首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ecological and molecular investigations of cyanotoxin production   总被引:5,自引:0,他引:5  
This study investigates the effect of mercury contamination on the culturable heterotrophic, functional and genetic diversity of the bacterial community in soil. The changes in diversity were monitored in soil microcosms, enriched with 25 &mgr;g Hg(II) g(-1) soil, over a period of 3 months. The culturable heterotrophic diversity was investigated by colony morphology and colony appearance on solid LB medium. Functional diversity was analysed as sole carbon utilisation patterns in ECOplates. Genetic diversity was measured as bands on denaturing gradient gel electrophoresis (DGGE) gels obtained by purification of total soil DNA and amplification of bacterial 16S rDNA fragments by polymerase chain reaction. Concentrations of bioavailable and total mercury were measured throughout the experiment. The effect on the culturable heterotrophic and genetic diversity was very similar, showing an immediate decrease after mercury addition but then slowly increasing throughout the entire experimental period. Pre-exposure levels were not reached within the time span of this investigation. The DGGE band pattern indicated that a shift in the community structure was responsible for recovered diversity. When analysed by Shannon-Weaver indices, functional diversity was found to increase almost immediately after mercury addition and to remain at a level higher than the control soil for the rest of the experiment. The fraction of culturable heterotrophic bacteria increased from 1% to 10% of the total bacterial number as a result of mercury addition, and the mercury-resistant population increased to represent the entire heterotrophic population.  相似文献   

2.
3.
The effect of long-term mercury pollution on the soil microbial community   总被引:1,自引:0,他引:1  
The effect of long-term exposure to mercury on the soil microbial community was investigated in soil from three different sites along a pollution gradient. The amount of total and bioavailable mercury was negatively correlated to the distance from the center of contamination. The size of the bacterial and protozoan populations was reduced in the most contaminated soil, whereas there was no significant difference in fungal biomass measured as chitinase activity. Based on the number of colony morphotypes, moreover, the culturable bacterial population was structurally less diverse and contained a higher proportion of resistant and fast-growing forms. The profiles of amplified 16S rDNA sequences obtained from community DNA by denaturating gradient gel electrophoresis (DGGE) also reflected the altered community structure and decreased diversity along the mercury gradient as expressed in terms of the number and abundance of bands. The functional potential of the microbial population measured as sole carbon source utilization by Ecoplates((R)) differed between the soils, but there was no change in the number of substrates utilized. The observed changes in the different soil microbial populations are probably a combination of both direct and indirect effects of the mercury contamination.  相似文献   

4.
The effect of three phenyl urea herbicides (diuron, linuron, and chlorotoluron) on soil microbial communities was studied by using soil samples with a 10-year history of treatment. Denaturing gradient gel electrophoresis (DGGE) was used for the analysis of 16S rRNA genes (16S rDNA). The degree of similarity between the 16S rDNA profiles of the communities was quantified by numerically analysing the DGGE band patterns. Similarity dendrograms showed that the microbial community structures of the herbicide-treated and nontreated soils were significantly different. Moreover, the bacterial diversity seemed to decrease in soils treated with urea herbicides, and sequence determination of several DGGE fragments showed that the most affected species in the soils treated with diuron and linuron belonged to an uncultivated bacterial group. As well as the 16S rDNA fingerprints, the substrate utilization patterns of the microbial communities were compared. Principal-component analysis performed on BIOLOG data showed that the functional abilities of the soil microbial communities were altered by the application of the herbicides. In addition, enrichment cultures of the different soils in medium with the urea herbicides as the sole carbon and nitrogen source showed that there was no difference between treated and nontreated soil in the rate of transformation of diuron and chlorotoluron but that there was a strong difference in the case of linuron. In the enrichment cultures with linuron-treated soil, linuron disappeared completely after 1 week whereas no significant transformation was observed in cultures inoculated with nontreated soil even after 4 weeks. In conclusion, this study showed that both the structure and metabolic potential of soil microbial communities were clearly affected by a long-term application of urea herbicides.  相似文献   

5.
Assessment of the Bacterial Diversity in Fenvalerate-Treated Soil   总被引:4,自引:0,他引:4  
The impact of the pesticide fenvalerate on the diversity of the bacterial community in soil was investigated in this study. After treatment with 0.1, 0.5 or 1.0 mg fenvalerate g–1 soil in three soils and incubation for a 40-day period, the changes in diversity were monitored by two different methods. The cultivable heterotrophic diversity was investigated by colony morphology on solid LB medium. Genetic diversity was measured as bands on denaturing gradient gel electrophoresis (DGGE) gels by total genomic DNA extraction and purification, PCR-amplification of bacterial 16S rDNA fragments. The Shannon–Wiener index of diversity (H), richness (S) and evenness (E H) were used to measure changes in the bacterial community in the soils. The results of the cultivable heterotrophic diversity and genetic diversity showed that there was an obvious decrease in diversity due to the application of fenvalerate to the soils, and the different amounts added had different impacts on the diversity. Bands appearing to be either enhanced or inhibited as a result of the fenvalerate treatments were excized and sequenced. Sequencing of excized DGGE bands indicated that application of fenvalerate had an obvious impact on several Pseudomonas spp., or Xanthomonas campestrisor Streptomyces avermitilis. This revealed that microbial community changes can occur due to the application of fenvalerate to soil.  相似文献   

6.
Karst areas belong to the most exposed terrestrial ecosystems, therefore their study have a priority task in Hungary, as well. The aim of this study was to compare the structure, activity and diversity of soil microbial communities from two distinct Hungarian karst areas (Aggtelek NP and Tapolca-basin). Soil samples were taken three times from 6 distinct sites, from different depths. Soil microbial biomass C (MBC), microbial biomass N (MBN), basal respiration (BRESP) and substrate induced respiration (SIR) were measured. The phylogenetic diversity of bacterial communities was compared by Denaturing Gradient Gel Electrophoresis (DGGE). The highest MBC, MBN, BRESP and SIR values were measured in the rendzina soil from Aggtelek. On the basis of biomass and respiration measurements, microbial communities differentiated mainly according to soil depths whereas DGGE profiles of bacterial communities resulted in groups mainly according to sampling sites.  相似文献   

7.
Bacterial diversity in unimproved and improved grassland soils was assessed by PCR amplification of bacterial 16S ribosomal DNA (rDNA) from directly extracted soil DNA, followed by sequencing of ~45 16S rDNA clones from each of three unimproved and three improved grassland samples (A. E. McCaig, L. A. Glover, and J. I. Prosser, Appl. Environ. Microbiol. 65:1721–1730, 1999) or by denaturing gradient gel electrophoresis (DGGE) of total amplification products. Semi-improved grassland soils were analyzed only by DGGE. No differences between communities were detected by calculation of diversity indices and similarity coefficients for clone data (possibly due to poor coverage). Differences were not observed between the diversities of individual unimproved and improved grassland DGGE profiles, although considerable spatial variation was observed among triplicate samples. Semi-improved grassland samples, however, were less diverse than the other grassland samples and had much lower within-group variation. DGGE banding profiles obtained from triplicate samples pooled prior to analysis indicated that there was less evenness in improved soils, suggesting that selection for specific bacterial groups occurred. Analysis of DGGE profiles by canonical variate analysis but not by principal-coordinate analysis, using unweighted data (considering only the presence and absence of bands) and weighted data (considering the relative intensity of each band), demonstrated that there were clear differences between grasslands, and the results were not affected by weighting of data. This study demonstrated that quantitative analysis of data obtained by community profiling methods, such as DGGE, can reveal differences between complex microbial communities.  相似文献   

8.
Bacterial diversity in unimproved and improved grassland soils was assessed by PCR amplification of bacterial 16S ribosomal DNA (rDNA) from directly extracted soil DNA, followed by sequencing of ~45 16S rDNA clones from each of three unimproved and three improved grassland samples (A. E. McCaig, L. A. Glover, and J. I. Prosser, Appl. Environ. Microbiol. 65:1721-1730, 1999) or by denaturing gradient gel electrophoresis (DGGE) of total amplification products. Semi-improved grassland soils were analyzed only by DGGE. No differences between communities were detected by calculation of diversity indices and similarity coefficients for clone data (possibly due to poor coverage). Differences were not observed between the diversities of individual unimproved and improved grassland DGGE profiles, although considerable spatial variation was observed among triplicate samples. Semi-improved grassland samples, however, were less diverse than the other grassland samples and had much lower within-group variation. DGGE banding profiles obtained from triplicate samples pooled prior to analysis indicated that there was less evenness in improved soils, suggesting that selection for specific bacterial groups occurred. Analysis of DGGE profiles by canonical variate analysis but not by principal-coordinate analysis, using unweighted data (considering only the presence and absence of bands) and weighted data (considering the relative intensity of each band), demonstrated that there were clear differences between grasslands, and the results were not affected by weighting of data. This study demonstrated that quantitative analysis of data obtained by community profiling methods, such as DGGE, can reveal differences between complex microbial communities.  相似文献   

9.
试验采用Biolog和PCR-DGGE技术研究了不同施肥处理对吉林省德惠市黑土细菌群落结构和功能的影响.Biolog试验结果表明,单施有机肥处理的土壤细菌群落对底物碳源利用种类最多,代谢功能多样性最高;而施用化肥处理降低了土壤细菌群落代谢功能.DGGE图谱表明,不同施肥处理的土壤细菌16S rDNA多数条带分布相同,说明这些细菌类群在黑土中较稳定,在本试验中未受到施肥的影响,但也有一些特殊条带出现或缺失,施用化肥处理降低了土壤细菌群落结构组成多样性.对Biolog和DGGE试验结果的主成分分析显示,未施肥和单施有机肥处理的土壤细菌群落结构和功能相似,表明单施有机肥处理主要是增加了土壤微生物的总量,而对黑土细菌群落结构组成影响是次要的;单施化肥和半量有机肥 化肥处理的土壤细菌群落代谢功能多样性相似,但其结构组成产生了分离.研究表明化肥处理主要是影响到土壤中快速生长和富营养的细菌类群,施用化肥降低了这些细菌类群的代谢活性.  相似文献   

10.
福建省稻田土壤细菌群落的16S rDNA-PCR-DGGE分析   总被引:6,自引:0,他引:6  
用不依赖细菌培养的16S rDNA-PCR-DGGE方法对福建省6个不同地区12个取样点的稻田土壤进行细菌群落结构分析.对12份样品直接提取其总DNA,用F341GC/R534引物扩增16SrDNA基因的V3可变区,结合DGGE(denaturing gradient gel electrophoresis)技术分析样品细菌群落组成.结果表明,福建省不同地区的稻田土壤之间细菌群落结构存在较大差异.犬体上可分为闽东、闽南、闽北、闽西4个大类.同一地区的根际土和表土样品之间也存在差异,但差异相对较低,其中龙岩根际土和表土细菌群落结构相似性最大,永泰差异性最大.回收了DGGE图谱中11个条带,测序结果经过Blast比对表明其中10个条带代表的细菌是不可培养的,显示了DGGE技术的优越性.  相似文献   

11.
The cold-adapted bacterial communities in petroleum hydrocarbon-contaminated and non-impacted soils from two northern Canadian environments, Kuujjuaq, Que., and Alert, Nunavut, were analyzed using a polyphasic approach. Denaturing gradient gel electrophoresis (DGGE) separation of 16S rDNA PCR fragments from soil total community DNA revealed a high level of bacterial diversity, as estimated by the total number of bands visualized. Dendrogram analysis clustered the sample sites on the basis of geographical location. Comparison of the overall microbial molecular diversity suggested that in the Kuujjuaq sites, contamination negatively impacted diversity whereas in the Alert samples, diversity was maintained or increased as compared to uncontaminated controls. Extraction and sequencing analysis of selected 16S rDNA bands demonstrated a range of similarity of 86-100% to reference organisms, with 63.6% of the bands representing high G+C Gram-positive organisms in the order Actinomycetales and 36.4% in the class Proteobacteria. Community level physiological profiles generated using Biolog GN plates were analyzed by cluster analysis. Based on substrate oxidation rates, the samples clustered into groups similar to those of the DGGE dendrograms, i.e. separation based upon geographic origin. The coinciding results reached using culture-independent and -dependent analyses reinforces the conclusion that geographical origin of the samples, rather than petroleum contamination level, was more important in determining species diversity within these cold-adapted bacterial communities.  相似文献   

12.
The Cape Floral Kingdom is an area of unique plant biodiversity in South Africa with exceptional concentrations of rare and endemic species and experiencing drastic habitat loss. Here we present the first molecular study of the microbial diversity associated with the rhizosphere soil of endemic plants of the Proteaceae family (Leucospermum truncatulum and Leucadendron xanthoconus). Genomic DNA was extracted from L. truncatulum rhizosphere soil, L. xanthoconus rhizosphere and non-rhizosphere soil and used as a template for the polymerase chain reaction (PCR) amplification of the 16S ribosomal RNA gene (rDNA). Construction and sequencing of 16S rDNA libraries revealed a high level of biodiversity and led to the identification of several novel bacterial phylotypes. The bacterial community profiles were compared by 16S rDNA denaturing gradient gel electrophoresis (DGGE). Cluster analysis and biodiversity indices revealed that the rhizosphere soil samples were more similar to each other than to non-rhizosphere soil and the rhizosphere soil contained a bacterial diversity that was richer and more equitable compared with non-rhizosphere soil. A Chloroflexus and an Azospirillum genospecies were restricted to the L. xanthoconus rhizosphere soil and Stenotrophomonas genospecies was identified in all rhizosphere soil samples but was not present in the non-rhizosphere soil. Taxon-specific nested PCR and DGGE-identified differences between the Proteaceae plant rhizosphere soil with a Frankia genospecies restricted the L. truncatulum rhizosphere. Archaea-specific rDNA PCR, DGGE and DNA sequencing revealed that Crenarcheote genospecies were excluded from the plant rhizosphere soil and only present in non-rhizosphere soil.  相似文献   

13.
Previously, we showed that bacterial populations oscillate in response to a moving substrate source such as a root tip, resulting in moving wavelike distributions along roots. For this article, we investigated if bacterial communities fluctuate as a whole or if there is a succession in bacterial composition from peak to peak or within peaks. Rhizosphere microbial communities along roots of wheat Triticum aestivum L. were studied in detail (20–25 rhizosphere and bulk soil samples along the total root length) in two related soils by colony enumeration and culture-independent DNA analysis. Similar to our previous findings, the numbers of copiotrophic and oligotrophic bacteria oscillated with significant harmonics along each root, independent of soil moisture or lateral roots. Shifts in amplified eubacterial 16S rDNA fragments from denaturing gradient gel electrophoresis (DGGE) analysis were detected along the roots. The most abundant and intensively amplified fragments fluctuated in phase with colony-forming unit (CFU) oscillations; fewer amplified fragments with less intensive bands fluctuated out of phase or were restricted to certain root zones. The bacterial species richness along the root was negatively correlated with the numbers of oligotrophic bacterial CFUs. Discriminant analyses on DGGE patterns distinguished between soil types, rhizosphere and bulk soil, and waxing and waning phases in the oscillations along roots. Bacterial compositions shifted within oscillations but were repeated from oscillation to oscillation, supporting the idea that the most abundant bacterial taxa were growing and dying over time and consequently in space, whereas other taxa counterfluctuated or hardly responded to the substrate supplied by the passing root tip.  相似文献   

14.
To examine the bacterial community structure in the Fildes Peninsula, King George Island, Antarctica, we examined the bacterial diversity and community composition of samples collected from lacustrine sediment, marine sediment, penguin ornithogenic sediments, and soils using culture-dependent and culture-independent methods. The 70 strains fell into five groups: Actinobacteria, Bacteroidetes, Firmicutes, Gammaproteobacteria, and Betaproteobacteria. Bacterial diversity at the phylum level detected in Denaturing Gradient Gel Electrophoresis (DGGE) profiles comprised Proteobacteria (including the subphyla Alpha-, Beta-, Gamma-, Deltaproteobacteria), Bacteroidetes, Firmicutes, Chlorobi, and Deinococcus-Thermus. Gammaproteobacteria was identified to be the dominant bacterial subphylum by cultivation and DGGE method. By cluster analysis, the overall structure and composition of bacterial communities in the soil and lacustrine sediment were similar to one another but significantly different from bacterial communities in penguin ornithogenic sediment and marine sediment, which were similar to one another. The majority of 16S rDNA sequences from cultured bacteria were closely related to sequences found in cold environments. In contrast, a minority of 16S rDNA sequences from the DGGE approach were closely related to sequences found in cold environments.  相似文献   

15.
Impact of fumigants on soil microbial communities.   总被引:12,自引:0,他引:12  
Agricultural soils are typically fumigated to provide effective control of nematodes, soilborne pathogens, and weeds in preparation for planting of high-value cash crops. The ability of soil microbial communities to recover after treatment with fumigants was examined using culture-dependent (Biolog) and culture-independent (phospholipid fatty acid [PLFA] analysis and denaturing gradient gel electrophoresis [DGGE] of 16S ribosomal DNA [rDNA] fragments amplified directly from soil DNA) approaches. Changes in soil microbial community structure were examined in a microcosm experiment following the application of methyl bromide (MeBr), methyl isothiocyanate, 1,3-dichloropropene (1,3-D), and chloropicrin. Variations among Biolog fingerprints showed that the effect of MeBr on heterotrophic microbial activities was most severe in the first week and that thereafter the effects of MeBr and the other fumigants were expressed at much lower levels. The results of PLFA analysis demonstrated a community shift in all treatments to a community dominated by gram-positive bacterial biomass. Different 16S rDNA profiles from fumigated soils were quantified by analyzing the DGGE band patterns. The Shannon-Weaver index of diversity, H, was calculated for each fumigated soil sample. High diversity indices were maintained between the control soil and the fumigant-treated soils, except for MeBr (H decreased from 1.14 to 0.13). After 12 weeks of incubation, H increased to 0.73 in the MeBr-treated samples. Sequence analysis of clones generated from unique bands showed the presence of taxonomically unique clones that had emerged from the MeBr-treated samples and were dominated by clones closely related to Bacillus spp. and Heliothrix oregonensis. Variations in the data were much higher in the Biolog assay than in the PLFA and DGGE assays, suggesting a high sensitivity of PLFA analysis and DGGE in monitoring the effects of fumigants on soil community composition and structure. Our results indicate that MeBr has the greatest impact on soil microbial communities and that 1,3-D has the least impact.  相似文献   

16.
In this study, we evaluated the hydrocarbon removal efficiency and microbial diversity of different soil layers. The soil layers with high counts of recoverable hydrocarbon degrading bacteria had the highest hydrocarbon removal rate compared with soil layers with low counts of hydrocarbon degrading bacteria. Removal efficiency was 48% in the topsoil, compared with 31% and 11% at depths of 1.5 and 1 m, respectively. In the 1 and 1.5 m soil layers, there was no significant difference between total petroleum hydrocarbon (TPH) removal in nutrient amended treatments and controls. The respiration rate reflected the difference in the number of bacteria in each soil layer and the availability of nutrients. High O2 consumption corresponded positively with high TPH removal. Analysis of the microbial diversity in the different soil layers using functional diversity (community-level physiological profile, via Biolog) and genetic diversity using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) of 16S rDNA revealed differences in, respectively, substrate utilisation patterns and DGGE profiles of 16S rDNA fragments. Microbial diversity as revealed by DNA fragments was lower in the highly contaminated soil layer (1.5 m) than in the topsoil and at 1 m.  相似文献   

17.
AIM: To evaluate the rpoB gene as a biomarker for PCR-DGGE microbial analyses using soil DNA from the Cerrado, Brazil. METHODS: DNA extraction from soil was followed by Polymerase Chain Reaction (PCR) amplification of rpoB and 16S rRNA genes. PCR products were compared by Denaturing Gradient Gel Electrophoresis (DGGE) to compare gene/community profiles. RESULTS: The rpoB DGGE profiles comprised fewer bands than the 16S rDNA profiles and were easier to delineate and therefore to analyse. Comparison of the community profiles revealed that the methods were complementary. CONCLUSIONS, SIGNIFICANCE AND IMPACT OF THE STUDY: The gene for the beta subunit of the RNA polymerase, rpoB, is a single copy gene unlike 16S rDNA. Multiple copies of 16S rRNA genes in bacterial genomes complicate diversity assessments made from DGGE profiles. Using the rpoB gene offers a better alternative to the commonly used 16S rRNA gene for microbial community analyses based on DGGE.  相似文献   

18.
Differences in bacterial community composition (BCC) between bulk and rhizosphere soil and between rhizospheres of different plant species are assumed to be strongly governed by quantitative and qualitative rhizodeposit differences. However, data on the relationship between rhizodeposit amounts and BCC are lacking. Other soil microorganisms, e.g. arbuscular mycorrhizal fungi (AMF), may also influence BCC. We simulated foliar herbivory (cutting) to reduce belowground carbon allocation and rhizodeposition of pea plants grown either with or without AMF. This reduced soil respiration, rhizosphere microbial biomass and bacteriovorous protozoan abundance, whereas none of these were affected by AMF. After labelling plants with (13)CO(2), root and rhizosphere soil (13)C enrichment of cut plants were reduced to a higher extent (24-46%) than shoot (13)C enrichment (10-24%). AMF did not affect (13)C enrichment. Despite these clear indications of reduced rhizosphere carbon-input, denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes PCR-amplified targeting DNA and RNA from rhizosphere soil did not reveal any effects of cutting on banding patterns. In contrast, AMF induced consistent differences in both DNA- and RNA-based DGGE profiles. These results show that a reduction in rhizosphere microbial activity is not necessarily accompanied by changes in BCC, whereas AMF presence inhibits proliferation of some bacterial taxa while stimulating others.  相似文献   

19.
Molecular characterization of the microbial populations of soils and sediments contaminated with polycyclic aromatic hydrocarbons (PAHs) is often a first step in assessing intrinsic biodegradation potential. However, soils are problematic for molecular analysis owing to the presence of organic matter, such as humic acids. Furthermore, the presence of contaminants, such as PAHs, can cause further challenges to DNA extraction, quantification, and amplification. The goal of our study was to compare the effectiveness of four commercial soil DNA extraction kits (UltraClean Soil DNA Isolation kit, PowerSoil DNA Isolation kit, PowerMax Soil DNA Isolation kit, and FastDNA SPIN kit) to extract pure, high-quality bacterial and eukaryotic DNA from PAH-contaminated soils. Six different contaminated soils were used to determine if there were any biases among the kits due to soil properties or level of contamination. Extracted DNA was used as a template for bacterial 16S rDNA and eukaryotic 18S rDNA amplifications, and PCR products were subsequently analyzed using denaturing gel gradient electrophoresis (DGGE). We found that the FastDNA SPIN kit provided significantly higher DNA yields for all soils; however, it also resulted in the highest levels of humic acid contamination. Soil texture and organic carbon content of the soil did not affect the DNA yield of any kit. Moreover, a liquid-liquid extraction of the DNA extracts found no residual PAHs, indicating that all kits were effective at removing contaminants in the extraction process. Although the PowerSoil DNA Isolation kit gave relatively low DNA yields, it provided the highest quality DNA based on successful amplification of both bacterial and eukaryotic DNA for all six soils. DGGE fingerprints among the kits were dramatically different for both bacterial and eukaryotic DNA. The PowerSoil DNA Isolation kit revealed multiple bands for each soil and provided the most consistent DGGE profiles among replicates for both bacterial and eukaryotic DNA.  相似文献   

20.
Two different strategies for molecular analysis of bacterial diversity, 16S rDNA cloning and denaturing gradient gel electrophoresis (DGGE), were combined into a single protocol that took advantage of the best attributes of each: the ability of cloning to package DNA sequence information and the ability of DGGE to display a community profile. In this combined protocol, polymerase chain reaction products from environmental DNA were cloned, and then DGGE was used to screen the clone libraries. Both individual clones and pools of randomly selected clones were analyzed by DGGE, and these migration patterns were compared to the conventional DGGE profile produced directly from environmental DNA. For two simple bacterial communities (biofilm from a humics-fed laboratory reactor and planktonic bacteria filtered from an urban freshwater pond), pools of 35–50 clones produced DGGE profiles that contained most of the bands visible in the conventional DGGE profiles, indicating that the clone pools were adequate for identifying the dominant genotypes. However, DGGE profiles of two different pools of 50 clones from a lawn soil clone library were distinctly different from each other and from the conventional DGGE profile, indicating that this small number of clones poorly represented the bacterial diversity in soil. Individual clones with the same apparent DGGE mobility as prominent bands in the humics reactor community profiles were sequenced from the clone plasmid DNA rather than from bands excised from the gel. Because a longer fragment was cloned (∼1500 bp) than was actually analyzed in DGGE (∼350 bp), far more sequence information was available using this approach that could have been recovered from an excised gel band. This clone/DGGE protocol permitted rapid analysis of the microbial diversity in the two moderately complex systems, but was limited in its ability to represent the diversity in the soil microbial community. Nonetheless, clone/DGGE is a promising strategy for fractionating diverse microbial communities into manageable subsets consisting of small pools of clones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号