cells. This method has been adapted as a high-throughput assay to screen for modulators of mitochondrial membrane potential.  相似文献   

9.
Summary The potential-sensitive response mechanism of 3,3-dipropylthiodicarbocyanine iodide (diS-C3-(5)) was examined based on our previous model of diS-C3-(5) interaction with brush border membrane vesicles (BBMV) in the absence of a membrane potential. The model contained binding (6 msec), reorientation (30 msec), dimerization (<10 nsec), and translocation (1 sec) reaction steps (Cabrini & Verkman, 1986.J. Membrane Biol. 90:163–175). Transmembrane potentials () were induced in BBMV by K+ gradients and valinomycin. Steady-state diS-C3-(5) fluorescence (excitation 622 nm, emission 670 nm) increased linearly with . The reorientation and translocation reaction steps were resolved by the stopped-flow technique as a biexponential decrease in fluorescence following mixture of diS-C3-(5) with BBMV at varying . The fractional amplitude of the faster exponential increased from 0.36 to 0.73 with increasing (–17 to 87 mV); the time constant for the faster exponential (30–35 msec) was independent of . There were single exponential kinetics (0.5–1.5 sec) for diS-C3-(5) fluorescence response to a rapid (<2 msec) change in in the absence of a diS-C3-(5) concentration gradient. These results, and similar findings in placental brush border vesicles, red cell vesicles, and phosphatidylcholine vesicles, support a translocation mechanism for diS-C3-(5) response, where induced membrane potentials drive diS-C3-(5) redistribution between sites at the inner and outer membrane leaflets, with secondary effects on diS-C3-(5) dimerization and solution/membrane partitioning. Fluorescence lifetime and dynamic depolarization measurements showed no significant change in diS-C3-(5) rotational characteristics or in the polarity of the diS-C3-(5) environment with changes in . Based on the experimental results, a mathematical model is developed to explain the quantitative changes in diS-C3-(5) fluorescence which accompany changes in at arbitrary dye/lipid ratios.  相似文献   

10.
The mitochondrial respiratory chain plays a crucial role in cellular and organismal health. In addition to being the major source of energy for most cells, mitochondrial respiratory chain function regulates or modulates redox and metabolite homeostasis, apoptosis and the generation of reactive oxygen species. In order to measure the relative in vivo mitochondrial membrane potential of different strains of the nematode, Caenorhabditis elegans, we have developed a fluorescence assay using the cationic, lipophilic carbocyanine dye, diS-C(3)(3). We demonstrate that two complex I-deficient mutants have significantly lower mitochondrial membrane potentials in vivo than wild type animals. Our fluorescence assay will enable us to better dissect and understand the complex phenotypic consequences of mitochondrial dysfunction.  相似文献   

11.
Behaviour of fluorescent carbocyanine probe disS-C3(5) in the egg lecithin-cholesterol membrane suspension was studied in relation to the lecithin/cholesterol ratio. The partition coefficient of the probe between aqueous and lipid phases decreases unlinearly with increase of cholesterol molar part in a bilayer. This parameter over molar part units was estimated to be (2.4 +/- 0.1) X 10(6) for egg lecithin membranes and (1.8 +/- 0.2) X 10(6) for 10 mol% cholesterol, (1.2 +/- 0.1) X 10(6) for 20, (0.8 +/- 0.1) X 10(6) for 30, and (0.48 +/- 0.02) X 10(6) for 50 mol% cholesterol. It is suggested that the probe partition coefficient value consists of two components: one caused by pure lecithin bilayer regions and another by local lecithin concentration fluctuations in the mixed lecithin-cholesterol regions.  相似文献   

12.
Summary Cationic cyanine dyes have been widely used to measure electrical potentials of red blood cells and other membrane preparations. A quantitative analysis of the binding of the most extensively studied of these dyes, diS-C3-(5), to red blood cells and their constituents is presented here. Absorption spectra were recorded for the dye in suspensions of isolated red cell membranes and in solutions of cell lysate. The dependence of the spectra on the concentrations of dye and cell constituents shows that the dye binds to these membranes as monomers with an absorbance maximum at 670 nm instead of 650 nm as for free aqueous dye and that the dye binds to oxyhaemoglobin partly as monomer but primarily as dimer, with absorbance maxima ca. 670 and 595 nm, respectively. Quantitative estimates are derived for all binding constants and extinction coefficients. These estimates are applied to suspensions of whole cells to predict the dye binding, absorbance spectra, and calibration curves of binding and fluorescencevs. membrane voltage. Satisfactory agreement is found with binding and absorbance data for whole cells at zero membrane potential and with the binding and fluorescence data reported by Hladky and Rink (J. Physiol. (London) 263:287, 1976) for cells driven to positive and negative potentials using valinomycin. The marked tendency of oxyhaemoglobin to bind dye as dimer is not shared by some other proteins tested, including deocyhaemoglobin and oxymyoglobin.  相似文献   

13.
SPC(3) is a multiple antigen peptide derived from the V(3) loop of human immunodeficiency virus (HIV) envelope (Env). It exerts a potent anti-HIV activity whereas it alters neither Env expression nor binding to CD(4). Here, SPC(3) binding characteristics, its subsequent intracellular fate and the fact that it inhibited SDF(1)alpha binding to the lymphocyte surface provided strong arguments to conclude that it exerts its anti-HIV activity through interference with the CXCR(4) coreceptor. In contrast, it interferes with none of the other major surface proteins and mechanisms involving V(3) and implicated in infection, as shown here. This work identifies the target mechanism of SPC(3).  相似文献   

14.
The interaction of the probe diS-C3-(5) with dipalmitoylphosphatidylcholine (DPPC) liposomes has been studied using fluorescence and differential scanning calorimetry (DSC). The partition coefficients (K) of the probe for the lipid and the aqueous phase (in terms of molar part units) were (1.20 +/- 0.4) X 10(6) at 45 degrees C and (0.50 +/- 0.07) X 10(6) at 23 and 36 degrees C. In terms of volume concentration units, these values correspond to Kp = (2.88 +/- 0.10) X 10(4) and Kp = (1.20 +/- 0.17) X 10(4), respectively. DSC thermograms were practically identical both for large unilamellar and multilamellar liposomes. The main transition peak remained practically unchanged over the entire range of the probe concentrations used. The pretransition could be observed up to maximal probe concentrations applied and it widened and shifted from 35.4 degrees C in pure DPPC to approximately 32 degrees C at a probe/lipid ratio of 0.027. These results suggest that in both quasicrystalline and liquid crystalline lipid bilayers the probe molecules are included in "defects" between structurally ordered microregions (microdomains or clusters). The dependence of the fluorescence response on the transmembrane potential in a suspension of unilamellar DPPC vesicles suggest that the equilibrium thermodynamic model is valid for liquid crystalline bilayers.  相似文献   

15.
We have recently reported that the yeast plasma membrane uracil permease undergoes cell-surface ubiquitination, which is dependent on the Npi1/Rsp5 ubiquitin-protein ligase. Ubiquitination of this permease, like that of some other transporters and receptors, signals endocytosis of the protein, leading to its subsequent vacuolar degradation. This process does not involve the proteasome, which binds and degrades ubiquitin-protein conjugates carrying Lys48-linked ubiquitin chains. The data presented here show that ubiquitination and endocytosis of uracil permease are impaired in yeast cells lacking the Doa4p ubiquitin-isopeptidase. Both processes were rescued by overexpression of wild-type ubiquitin. Mutant ubiquitins carrying Lys-->Arg mutations at Lys29 and Lys48 restored normal permease ubiquitination. In contrast, a ubiquitin mutated at Lys63 did not restore permease polyubiquitination. Ubiquitin-permease conjugates are therefore extended through the Lys63 of ubiquitin. When polyubiquitination through Lys63 is blocked, the permease still undergoes endocytosis, but at a reduced rate. We have thus identified a natural target of Lys63-linked ubiquitin chains. We have also shown that monoubiquitination is sufficient to induce permease endocytosis, but that Lys63-linked ubiquitin chains appear to stimulate this process.  相似文献   

16.
The plasma membrane ATPase, encoded by PMA1, is delivered to the cell surface via the secretory pathway. Previously, we characterized a temperature-sensitive pma1 mutant in which newly synthesized Pma1-7 is not delivered to the plasma membrane but is mislocalized instead to the vacuole at 37 degrees C. Several vps mutants, which are defective in vacuolar protein sorting, suppress targeting-defective pma1 by allowing mutant Pma1 to move once again to the plasma membrane. In this study, we have analyzed trafficking in the endosomal system by monitoring the movement of Pma1-7 in vps36, vps1, and vps8 mutants. Upon induction of expression, mutant Pma1 accumulates in the prevacuolar compartment in vps36 cells. After chase, a fraction of newly synthesized Pma1-7 is delivered to the plasma membrane. In both vps1 and vps8 cells, newly synthesized mutant Pma1 appears in small punctate structures before arrival at the cell surface. Nevertheless, biosynthetic membrane traffic appears to follow different routes in vps8 and vps1: the vacuolar protein-sorting receptor Vps10p is stable in vps8 but not in vps1. Furthermore, a defect in endocytic delivery to the vacuole was revealed in vps8 (and vps36) but not vps1 by endocytosis of the bulk membrane marker FM 4-64. Moreover, in vps8 cells, there is defective down-regulation from the cell surface of the mating receptor Ste3, consistent with persistent receptor recycling from an endosomal compartment to the plasma membrane. These data support a model in which mutant Pma1 is diverted from the Golgi to the surface in vps1 cells. We hypothesize that in vps8 and vps36, in contrast to vps1, mutant Pma1 moves to the surface via endosomal intermediates, implicating an endosome-to-surface traffic pathway.  相似文献   

17.
Vesicles from yeast plasma membrane were prepared according to Franzusoff and Cirillo [1983) J. Biol. Chem. 258, 3608), with slight modifications. When Mg-ATP was added, this preparation was able to generate a membrane potential, that was sensitive to inhibitors of the yeast H+-ATPase and uncouplers, and could be decreased by the addition of permeant anions, as measured by the fluorescence changes of the dye oxonol V. The addition of ATP could also generate a pH gradient, detectable by the fluorescence changes of the monitor aminochloromethoxyacridine. This gradient was sensitive to inhibitors of ATPase and uncouplers, and could be increased by the addition of permeant anions to the incubation mixture. When the vesicles were loaded with KCl, an increased rate of K+ efflux was produced upon the addition of ATP. Cytochrome oxidase from bovine heart could be reconstituted into the vesicles and was shown to generate a membrane potential difference, negative inside, evidenced by the fluorescence quenching of the cyanide dipropylthiacarbocyanine and the uptake of tetraphenylphosphonium. Besides, in these vesicles, K+ and Rb+, but not Na+ or NH+4 could decrease the quenching of fluorescence and the uptake of tetraphenylphosphonium produced when the electron-donor system was present. In the vesicles in which cytochrome oxidase was incorporated, upon the addition of cytochrome c and ascorbate, the uptake of 86Rb+ could be demonstrated also. This uptake was found to be saturable and inhibited by K+, and to a lesser degree by Na+. The results obtained indicate that these vesicles are reasonably sealed and capable of generating and maintaining a membrane potential. The membrane potential could be used to drive ions across the membrane of the vesicles, indicating the presence and functionality of the monovalent cation carrier. The vesicles, in general terms seem to be suitable for studying transport of ions and metabolites in yeast.  相似文献   

18.
The yeast, Kluyveromyces fragilis was permeabilized to a number of low-molecular-weight substrates using digitonin. The activities of intracellular yeast enzymes, viz., alcohol dehydrogenase (ADH), beta-galactosidase, glucose-6-phosphate dehydrogenase, aspartase, and hexokinase were found to be much higher in the permeabilized cells than the untreated cells. The optimum conditions for permeabilization with reference to ADH were 0.1% digitonin at 37 degrees C for 15 min. The ADH activity in permeabilized cells was several-fold higher than that in cell free extracts prepared by either physical or chemical methods.  相似文献   

19.
The buffer requirements to maintain mitochondrial intactness and membrane potential in in vitro studies were investigated, using gradient purified yeast mitochondria. It was found that the presence of phosphate is crucial for generation of a stable membrane potential and for preserving the intactness of the outer membrane, as assessed by probing the accessibility of Tom40p to trypsin and the leakage of cytochrome b2 from the intermembrane space. Upon addition of respiratory substrate in the absence of phosphate, mitochondria generate a membrane potential that collapses within 1 min. Under the same conditions, the mitochondrial outer membrane is disrupted. The presence of phosphate prevents both phenomena. The DeltapH component of the proton motive force appears to be responsible for the compromised outer membrane integrity. The collapse of the membrane potential is reversible to a limited extent. Only when phosphate is added soon enough after the addition of exogenous respiratory substrate can a stable membrane potential be obtained again. Within a few minutes, this capacity is lost. The presence of Mg(2+) prevents rupture of the outer membrane, but does not prevent rapid dissipation of the membrane potential. Similar results were obtained for mitochondria isolated and stored in the presence of dextran or bovine serum albumin.  相似文献   

20.
Null mutations in genes encoding V-ATPase subunits in Saccharomyces cerevisiae result in a phenotype that is unable to grow at high pH and is sensitive to high and low metal-ion concentrations. Treatment of these null mutants with ethylmethanesulfonate causes mutations that suppress the V-ATPase null phenotype, and the mutant cells are able to grow at pH 7.5. The suppressor mutants were denoted as svf (suppressor of V-ATPase function). The frequency of svf is relatively high, suggesting a large target containing several genes for the ethylmethanesulfonate mutagenesis. The suppressors' frequency is dependent on the individual genes that were inactivated to manifest the V-ATPase null mutation. The svf mutations are recessive, because crossing the svf mutants with their corresponding V-ATPase null mutants resulted in diploid strains that are unable to grow at pH 7.5. A novel gene family in which null mutations cause pleiotropic effects on metal-ion resistance or sensitivity and distribution of membrane proteins in different targets was discovered. The family was defined as VTC (Vacuolar Transporter Chaperon) and it contains four genes in the S. cerevisiae genome. Inactivation of one of them, VTC1, in the background of V-ATPase null mutations resulted in svf phenotype manifested by growth at pH 7.5. Deletion of the VTC1 gene (DeltaVTC1) results in a reduced amount of V-ATPase in the vacuolar membrane. These mutant cells fail to accumulate quinacrine into their vacuoles, but they are able to grow at pH 7.5. The VTC1 null mutant also results in a reduced amount of the plasma membrane H(+)-ATPase (Pma1p) in membrane preparations and possibly mis-targeting. This observation may provide an explanation for the svf phenotype in the double disruptant mutants of DeltaVTC1 and DeltaVMA subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号