首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermolability of 5,10-methylenetetrahydrofolate reductase (MTHFR) was examined as a possible cause of mild hyperhomocysteinemia in patients with premature vascular disease. Control subjects and vascular patients with mild hyperhomocysteinemia and with normohomocysteinemia were studied. The mean (+/- SD) specific MTHFR activity in lymphocytes of 22 control subjects was 15.6 (+/- 4.7) nmol CH2O/mg protein/h (range: 9.1-26.6), and the residual activity (+/- SD) after heat inactivation for 5 min at 46 degrees C was 55.3 (+/- 12.0)% (range: 35.9-78.3). By measurement of MTHFR activity, two distinct subgroups of hyperhomocysteinemic patients became evident. One group (n = 11) had thermolabile MTHFR with a mean (+/- SD) specific activity of 8.7 (+/- 2.1) nmol CH2O/mg protein/h (range: 5.5-12.7) and a residual activity, after heat inactivation, ranging from 0% to 33%. The other group (n = 28) had normal specific activity (+/- SD) of 21.5 (+/- 7.2) nmol CH2O/mg protein/h (range: 10.0-39.0) and a normal residual activity (+/- SD) of 53.8 (+/- 9.2)% (range: 33.1-71.5) after heat inactivation. The mean (+/- SD) specific activity of 29 normohomocysteinemic patients was 20.7 (+/- 6.5) nmol CH2O/mg protein/h (range: 9.4-33.8), and the mean (+/- SD) residual activity after heat inactivation was 58.2 (+/- 10.2)% (range: 43.0-82.0). Thus, in 28% of the hyperhomocysteinemic patients with premature vascular disease, abnormal homocysteine metabolism could be attributed to thermolabile MTHFR.  相似文献   

2.
Methylenetetrahydrofolate reductase (MTHFR) is a key regulatory enzyme in folate and homocysteine metabolism. Research performed during the past decade has clarified our understanding of MTHFR deficiencies that cause homocystinuria or mild hyperhomocysteinemia. Our cloning of the MTHFR coding sequence was initially followed by the identification of the first deleterious mutations in MTHFR, in patients with homocystinuria and marked hyperhomocysteinemia. Shortly thereafter, we identified the 677C-->T variant and showed that it encoded a thermolabile enzyme with reduced activity. Currently, a total of 41 rare but deleterious mutations in MTHFR, as well as about 60 polymorphisms have been reported. The 677C-->T (Ala222Val) variant has been particularly noteworthy since it has become recognized as the most common genetic cause of hyperhomocysteinemia. The disruption of homocysteine metabolism by this polymorphism influences risk for several complex disorders, including cardiovascular disease, neural tube defects and some cancers. We describe here the complex structure of the MTHFR gene, summarize the current state of knowledge on rare and common mutations in MTHFR and discuss some relevant findings in a mouse model for MTHFR deficiency.  相似文献   

3.
Severe methylenetetrahydrofolate reductase (MTHFR) deficiency with less than 2% of normal enzyme activity is characterized by neurological abnormalities, atherosclerotic changes, and thromboembolism. We have discovered a "new" variant of MTHFR deficiency which is characterized by the absence of neurological abnormalities, an enzyme activity of about 50% of the normal value, and distinctive thermolability under specific conditions of heat inactivation. In this study, lymphocyte MTHFR specific activities in the thermolabile variant and control groups were 5.58 +/- 0.91 and 10.33 +/- 2.89 nmol formaldehyde formed/mg protein/h, respectively. The difference was significant (P less than .01). However, there was overlap among the individual values from the two groups. On the other hand, residual MTHFR activity after heat inactivation was 11.2 +/- 1.43% in the thermolabile variant and 36.3 +/- 5.18% in the controls. There was no overlap. Enzyme studies in 10 subjects with thermolabile MTHFR and their family members support the hypothesis that thermolabile MTHFR is inherited as an autosomal recessive trait. To elucidate the association of thermolabile MTHFR with the development of coronary artery disease, we determined the thermostability of lymphocyte MTHFR in 212 patients with proven coronary artery disease and in 202 controls without clinical evidence of atherosclerotic vascular disease. Thermolabile MTHFR was found in 36 (17.0%) cardiac patients and 10 (5.0%) controls. The difference in incidence between the two groups was statistically significant (P less than .01). The average age at onset of clinical coronary artery disease in 36 patients with thermolabile MTHFR was 57.3 +/- 7.6 years (35-72 years). The mean total plasma homocysteine concentration in patients with thermolabile MTHFR was 13.19 +/- 5.32 nmol/ml and was significantly different from the normal mean of 8.50 +/- 2.80 nmol/ml (P less than .05). There was no association between thermolabile MTHFR and other major risk factors. We conclude that thermolabile MTHFR is a variant(s) of MTHFR deficiency which is inherited as an autosomal recessive trait. In addition, it is positively associated with the development of coronary artery disease. Determination of in vitro thermostability of lymphocyte MTHFR is a reliable method for identifying subjects with this abnormality.  相似文献   

4.
Genetic basis of inosine triphosphate pyrophosphohydrolase deficiency   总被引:12,自引:0,他引:12  
Inosine triphosphate pyrophosphohydrolase (ITPase) deficiency is a common inherited condition characterized by the abnormal accumulation of inosine triphosphate (ITP) in erythrocytes. The genetic basis and pathological consequences of ITPase deficiency are unknown. We have characterized the genomic structure of the ITPA gene, showing that it has eight exons. Five single nucleotide polymorphisms were identified, three silent (138G-->A, 561G-->A, 708G-->A) and two associated with ITPase deficiency (94C-->A, IVS2+21A-->C). Homozygotes for the 94C-->A missense mutation (Pro32 to Thr) had zero erythrocyte ITPase activity, whereas 94C-->A heterozygotes averaged 22.5% of the control mean, a level of activity consistent with impaired subunit association of a dimeric enzyme. ITPase activity of IVS2+21A-->C homozygotes averaged 60% of the control mean. In order to explore further the relationship between mutations and enzyme activity, we examined the association between genotype and ITPase activity in 100 healthy controls. Ten subjects were heterozygous for 94C-->A (allele frequency: 0.06), 24 were heterozygotes for IVS2+21A-->C (allele frequency: 0.13) and two were compound heterozygous for these mutations. The activities of IVS2+21A-->C heterozygotes and 94C-->A/IVS2+21A-->C compound heterozygotes were 60% and 10%, respectively, of the normal control mean, suggesting that the intron mutation affects enzyme activity. In all cases when ITPase activity was below the normal range, one or both mutations were found. The ITPA genotype did not correspond to any identifiable red cell phenotype. A possible relationship between ITPase deficiency and increased drug toxicity of purine analogue drugs is proposed.  相似文献   

5.
Methylenetetrahydrofolate reductase (MTHFR) is important for folate and homocysteine (Hcy) metabolism. MTHFR 677C‐>T and 1298A‐>C MTHFR are two most common mutations which can affect folate and total homocysteine (tHcy) status. This study was designed to determine the rate of MTHFR 677C‐>T and 1298A‐>C mutations, and their influence on serum folate, Hcy and vitamin B12 status and the reference intervals in 402 healthy Turkish adults. The rate of MTHFR 677C‐>T or 1298A‐>C mutations was 50.7% or 54.7%, respectively. The MTHFR 677C‐>T mutation‐specific reference intervals for serum folate and tHcy were characterized by marked shifts in their upper limits. In homozygote subjects for MTHFR 677C‐>T serum folate concentration was lower and serum tHcy concentration was higher than those in the wild genotype; all subjects had lower serum folate and 54% of the subjects had higher tHcy concentrations than the cutoff values of ≤10 nmol/L and ≥12 µmol/L, respectively. Serum vitamin B12 status was similar in all genotypes. Serum tHcy concentrations were inversely correlated with serum folate and vitamin B12 concentrations in all genotypes. These data show that the rate of MTHFR 677C‐>T and 1298A‐>C mutations is very high in Turks and serum folate and tHcy status are impaired by these mutations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
BACKGROUND: The importance of metabolic factors in neural tube defects (NTDs) has been the focus of many investigations. Several authors have suggested that abnormalities in homocysteine metabolism, such as hyperhomocysteinemia, folate deficiency, and low vitamin B12, may be responsible for these malformations and that both nutritional factors and genetic abnormalities are associated with them. METHODS: We conducted a case-control study to investigate the influence of biochemical and genetic factors in NTDs in infants in southern Brazil. Levels of folate, vitamin B12, total homocysteine (t-Hcy) and the 677C>T and 1298A>C polymorphisms of the MTHFR gene were analyzed in 41 NTD child-mother pairs and 44 normal child-mother control pairs. RESULTS: Subjects in the case group had a higher mean blood folate level than those in the control group. The level of vitamin B12 was lower in mothers in the NTD group than in control mothers (p = 0.004). The level of t-Hcy was not different in the two groups, but t-Hcy and vitamin B12 were correlated (p = 0.002). There was no difference in the genotype distribution for 677C>T and 1298A>C polymorphisms of MTHFR in the case and control pairs. The level of t-Hcy was correlated with 677TT. CONCLUSIONS: Despite the small sample in this study, we suggest that low vitamin B12 and, consequently, hyperhomocysteinemia are important risk factors for NTDs in our population.  相似文献   

7.
Two functional single nucleotide polymorphisms, 677C > T and 1298A > C have been described for the methylenetetrahydrofolate (MTHFR) gene. Both are associated with reduced enzyme activity in vitro. For the 677T, but not the 1298C allele, significantly lower serum folate and higher plasma total homocysteine (tHcy) have been reported. We genotyped 10,034 middle-aged (50–64 years old) subjects and measured serum folate and tHcy. Within strata of 677 genotypes, 1,298 genotypes had significantly different serum folate and tHcy (P ≤ 0.03 for all comparisons). Each additional 1298C allele reduced mean serum folate and increased mean tHcy, by (on average) 4.5 and 3.0%, respectively. In comparison, within strata of 1,298 genotypes, the increase from no, to one 677T-allele reduced serum folate and increased tHcy by, 7.1 and 6.3%, respectively. Lowest serum folate and highest tHcy level was found for the 677TT/1298AA genotype. The difference in tHcy was significantly larger at low folate than at high folate when genotypes 677TT/1298AA and 677CT/1298AA, 677CT/1298AC and 677CC/1298AC, and genotypes 677CT/1298AC and 677CT/1298AA were compared. We interpreted these data in the context of a model of the MTHFR enzyme that describes the enzyme as a dimer that mainly exist in six different configurations. The model reconciled the observed phenotypic effects of the 677/1,298 combination genotypes with previous in vitro measurements, and identified enzyme configurations that are sensitive to low folate levels. In conclusion, this report demonstrates functional inference of the MTHFR 677 C > T and 1,298 A > C polymorphisms from a large-scale epidemiological study.  相似文献   

8.
Mild hyperhomocysteinemia is an established risk factor for cardiovascular disease. Genetic aberrations in the cystathionine beta-synthase (CBS) and methylenetetrahydrofolate reductase (MTHFR) genes may account for reduced enzyme activities and elevated plasma homocysteine levels. In 15 unrelated Dutch patients with homozygous CBS deficiency, we observed the 833T-->C (I278T) mutation in 50% of the alleles. Very recently, we identified a common mutation (677C-->T; A-->V) in the MTHFR gene, which, in homozygous state, is responsible for the thermolabile phenotype and which is associated with decreased specific MTHRF activity and elevated homocysteine levels. We screened 60 cardiovascular patients and 111 controls for these two mutations, to determine whether these mutations are risk factors for premature cardiovascular disease. Heterozygosity for the 833T-->C mutation in the CBS gene was observed in one individual of the control group but was absent in patients with premature cardiovascular disease. Homozygosity for the 677C-->T mutation in the MTHFR gene was found in (15%) of 60 cardiovascular patients and in only 6 (approximately 5%) of 111 control individuals (odds ratio 3.1 [95% confidence interval 1.0-9.2]). Because of both the high prevalence of the 833T-->C mutation among homozygotes for CBS deficiency and its absence in 60 cardiovascular patients, we may conclude that heterozygosity for CBS deficiency does not appear to be involved in premature cardiovascular disease. However, a frequent homozygous mutation in the MTHFR gene is associated with a threefold increase in risk for premature cardiovascular disease.  相似文献   

9.
Methylenetetrahydrofolate reductase (MTHFR) catalyzes the conversion of methylenetetrahydrofolate (CH2H4folate) to methyltetrahydrofolate (CH3H4folate). The C677T mutation is a common polymorphism of the human enzyme that leads to the replacement of Ala222Val, thermolability of MTHFR, and mild elevation of plasma homocysteine levels. A mild hyperhomocysteinemia is known to be risk factor for cardiovascular and thrombotic diseases, ischemic stroke, neural tube defects, late on-set dementia, and pregnancy complications. Human plasma of subjects carrying the C677T mutation in the MTHFR gene has been investigated for their protein pattern in order to identify novel molecular hallmarks. 2-D analysis of the plasma protein allowed the identification of a specific pattern associated with the TT mutant genotype. Noteworthy, we found one spot shifted to a more basic pI in mutant individuals, and MS identification corresponded to vitamin D-binding protein (DBP or group component (Gc) globulin). MS/MS peptide sequencing allowed to discriminate different allelic variants in the investigated clinical groups. These data confirmed by molecular genetic analysis highlight the novel association between the C677T MTHFR genotype with the Gc2 polymorphism of the DBP. Moreover, we found a quantitative reduction of Apolipoprotein A-I in mutant individuals, which was associated, in previous studies by others to an increased cardiovascular risk.  相似文献   

10.
Hyperhomocysteinemia is associated with increased coronary artery disease (CAD) risk. Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme in the metabolism of homocysteine and presents a common mutation (C677T) that leads to a thermolabile enzyme, mild hyperhomocysteinemia, and increased CAD risk. The C677T MTHFR mutation was studied in 772 subjects (480 Caucasian Brazilians and 292 African Brazilians) who underwent coronary angiography at the hemodynamic center of the Santa Izabel Hospital in Salvador, Bahia State, Brazil. The 677T allele frequency was increased in Caucasian Brazilians (28.1%) compared to the frequency observed in African Brazilians (18.3%; p < 0.001). In Caucasian Brazilians the frequency of the 677T homozygous genotype was increased in CAD cases (10.4%) compared to control subjects (1.4%; p = 0.014) in males but not in females. In African Brazilians the mutation was not associated with CAD in either sex. The multivariate logistic regression analysis of all the samples shows that the 677T homozygous interaction with sex was a significant CAD predictor, independent of other classical risk factors and ethnic group. The odds ratio associated with male 677T homozygotes was increased 9.2-fold (p = 0.021) compared to the 677C carriers. The present study suggests that the C677T MTHFR mutation is associated with increased CAD risk in a sex-dependent manner in Brazilians.  相似文献   

11.
Dynamical modeling is an accurate tool for describing the dynamic regulation of one-carbon metabolism (1CM) with emphasis on the alteration of DNA methylation and/or dUMP methylation into dTMP. Using logic programming we present a comprehensive and adaptative mathematical model to study the impact of folate deficiency, including folate transport and enzymes activities. 5-Methyltetrahydrofolate (5mTHF) uptake and DNA and dUMP methylation were studied by simulating nutritional 5mTHF deficiency and methylenetetrahydrofolate reductase (MTHFR) gene defects. Both conditions had distinct effects on 1CM metabolite synthesis. Simulating severe 5mTHF deficiency (25% of normal levels) modulated 11 metabolites. However, simulating a severe decrease in MTHFR activity (25% of normal activity) modulated another set of metabolites. Two oscillations of varying amplitude were observed at the steady state for DNA methylation with severe 5mTHF deficiency, and the dUMP/dTMP ratio reached a steady state after 2 h, compared to 2.5 h for 100% 5mTHF. MTHFR activity with 25% of V(max) resulted in an increased methylated DNA pool after half an hour. We observed a deviation earlier in the profile compared to 50% and 100% V(max). For dUMP methylation, the highest level was observed with 25%, suggesting a low rate of dUMP methylation into dTMP with 25% of MTHFR activity. In conclusion, using logic programming we were able to construct the 1CM for analyzing the dynamic system behavior. This model may be used to refine biological interpretations of data or as a tool that can provide new hypotheses for pathogenesis.  相似文献   

12.
Changes in the folate and vitamin B12 status in the body influence the extent of uracil misincorporation (UrMis) into DNA, which is one of the biomarkers of genomic stability and, thus, portends a risk of cancer. In our study, the level of UrMis into DNA was evaluated by the comet assay (using the specific DNA repair enzyme, uracil DNA glycosylase) in leukocytes from blood donated by healthy young women with positive folate balance achieved by 4 weeks of folic acid supplementation (400 microg/day). The nutritional status was evaluated on the basis of nine food diaries recorded by the subjects during two winter months. The data were computerized, and the intake of nutrients and micronutrients was estimated using the DIETA 2 program (Food and Nutrition Institute, Warsaw, Poland) linked to recently updated Polish food tables. The plasma folate and vitamin B12 concentration, as well as methylenetetrahydrofolate reductase (MTHFR) polymorphisms, were evaluated to determine their influence on the level of UrMis into DNA. The mean value of B12 intake for all subjects reached 100% of the Polish recommended dietary allowances (RDA), whereas the mean value of folate intake, before folate supplementation, was 50%, suggesting moderate deficiency. Folic acid supplementation brought the folate intake way above the RDA, and plasma folate concentration in each individual was above the deficient range (mean value 14.67 ng/ml). The UrMis did not correlate with the plasma folate concentration, but the level of UrMis was significantly lower in subjects with plasma vitamin B12 concentration above 400 pg/ml (P=.02) only after folic acid supplementation. The concentration of folate in plasma correlated (P相似文献   

13.
Two genetic polymorphisms of methylenetetrahydrofolate reductase (MTHFR) gene (C677T and A1298C) can influence the plasma homocysteine (Hcy) levels, especially in the presence of an inadequate folate status. The aim of this study was to evaluate the frequencies of C677T and of A1298C MTHFR polymorphisms and their correlation with Hcy and serum folate concentrations in a population of blood donors living in a region of middle‐southern Italy (the Molise Region). One hundred ninety seven blood donors were studied for total plasma Hcy, serum folate and C677T and A1298C MTHFR genotypes. The frequency of C677T genotypes was 20.8% (CC), 49.8% (CT) and 29.4% (TT); for the A1298C genotypes: 48.7% (AA), 43.7% (AC) and 7.6% (CC). Hcy and serum folate concentrations were significantly different among genotypes of the C677T polymorphism (CC versus CT versus TT: <0.0001 both for Hcy and folate), with Hcy values increasing, and serum folate decreasing, from CC to TT subjects. Regarding to A1298C polymorphism, the difference among genotypes (AA versus AC versus CC; p: 0.026 for Hcy and 0.014 for serum folate), showed an opposite trend for both parameters, with Hcy higher in the wild‐type and lower in the homozygotes and serum folate higher in CC than in AA subjects. In conclusion, we found a high frequency of MTHFR allele associated with high level of Hcy and low levels of folate in an Italian southern population. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
A "newly detected" variant of methylenetetrahydrofolate (MTHF) reductase (E.C.1.1.1.68) deficiency associated with an 8-15-fold increase in plasma total homocysteine was discovered in two unrelated patients who had subnormal serum folate. However, the homocysteinemia was corrected by oral folic acid supplement. When MTHF reductase activities in lymphocyte extracts before and after heat treatment at 46 C for 5 min were compared, there was a consistent difference in heat stability between the enzyme from the controls and that from the patients. The mean residual activities after heat treatment were 37.0% (34.1%-42.6%) in the controls and 15.2% and 15.1% in the two patients, respectively. Two obligate heterozygotes for severe MTHF reductase deficiency had residual activities of 39.6% and 37.7%. A similar difference in thermostability was demonstrated in cultured skin fibroblasts and lymphoblasts. Studies with a mixture of lymphoblast extracts from a control and a patient and with partially purified enzyme suggested that the thermostability was an independent characteristic of MTHF reductase. These observations provided evidence of a hitherto undescribed mutant MTHF reductase in our two patients with intermediate homocysteinemia. Unlike previously reported patients with MTHF reductase deficiency, there was no apparent clinical problem related to the abnormal folate or homocysteine metabolism during infancy or childhood in these two subjects, but one of them had vascular disorders in adulthood. The observations in these two subjects suggested that a moderate deficiency of MTHF reductase might be associated with vascular disorders in adult life.  相似文献   

15.
Newborn screening for biotinidase deficiency has identified children with profound biotinidase deficiency (<10% of mean normal serum activity) and those with partial biotinidase deficiency (10%–30% of mean normal serum activity). Children with partial biotinidase deficiency and who are not treated with biotin do not usually exhibit symptoms unless they are stressed (i.e., prolonged infection). We found that 18 of 19 randomly selected individuals with partial deficiency have the transversion missense mutation G1330>C, which substitutes a histidine for aspartic acid444 (D444H) in one allele of the biotinidase gene. We have previously estimated that the D444H mutation results in 48% of normal enzyme activity for that allele and occurs with an estimated frequency of 0.039 in the general population. The D444H mutation in biotinidase deficiency is similar to the Duarte variant in galactosemia. The D444H mutation in one allele in combination with a mutation for profound deficiency in the other allele is the common cause of partial biotinidase deficiency. Received: 8 December 1997 / Accepted: 22 January 1998  相似文献   

16.
5-Methyltetrahydrofolate, the major form of folate in plasma, is a carbon donor for the remethylation of homocysteine to methionine. This form of folate is generated from 5,10-methylenetetrahydrofolate through the action of 5,10-methylenetetrahydrofolate reductase (MTHFR), a cytosolic flavoprotein. Patients with an autosomal recessive severe deficiency of MTHFR have homocystinuria and a wide range of neurological and vascular disturbances. We have recently described the isolation of a cDNA for MTHFR and the identification of two mutations in patients with severe MTHFR deficiency. We report here the characterization of seven novel mutations in this gene: six missense mutations and a 5' splice-site defect that activates a cryptic splice site in the coding sequence. We also present a preliminary analysis of the relationship between genotype and phenotype for all nine mutations identified thus far in this gene. A nonsense mutation and two missense mutations (proline to leucine and threonine to methionine) in the homozygous state are associated with extremely low activity (0%-3%) and onset of symptoms within the 1st year of age. Other missense mutations (arginine to cysteine and arginine to glutamine) are associated with higher enzyme activity and later onset of symptoms.  相似文献   

17.
Genetic diagnostics is widely used for detection of risk factors of hereditary thrombophilias caused by molecular defects in the coagulation system. The hereditary thrombophilias are frequently associated with higher incidences of point mutations in hemostasis (F2 20210G>A, F5 1691G>A) and folate metabolism (MTHFR 677C>T, MTHFR 1298A>C) genes. Combinations of gene abnormalities in F2 and/or MTHFR with Leiden mutation (F5 1691G>A) significantly increase risk of thrombosis. Thus, simultaneous analysis of allele polymorphism of these genes is of clinical importance. This study has demonstrated high efficiency of microchip-based multiplex real time PCR for analysis of allele specific polymorphism in hemostasis and folate metabolism genes. Using this test it is possible to analyze polymorphism of the three genes (four point mutations) in a short time; it requires a minimal quantity of DNA template and PCR reagents including DNA polymerase, and thus can be recommended for clinical laboratory diagnostics.  相似文献   

18.
Prolidase deficiency: biochemical classification of alleles   总被引:6,自引:2,他引:4       下载免费PDF全文
Prolidase (E.C.3.4.13.9) is a homodimeric enzyme encoded at a locus on chromosome 19. Prolidase deficiency is an autosomal recessive disorder with a highly variable clinical phenotype. We purified prolidase to homogeneity from normal human fibroblasts, raised a monospecific rabbit antiserum, and studied biosynthesis of the subunit in normal and prolidase--deficient fibroblasts. Pulse-chase immunoprecipitation experiments showed that the subunit is synthesized and retained in cytosol as a 58-KDa polypeptide. Three types of mutations were identified in six prolidase-deficient cell strains; half conferred a CRM-negative phenotype, while the CRM-positive mutations were of two types, one mutation encoding an enlarged subunit (60 KDa) and the others associated with subunits of normal size. Complementation analysis indicated that these mutations map to one locus. Normal subjects and obligate heterozygotes expressing CRM-negative mutations had thermostable prolidase activity at 50 degrees C in cell extracts, whereas heterozygotes expressing CRM-positive mutations had thermolabile activity under the same condition, implying negative allelic complementation in the putative heterodimer. The occurrence of prolidase-like activity about 5% of normal in amount but with a preference for substrate different from normal, in cells homozygous (or compound) for CRM-negative mutations, identified an alternative cleavage activity not encoded at the prolidase locus. Allelic heterogeneity at the major locus and the amount of alternative peptidase activity encoded elsewhere appear to be determinants of the associated and heterogeneous clinical phenotype.  相似文献   

19.
Methylenetetrahydrofolate reductase (MTHFR) gene mutations have been implicated as risk factors for neural tube defects (NTDs). The best-characterized MTHFR genetic mutation 677C→T is associated with a 2-4 fold increased risk of NTD if patient is homozygous for this mutation. This risk factor is modulated by folate levels in the body. A second mutation in the MTHFR gene is an A→C transition at position 1298. The 1298A→C mutation is also a risk factor for NTD, but with a smaller relative risk than 677C→T mutation. Under conditions of low folate intake or high folate requirements, such as pregnancy, this mutation could become of clinical importance. We present a case report with MTHFR genetic mutation, who presented with recurrent familial pregnancy losses due to anencephaly/NTDs.  相似文献   

20.
A mutation that produces an absolute deficiency of normal β-major globin polypeptides has been recovered from a DBA/2J male mouse. Most mice homozygous for the deficiency survived to adulthood and reproduced but were smaller at birth than their littermates and demonstrated a hypochromic, microcytic anemia with severe anisocytosis, poikilocytosis, and reticulocytosis and the presence of inclusion bodies in a high proportion of circulating erythrocytes. Mice heterozygous for the deficiency demonstrated a mild reticulocytosis but were not clinically anemic. Analysis of globin chain synthesis in vitro by 3H-leucine incorporation revealed that β-globin synthesis was nearly normal (95%) in heterozygotes and about 75% of normal in deficiency homozygotes. Molecular characterization of the mutation by restriction analysis revealed a deletion of about 3.3 kb of DNA, including regulatory sequences and all coding blocks for β-major globin. Based on genetic and hematological criteria, mice homozygous for the mutant allele, designated Hbbth-1, represent the first animal model of β-thalassemia (Cooley's anemia), a severe genetic disease of humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号