首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MOTIVATION: Non-coding RNA genes and RNA structural regulatory motifs play important roles in gene regulation and other cellular functions. They are often characterized by specific secondary structures that are critical to their functions and are often conserved in phylogenetically or functionally related sequences. Predicting common RNA secondary structures in multiple unaligned sequences remains a challenge in bioinformatics research. Methods and RESULTS: We present a new sampling based algorithm to predict common RNA secondary structures in multiple unaligned sequences. Our algorithm finds the common structure between two sequences by probabilistically sampling aligned stems based on stem conservation calculated from intrasequence base pairing probabilities and intersequence base alignment probabilities. It iteratively updates these probabilities based on sampled structures and subsequently recalculates stem conservation using the updated probabilities. The iterative process terminates upon convergence of the sampled structures. We extend the algorithm to multiple sequences by a consistency-based method, which iteratively incorporates and reinforces consistent structure information from pairwise comparisons into consensus structures. The algorithm has no limitation on predicting pseudoknots. In extensive testing on real sequence data, our algorithm outperformed other leading RNA structure prediction methods in both sensitivity and specificity with a reasonably fast speed. It also generated better structural alignments than other programs in sequences of a wide range of identities, which more accurately represent the RNA secondary structure conservations. AVAILABILITY: The algorithm is implemented in a C program, RNA Sampler, which is available at http://ural.wustl.edu/software.html  相似文献   

2.

Background

The prediction of secondary structure, i.e. the set of canonical base pairs between nucleotides, is a first step in developing an understanding of the function of an RNA sequence. The most accurate computational methods predict conserved structures for a set of homologous RNA sequences. These methods usually suffer from high computational complexity. In this paper, TurboFold, a novel and efficient method for secondary structure prediction for multiple RNA sequences, is presented.

Results

TurboFold takes, as input, a set of homologous RNA sequences and outputs estimates of the base pairing probabilities for each sequence. The base pairing probabilities for a sequence are estimated by combining intrinsic information, derived from the sequence itself via the nearest neighbor thermodynamic model, with extrinsic information, derived from the other sequences in the input set. For a given sequence, the extrinsic information is computed by using pairwise-sequence-alignment-based probabilities for co-incidence with each of the other sequences, along with estimated base pairing probabilities, from the previous iteration, for the other sequences. The extrinsic information is introduced as free energy modifications for base pairing in a partition function computation based on the nearest neighbor thermodynamic model. This process yields updated estimates of base pairing probability. The updated base pairing probabilities in turn are used to recompute extrinsic information, resulting in the overall iterative estimation procedure that defines TurboFold. TurboFold is benchmarked on a number of ncRNA datasets and compared against alternative secondary structure prediction methods. The iterative procedure in TurboFold is shown to improve estimates of base pairing probability with each iteration, though only small gains are obtained beyond three iterations. Secondary structures composed of base pairs with estimated probabilities higher than a significance threshold are shown to be more accurate for TurboFold than for alternative methods that estimate base pairing probabilities. TurboFold-MEA, which uses base pairing probabilities from TurboFold in a maximum expected accuracy algorithm for secondary structure prediction, has accuracy comparable to the best performing secondary structure prediction methods. The computational and memory requirements for TurboFold are modest and, in terms of sequence length and number of sequences, scale much more favorably than joint alignment and folding algorithms.

Conclusions

TurboFold is an iterative probabilistic method for predicting secondary structures for multiple RNA sequences that efficiently and accurately combines the information from the comparative analysis between sequences with the thermodynamic folding model. Unlike most other multi-sequence structure prediction methods, TurboFold does not enforce strict commonality of structures and is therefore useful for predicting structures for homologous sequences that have diverged significantly. TurboFold can be downloaded as part of the RNAstructure package at http://rna.urmc.rochester.edu.  相似文献   

3.
MOTIVATION: Structural RNA genes exhibit unique evolutionary patterns that are designed to conserve their secondary structures; these patterns should be taken into account while constructing accurate multiple alignments of RNA genes. The Sankoff algorithm is a natural alignment algorithm that includes the effect of base-pair covariation in the alignment model. However, the extremely high computational cost of the Sankoff algorithm precludes its application to most RNA sequences. RESULTS: We propose an efficient algorithm for the multiple alignment of structural RNA sequences. Our algorithm is a variant of the Sankoff algorithm, and it uses an efficient scoring system that reduces the time and space requirements considerably without compromising on the alignment quality. First, our algorithm computes the match probability matrix that measures the alignability of each position pair between sequences as well as the base pairing probability matrix for each sequence. These probabilities are then combined to score the alignment using the Sankoff algorithm. By itself, our algorithm does not predict the consensus secondary structure of the alignment but uses external programs for the prediction. We demonstrate that both the alignment quality and the accuracy of the consensus secondary structure prediction from our alignment are the highest among the other programs examined. We also demonstrate that our algorithm can align relatively long RNA sequences such as the eukaryotic-type signal recognition particle RNA that is approximately 300 nt in length; multiple alignment of such sequences has not been possible by using other Sankoff-based algorithms. The algorithm is implemented in the software named 'Murlet'. AVAILABILITY: The C++ source code of the Murlet software and the test dataset used in this study are available at http://www.ncrna.org/papers/Murlet/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

4.
5.

Background  

Joint alignment and secondary structure prediction of two RNA sequences can significantly improve the accuracy of the structural predictions. Methods addressing this problem, however, are forced to employ constraints that reduce computation by restricting the alignments and/or structures (i.e. folds) that are permissible. In this paper, a new methodology is presented for the purpose of establishing alignment constraints based on nucleotide alignment and insertion posterior probabilities. Using a hidden Markov model, posterior probabilities of alignment and insertion are computed for all possible pairings of nucleotide positions from the two sequences. These alignment and insertion posterior probabilities are additively combined to obtain probabilities of co-incidence for nucleotide position pairs. A suitable alignment constraint is obtained by thresholding the co-incidence probabilities. The constraint is integrated with Dynalign, a free energy minimization algorithm for joint alignment and secondary structure prediction. The resulting method is benchmarked against the previous version of Dynalign and against other programs for pairwise RNA structure prediction.  相似文献   

6.
An RNA secondary structure is saturated if no base pairs can be added without violating the definition of secondary structure. Here we describe a new algorithm, RNAsat, which for a given RNA sequence a, an integral temperature 0 相似文献   

7.
MOTIVATION: Recently novel classes of functional RNAs, most prominently the miRNAs have been discovered, strongly suggesting that further types of functional RNAs are still hidden in the recently completed genomic DNA sequences. Only few techniques are known, however, to survey genomes for such RNA genes. When sufficiently similar sequences are not available for comparative approaches the only known remedy is to search directly for structural features. RESULTS: We present here efficient algorithms for computing locally stable RNA structures at genome-wide scales. Both the minimum energy structure and the complete matrix of base pairing probabilities can be computed in theta(N x L2) time and theta(N + L2) memory in terms of the length N of the genome and the size L of the largest secondary structure motifs of interest. In practice, the 100 Mb of the complete genome of Caenorhabditis elegans can be folded within about half a day on a modern PC with a search depth of L = 100. This is sufficient example for a survey for miRNAs. AVAILABILITY: The software described in this contribution will be available for download at http://www.tbi.univie.ac.at/~ivo/RNA/ as part of the Vienna RNA Package.  相似文献   

8.
K Han  H J Kim 《Nucleic acids research》1993,21(5):1251-1257
We have developed an algorithm and a computer program for simultaneously folding homologous RNA sequences. Given an alignment of M homologous sequences of length N, the program performs phylogenetic comparative analysis and predicts a common secondary structure conserved in the sequences. When the structure is not uniquely determined, it infers multiple structures which appear most plausible. This method is superior to energy minimization methods in the sense that it is not sensitive to point mutation of a sequence. It is also superior to usual phylogenetic comparative methods in that it does not require manual scrutiny for covariation or secondary structures. The most plausible 1-5 structures are produced in O(MN2 + N3) time and O(N2) space, which are the same requirements as those of widely used dynamic programs based on energy minimization for folding a single sequence. This is the first algorithm probably practical both in terms of time and space for finding secondary structures of homologous RNA sequences. The algorithm has been implemented in C on a Sun SparcStation, and has been verified by testing on tRNAs, 5S rRNAs, 16S rRNAs, TAR RNAs of human immunodeficiency virus type 1 (HIV-1), and RRE RNAs of HIV-1. We have also applied the program to cis-acting packaging sequences of HIV-1, for which no generally accepted structures yet exist, and propose potentially stable structures. Simulation of the program with random sequences with the same base composition and the same degree of similarity as the above sequences shows that structures common to homologous sequences are very unlikely to occur by chance in random sequences.  相似文献   

9.
Recently published alignments of available 5 S rRNA sequences have shown that a rigid base pairing pattern, pointing to the existence of a universal five-helix secondary structure for all 5 S RNAs, can be superimposed on such alignments. For a few species, the alignment and the base pairing pattern show distortions with respect to the large majority of sequences. Their 5 S RNAs may form exceptional secondary structures, or there may just be errors in the published sequences. We have examined such a case, Pseudomonas fluorescens, and found the sequence to be in error. The corrected sequence, as well as those of the related species Azotobacter vinelandii and Pseudomonas aeruginosa, fit perfectly in the 5 S RNA sequence alignment and in the five-helix secondary structure model. There exists comparative evidence for the frequent presence of non-standard base pairs at several points of the 5 S RNA secondary structure.  相似文献   

10.
The success of comparative analysis in resolving RNA secondary structure and numerous tertiary interactions relies on the presence of base covariations. Although the majority of base covariations in aligned sequences is associated to Watson-Crick base pairs, many involve non-canonical or restricted base pair exchanges (e.g. only G:C/A:U), reflecting more specific structural constraints. We have developed a computer program that determines potential base pairing conformations for a given set of paired nucleotides in a sequence alignment. This program (ISOPAIR) assumes that the base pair conformation is maintained through sequence variation without significantly affecting the path of the sugar-phosphate backbone. ISOPAIR identifies such 'isomorphic' structures for any set of input base pair or base triple sequences. The program was applied to base pairs and triples with known structures and sequence exchanges. In several instances, isomorphic structures were correctly identified with ISOPAIR. Thus, ISOPAIR is useful when assessing non-canonical base pair conformations in comparative analysis. ISOPAIR applications are limited to those cases where unusual base pair exchanges indeed reflect a non-canonical conformation.  相似文献   

11.
A novel method is presented for joint prediction of alignment and common secondary structures of two RNA sequences. The joint consideration of common secondary structures and alignment is accomplished by structural alignment over a search space defined by the newly introduced motif called matched helical regions. The matched helical region formulation generalizes previously employed constraints for structural alignment and thereby better accommodates the structural variability within RNA families. A probabilistic model based on pseudo free energies obtained from precomputed base pairing and alignment probabilities is utilized for scoring structural alignments. Maximum a posteriori (MAP) common secondary structures, sequence alignment and joint posterior probabilities of base pairing are obtained from the model via a dynamic programming algorithm called PARTS. The advantage of the more general structural alignment of PARTS is seen in secondary structure predictions for the RNase P family. For this family, the PARTS MAP predictions of secondary structures and alignment perform significantly better than prior methods that utilize a more restrictive structural alignment model. For the tRNA and 5S rRNA families, the richer structural alignment model of PARTS does not offer a benefit and the method therefore performs comparably with existing alternatives. For all RNA families studied, the posterior probability estimates obtained from PARTS offer an improvement over posterior probability estimates from a single sequence prediction. When considering the base pairings predicted over a threshold value of confidence, the combination of sensitivity and positive predictive value is superior for PARTS than for the single sequence prediction. PARTS source code is available for download under the GNU public license at http://rna.urmc.rochester.edu.  相似文献   

12.
The problem of systematic and objective identification of canonical and non-canonical base pairs in RNA three-dimensional (3D) structures was studied. A probabilistic approach was applied, and an algorithm and its implementation in a computer program that detects and analyzes all the base pairs contained in RNA 3D structures were developed. The algorithm objectively distinguishes among canonical and non-canonical base pairing types formed by three, two and one hydrogen bonds (H-bonds), as well as those containing bifurcated and C-H...X H-bonds. The nodes of a bipartite graph are used to encode the donor and acceptor atoms of a 3D structure. The capacities of the edges correspond to probabilities computed from the geometry of the donor and acceptor groups to form H-bonds. The maximum flow from donors to acceptors irectly identifies base pairs and their types. A complete repertoire of base pairing types was built from the detected H-bonds of all X-ray crystal structures of a resolution of 3.0 Å or better, including the large and small ribosomal subunits. The base pairing types are labeled using an extension of the nomenclature recently introduced by Leontis and Westhof. The probabilistic method was implemented in MC-Annotate, an RNA structure analysis computer program used to determine the base pairing parameters of the 3D modeling system MC-Sym.  相似文献   

13.
Algorithms for prediction of RNA secondary structure-the set of base pairs that form when an RNA molecule folds-are valuable to biologists who aim to understand RNA structure and function. Improving the accuracy and efficiency of prediction methods is an ongoing challenge, particularly for pseudoknotted secondary structures, in which base pairs overlap. This challenge is biologically important, since pseudoknotted structures play essential roles in functions of many RNA molecules, such as splicing and ribosomal frameshifting. State-of-the-art methods, which are based on free energy minimization, have high run-time complexity (typically Theta(n(5)) or worse), and can handle (minimize over) only limited types of pseudoknotted structures. We propose a new approach for prediction of pseudoknotted structures, motivated by the hypothesis that RNA structures fold hierarchically, with pseudoknot-free (non-overlapping) base pairs forming first, and pseudoknots forming later so as to minimize energy relative to the folded pseudoknot-free structure. Our HFold algorithm uses two-phase energy minimization to predict hierarchically formed secondary structures in O(n(3)) time, matching the complexity of the best algorithms for pseudoknot-free secondary structure prediction via energy minimization. Our algorithm can handle a wide range of biological structures, including kissing hairpins and nested kissing hairpins, which have previously required Theta(n(6)) time.  相似文献   

14.
Lorenz WA  Clote P 《PloS one》2011,6(1):e16178
An RNA secondary structure is locally optimal if there is no lower energy structure that can be obtained by the addition or removal of a single base pair, where energy is defined according to the widely accepted Turner nearest neighbor model. Locally optimal structures form kinetic traps, since any evolution away from a locally optimal structure must involve energetically unfavorable folding steps. Here, we present a novel, efficient algorithm to compute the partition function over all locally optimal secondary structures of a given RNA sequence. Our software, RNAlocopt runs in O(n3) time and O(n2) space. Additionally, RNAlocopt samples a user-specified number of structures from the Boltzmann subensemble of all locally optimal structures. We apply RNAlocopt to show that (1) the number of locally optimal structures is far fewer than the total number of structures--indeed, the number of locally optimal structures approximately equal to the square root of the number of all structures, (2) the structural diversity of this subensemble may be either similar to or quite different from the structural diversity of the entire Boltzmann ensemble, a situation that depends on the type of input RNA, (3) the (modified) maximum expected accuracy structure, computed by taking into account base pairing frequencies of locally optimal structures, is a more accurate prediction of the native structure than other current thermodynamics-based methods. The software RNAlocopt constitutes a technical breakthrough in our study of the folding landscape for RNA secondary structures. For the first time, locally optimal structures (kinetic traps in the Turner energy model) can be rapidly generated for long RNA sequences, previously impossible with methods that involved exhaustive enumeration. Use of locally optimal structure leads to state-of-the-art secondary structure prediction, as benchmarked against methods involving the computation of minimum free energy and of maximum expected accuracy. Web server and source code available at http://bioinformatics.bc.edu/clotelab/RNAlocopt/.  相似文献   

15.
A partition function calculation for RNA secondary structure is presented that uses a current set of nearest neighbor parameters for conformational free energy at 37 degrees C, including coaxial stacking. For a diverse database of RNA sequences, base pairs in the predicted minimum free energy structure that are predicted by the partition function to have high base pairing probability have a significantly higher positive predictive value for known base pairs. For example, the average positive predictive value, 65.8%, is increased to 91.0% when only base pairs with probability of 0.99 or above are considered. The quality of base pair predictions can also be increased by the addition of experimentally determined constraints, including enzymatic cleavage, flavin mono-nucleotide cleavage, and chemical modification. Predicted secondary structures can be color annotated to demonstrate pairs with high probability that are therefore well determined as compared to base pairs with lower probability of pairing.  相似文献   

16.
A complete set of nearest neighbor parameters to predict the enthalpy change of RNA secondary structure formation was derived. These parameters can be used with available free energy nearest neighbor parameters to extend the secondary structure prediction of RNA sequences to temperatures other than 37°C. The parameters were tested by predicting the secondary structures of sequences with known secondary structure that are from organisms with known optimal growth temperatures. Compared with the previous set of enthalpy nearest neighbor parameters, the sensitivity of base pair prediction improved from 65.2 to 68.9% at optimal growth temperatures ranging from 10 to 60°C. Base pair probabilities were predicted with a partition function and the positive predictive value of structure prediction is 90.4% when considering the base pairs in the lowest free energy structure with pairing probability of 0.99 or above. Moreover, a strong correlation is found between the predicted melting temperatures of RNA sequences and the optimal growth temperatures of the host organism. This indicates that organisms that live at higher temperatures have evolved RNA sequences with higher melting temperatures.  相似文献   

17.
MOTIVATION: Function derives from structure, therefore, there is need for methods to predict functional RNA structures. RESULTS: The Dynalign algorithm, which predicts the lowest free energy secondary structure common to two unaligned RNA sequences, is extended to the prediction of a set of low-energy structures. Dot plots can be drawn to show all base pairs in structures within an energy increment. Dynalign predicts more well-defined structures than structure prediction using a single sequence; in 5S rRNA sequences, the average number of base pairs in structures with energy within 20% of the lowest energy structure is 317 using Dynalign, but 569 using a single sequence. Structure prediction with Dynalign can also be constrained according to experiment or comparative analysis. The accuracy, measured as sensitivity and positive predictive value, of Dynalign is greater than predictions with a single sequence. AVAILABILITY: Dynalign can be downloaded at http://rna.urmc.rochester.edu  相似文献   

18.
MOTIVATION: We describe algorithms implemented in a new software package, RNAbor, to investigate structures in a neighborhood of an input secondary structure S of an RNA sequence s. The input structure could be the minimum free energy structure, the secondary structure obtained by analysis of the X-ray structure or by comparative sequence analysis, or an arbitrary intermediate structure. RESULTS: A secondary structure T of s is called a delta-neighbor of S if T and S differ by exactly delta base pairs. RNAbor computes the number (N(delta)), the Boltzmann partition function (Z(delta)) and the minimum free energy (MFE(delta)) and corresponding structure over the collection of all delta-neighbors of S. This computation is done simultaneously for all delta < or = m, in run time O (mn3) and memory O(mn2), where n is the sequence length. We apply RNAbor for the detection of possible RNA conformational switches, and compare RNAbor with the switch detection method paRNAss. We also provide examples of how RNAbor can at times improve the accuracy of secondary structure prediction. AVAILABILITY: http://bioinformatics.bc.edu/clotelab/RNAbor/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

19.
多序列比对是生物信息学中重要的基础研究内容,对各种RNA序列分析方法而言,这也是非常重要的一步。不像DNA和蛋白质,许多功能RNA分子的序列保守性要远差于其结构的保守性,因此,对RNA的分析研究要求其多序列比对不仅要考虑序列信息,而且要充分考虑到其结构信息。本文提出了一种考虑了结构信息的同源RNA多序列比对算法,它先利用热力学方法计算出每条序列的配对概率矩阵,得到结构信息,由此构造各条序列的结构信息矢量,结合传统序列比对方法,提出优化目标函数,采用动态规划算法和渐进比对得到最后的多序列比对。试验证实该方法的有效性。  相似文献   

20.
A general secondary structure is proposed for the 5S RNA of prokaryotic ribosomes, based on helical energy filtering calculations. We have considered all secondary structures that are common to 17 different prokaryotic 5S RNAs and for each 5S sequence calculated the (global) minimum energy secondary structure (300,000 common structures are possible for each sequence). The 17 different minimum energy secondary structures all correspond, with minor differences, to a single, secondary structure model. This is strong evidence that this general 5S folding pattern corresponds to the secondary structure of the functional 5S rRNA. The general 5S secondary structure is forked and in analogy with the cloverleaf of tRNA is named the "wishbone" model. It constant 8 double helical regions; one in the stem, four in the first, or constant arm, and three in the second arm. Four of these double helical regions are present in a model earlier proposed (1) and four additional regions not proposed by them are presented here. In the minimum energy general structure, the four helices in the constant arm are exactly 15 nucleotide pairs long. These helices are stacked in the sequences from gram-positive bacteria and probably stacked in gram-negative sequences as well. In sequences from gram-positive bacteria the length of the constant arm is maintained at 15 stacked pairs by an unusual minimum energy interaction involving a C26-G57 base pair intercalated between two adjacent helical regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号