首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simplified procedure for the isolation and purification of 124-kDa phytochrome from etiolated Avena seedlings has been developed using the method of ammonium sulfate back-extraction. After hydroxyapatite chromatography of seedling tissue extracts, the pooled phytochrome was subjected to ammonium sulfate back-extraction instead of the usual application to an Affi-Gel Blue column. The resulting phytochrome had specific absorbance ratios (SAR = A666/A280) ranging from 0.85 to 0.95. Subsequent Bio-Gel filtration chromatography yielded highly pure 124-kDa phytochrome with SAR values ranging from 0.99 to 1.13. The absorption maxima of 124-kDa phytochrome were at 280, 379, and 666 nm for the red absorbing form of phytochrome (Pr) and at 280, 400 and 730 nm for the far-red absorbing form (Pfr). The A730/A673 ratio in Pfr was found to be 1.5 to 1.6. The mole fraction of Pfr under red light photoequilibrium was 0.88. No dark reversion was detected within 5 h at 3 degrees C. A photoreversible far-uv-circular dichroism was observable with all phytochrome preparations examined. Fluorescence and phosphorescence lifetimes were measured to further characterize the differences between the phytochromes prepared under different conditions. The Trp fluorescence and phosphorescence lifetimes of Pr and Pfr with the chromophore "X", probably polyphenolic in nature, were significantly shorter than those of phytochrome without the contaminant X. The short lifetime of the fluorescence of the Pr chromophore is attributable to X in the former.  相似文献   

2.
Resonance Raman (RR) scattering from intact pea phytochrome was observed in resonance with the blue band at ambient temperature. The relative populations of the red-light-absorbing form (Pr) and far-red-light-absorbing form (Pfr) under laser illumination were estimated from the absorption spectra. The most prominent RR band of Pr obtained by 364-nm excitation under 740-nm pumping exhibited a frequency shift between H2O and D2O solutions, but that of Pfr obtained by 407-nm excitation under 633-nm pumping did not, indicating a distinct difference in a protonation state of their chromophores. Since the protonation level of a whole molecule of intact phytochrome remains unchanged between Pr and Pfr, this observation indicates migration of a proton from the chromophore of Pr to the protein moiety of Pfr. As model compounds, octaethylbiliverdin (OEBV-h3), its deuterated and 15N derivatives, and their protonated forms were also studied with both RR and 1H and 15N NMR spectroscopies. The RR spectrum of the protonated form, for which the protonation site was determined to be C-ring pyrrole nitrogen by NMR, displayed a deuteration shift corresponding to that of Pr, suggesting a similar protonated structure for the pyrrolic rings of Pr. The RR spectral difference between OEBV-h3 and OEBV-d3 and that between H2O and D2O solutions of Pfr suggested that the N-H protons of the A-, B-, and D-rings of intact phytochrome are replaced with deuterons in D2O. A role of the 7-kDa segment of phytochrome is discussed on the basis of RR spectral differences between the intact and large phytochromes.  相似文献   

3.
Femtosecond time-resolved transient absorption spectroscopy was employed to characterize for the first time the primary photoisomerization dynamics of a bacterial phytochrome system in the two thermally stable states of the photocycle. The 85-kDa phytochrome Cph1 from the cyanobacterium Synechocystis PCC 6803 expressed in Escherichia coli was reconstituted with phycocyanobilin (Cph1-PCB) and phycoerythrobilin (Cph1-PEB). The red-light-absorbing form Pr of Cph1-PCB shows an approximately 150 fs relaxation in the S(1) state after photoexcitation at 650 nm. The subsequent Z-E isomerization between rings C and D of the linear tetrapyrrole-chromophore is best described by a distribution of rate constants with the first moment at (16 ps)(-1). Excitation at 615 nm leads to a slightly broadened distribution. The reverse E-Z isomerization, starting from the far-red-absorbing form Pfr, is characterized by two shorter time constants of 0.54 and 3.2 ps. In the case of Cph1-PEB, double-bond isomerization does not take place, and the excited-state lifetime extends into the nanosecond regime. Besides a stimulated emission rise time between 40 and 150 fs, no fast relaxation processes are observed. This suggests that the chromophore-protein interaction along rings A, B, and C does not contribute much to the picosecond dynamics observed in Cph1-PCB but rather the region around ring D near the isomerizing C(15) [double bond] C(16) double bond. The primary reaction dynamics of Cph1-PCB at ambient temperature is found to exhibit very similar features as those described for plant type A phytochrome, i.e., a relatively slow Pr, and a fast Pfr, photoreaction. This suggests that the initial reactions were established already before evolution of plant phytochromes began.  相似文献   

4.
The plant photoreceptor chromoprotein, phytochrome, is rapidly degraded in vivo after photoconversion from a stable red light-absorbing form (Pr) to a far-red light-absorbing form (Pfr). Previously, we demonstrated that during Pfr degradation in etiolated oat seedlings, ubiquitin-phytochrome conjugates, (Ub-P), appear and disappear suggesting that phytochrome is degraded via a ubiquitin-dependent proteolytic pathway (Shanklin, J., Jabben, M., and Vierstra, R. D. (1987) Proc. Natl. Acad. Sci. U. S. A. 84, 359-363). Here, we provide additional kinetic and localization data consistent with this hypothesis by exploiting the unique ability to photoregulate phytochrome degradation in vivo. An assay for the quantitation of Ub-P was developed involving immunoprecipitation of total conjugates with anti-ubiquitin antibodies, followed by the detection of Ub-P with anti-phytochrome antibodies. Using this immunoassay, we found that Ub-P will accumulate to approximately 5% of initial phytochrome during Pfr degradation induced by a saturating red light pulse. Reducing the amount of Pfr produced initially by attenuating the red light pulse, lowered the amount of phytochrome degraded in the following dark period and concomitantly reduced the maximal accumulation of Ub-P. Continuous far-red irradiations that maintained only 4% of phytochrome as Pfr induced rapid phytochrome degradation similar to that induced by a red light pulse converting 86% of Pr to Pfr. The appearance and disappearance of Ub-P were similar for each irradiation indicating that Ub-P accumulation is independent of the level of Pfr provided rapid phytochrome degradation is maintained. Pulse-chase studies employing continuous far-red light followed by darkness showed that Ub-P are continuously synthesized during phytochrome degradation and rapidly disappear once degradation ceases. Ub-P also accumulated during "cycled Pr" degradation induced by the transformation of Pr to Pfr and back to Pr. The commitment to degrade cycled Pr and form Ub-P occurred within seconds after Pfr formation making the cause(s) underlying this phenomenon one of the fastest phytochrome reactions known. Within seconds after Pfr formation, a majority of phytochrome is also known to aggregate in vivo (previously defined as sequestered or pelletable), with aggregated phytochrome preferentially lost during phytochrome degradation. In vitro analysis of aggregated phytochrome indicated that they contain most of the Ub-P. Moreover, the appearance of Ub-P in the aggregated and soluble fractions correlated with the time that phytochrome disappeared from that fraction.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
The dimeric plant photoreceptor phytochrome is converted from its inactive red light-absorbing form (Pr) into the active far-red light-absorbing form (Pfr) upon light absorption. Dynamics of Pfr generation and of thermal Pfr-to-Pr conversion are of fundamental importance for inducing adequate responses to light signals. Here, we analyzed the role of subunit interactions on spectroscopic properties of dimeric phytochrome A. Using a coexpression system and affinity chromatography, we prepared mixed phytochrome dimers that can incorporate the essential chromophore only in one subunit. We demonstrate that such mixed dimers have unaltered difference spectra. In contrast, dark reversion differed greatly between Pfr-Pfr homodimers and Pfr-Pr heterodimers, the former being about 100-fold more stable. Temperature dependence of reaction rates revealed an additional stabilization of about 4 kcal/mol in homodimers. Consequences of these findings are discussed in relation to the biological function of, and functional diversification between, phytochrome family members.  相似文献   

6.
W Parker  M Partis  P S Song 《Biochemistry》1992,31(39):9413-9420
Phytochrome is the ubiquitous red light photoreceptor present in plants. Properties of the 6-kDa end terminal region of phytochrome A (PHYA from etiolated Avena) have been investigated by the use of synthetic polypeptide fragments corresponding to that region. This region of the phytochrome A protein has been viewed as a possible functional site due to the large differences in the sequence's conformation and exposure between the Pr (red light-absorbing form) and Pfr (far-red light-absorbing, gene-regulating form) species of phytochrome A. Hydrophobic moment calculations reveal amphiphilic helical potential in this section of the protein, consistent with the folding of the N-terminal region onto a hydrophobic chromophore/chromophore pocket. A large N-terminal synthetic peptide also demonstrated helical folding in the presence of SDS micelles. This experimental evidence indicates that the N-terminal alpha-helical folding upon conversion of the regulatorily inactive Pr to the active Pfr form of phytochrome A is likely driven at least in part by amphiphilic helix stabilization. Further, the large synthetic peptide was spectrally demonstrated to interact with phytochrome A lacking the N-terminal region. The formation of this nativelike complex may provide us with a tool for both biophysical and physiological studies on the mechanism of phytochrome A signal transduction.  相似文献   

7.
Fluorescence lifetimes of 'large (mol. wt. 120,000) and 'small' (mol. wt. 60,000) phytochromes isolated from oat and rye seedlings grown in the dark have been measured at 199 K and 298 K. Phytochrome model compounds have also been studied by phase modulation fluorometrically at 77 K for comparison with lifetime data for phytochrome. It was found that the fluorescence lifetime of 'large' phytochrome was significantly shorter than that of 'small' phytochrome and its chromophore models. The phytochrome chromophore of Pr form has been analyzed by fluorescence polarization, CD, and molecular orbital methods. The fluorescence excitation polarization of 'small' phytochrome and the chromophore model in buffer/glycerol mixture (3 : 1, v/v) at 77 K is very hight (0.4) at the main absorption band and is negative (--0.1) and close to 0 in the near ultraviolet band, respectively. Analyses of the spectroscopic data suggest that the chromophore conformation of Pr and Pfr forms of phytochrome are essentially identical. The induced ellipticity of 'large' rye phytochrome in the blue and near ultraviolet regions was found to be significantly higher than that of 'small' phytochrome, indicating that the binding interaction between the phytochrome chromophore and apoprotein is much tighter in the former than in the latter. In addition, the excitation energy transfer does occur from Trp residue(s) to the chromophore in 'large' phytochrome but not in 'small' Pr. This illustrates one feature of the role played by the large molecular weight apoprotein in the binding site interactions and primary photoprocesses of Pr. Finally, a plausible model for the primary photoprocesses and the mechanism of phytochrome interactions triggered by the Pr leads to Pfr phototransformation have been proposed on the basis of the above results.  相似文献   

8.
A spectral, immunochemical, and proteolytic characterization of native 120-kilodalton (kD) phytochrome from Cucurbita pepo L. is presented and compared with that previously reported for native 124-kD phytochrome from Avena sativa. The molecule was partially purified (~200-fold) in the phytochrome—far red-absorbing form (Pfr) in the presence of the protease inhibitor, phenylmethylsulfonyl fluoride, using a modification of the procedure initially developed to purify 124-kD Avena phytochrome. The spectral properties of the preparations obtained are indistinguishable from those described for 124-kD Avena phytochrome, including a Pfr λmax at 730 nanometers, a spectral change ratio (ΔArAfr) of 1.05, and negligible dark reversion of Pfr to the red-absorbing form (Pr) in the presence or absence of sodium dithionite. This lack of dark reversion in vitro contrasts with observations that Cucurbita phytochrome, like phytochrome from most other dicotyledons, exhibits substantial dark reversion in vivo. Ouchterlony double immunodiffusion analysis with polyclonal antibodies indicates that 120-kD Cucurbita phytochrome is immunologically dissimilar to 124-kD Avena phytochrome. However, despite this dissimilarity, immunoblot analyses of proteolytic digests have identified at least three spatially separate epitopes that are common to both phytochromes. Using endogeneous protease(s), a peptide map for Cucurbita phytochrome has been constructed and the role that specific domains play in the overall structure of the photoreceptor has been examined. One domain near the NH2 terminus is critical to the spectral integrity of the molecule indicating that this domain plays a structural role analogous to that of a domain near the NH2 terminus of Avena phytochrome. Proteolytic removal of this domain occurs preferentially in Pr and its removal shifts the Pfr λmax to 722 nm, increases the spectral change ratio to 1.3, and substantially enhances the dark reversion rate. The apparent conservation of this domain among evolutionarily divergent plant species and its involvement in a conformational change upon photoconversion makes it potentially relevant to the mechanism(s) of phytochrome action. Preliminary evidence from gel filtration studies suggests that the 55-kD chromophoreless COOH-terminal region of the polypeptide contains a domain responsible for dimerization of phytochrome monomers.  相似文献   

9.
Phytochromes are photoreceptors with a bilin chromophore in which light triggers the conversion between the red light-absorbing form, Pr, and the far-red-light-absorbing form, Pfr. Here we performed in vitro and in vivo studies using locked phycocyanobilin derivatives, termed 15 Z anti phycocyanobilin (15ZaPCB) and 15 E anti PCB (15EaPCB). Recombinant bacterial and plant phytochromes incorporated either chromophore in a noncovalent or covalent manner. All adducts were photoinactive. The absorption spectra of the 15ZaPCB and 15EaPCB adducts were comparable with those of the Pr and Pfr form, respectively. Feeding of 15EaPCB, but not 15ZaPCB, to protonemal filaments of the moss Ceratodon purpureus resulted in increased chlorophyll accumulation, modulation of gravitropism, and induction of side branches in darkness. The effect of locked chromophores on phytochrome responses, such as induction of seed germination, inhibition of hypocotyl elongation, induction of cotyledon opening, randomization of gravitropism, and gene regulation, were investigated in wild-type Arabidopsis thaliana and the phytochrome-chromophore-deficient long hypocotyl mutant hy1. All phytochrome responses were induced in darkness by 15EaPCB, not only in the mutant but also in the wild type. These studies show that the 15Ea stereochemistry of the chromophore results in the formation of active Pfr-like phytochrome in the cell. Locked chromophores might be used to investigate phytochrome responses in many other organisms without the need to isolate mutants. The induction of phytochrome responses in the hy1 mutant by 15EaPCB were however less efficient than by red light irradiation given to biliverdin-rescued seeds or seedlings.  相似文献   

10.
Phytochromes are widely distributed photoreceptors with a bilin chromophore that undergo a typical reversible photoconversion between the two spectrally different forms, Pr and Pfr. The phytochrome Agp2 from Agrobacterium tumefaciens belongs to the group of bathy phytochromes that have a Pfr ground state as a result of the Pr to Pfr dark conversion. Agp2 has untypical spectral properties in the Pr form reminiscent of a deprotonated chromophore as confirmed by resonance Raman spectroscopy. UV/visible absorption spectroscopy showed that the pKa is >11 in the Pfr form and ∼7.6 in the Pr form. Unlike other phytochromes, photoconversion thus results in a pKa shift of more than 3 units. The Pr/Pfr ratio after saturating irradiation with monochromatic light is strongly pH-dependent. This is partially due to a back-reaction of the deprotonated Pr chromophore at pH 9 after photoexcitation as found by flash photolysis. The chromophore protonation and dark conversion were affected by domain swapping and site-directed mutagenesis. A replacement of the PAS or GAF domain by the respective domain of the prototypical phytochrome Agp1 resulted in a protonated Pr chromophore; the GAF domain replacement afforded an inversion of the dark conversion. A reversion was also obtained with the triple mutant N12S/Q190L/H248Q, whereas each single point mutant is characterized by decelerated Pr to Pfr dark conversion.  相似文献   

11.
Photointerconversion between the red light-absorbing (Pr) form and the far-red light-absorbing (Pfr) form is the central feature that allows members of the phytochrome (Phy) superfamily to act as reversible switches in light perception. Whereas the chromophore structure and surrounding binding pocket of Pr have been described, those for Pfr have remained enigmatic for various technical reasons. Here we describe a novel pair of Phys from two thermophilic cyanobacteria, Synechococcus sp. OS-A and OS-B', that overcome several of these limitations. Like other cyanobacterial Phys, SyA-Cph1 and SyB-Cph1 covalently bind the bilin phycocyanobilin via their cGMP phosphodiesterase/adenyl cyclase/FhlA (GAF) domains and then assume the photointerconvertible Pr and Pfr states with absorption maxima at 630 and 704 nm, respectively. However, they are naturally missing the N-terminal Per/Arndt/Sim domain common to others in the Phy superfamily. Importantly, truncations containing only the GAF domain are monomeric, photochromic, and remarkably thermostable. Resonance Raman and NMR spectroscopy show that all four pyrrole ring nitrogens of phycocyanobilin are protonated both as Pr and following red light irradiation, indicating that the GAF domain by itself can complete the Pr to Pfr photocycle. (1)H-(15)N two-dimensional NMR spectra of isotopically labeled preparations of the SyB-Cph1 GAF domain revealed that a number of amino acids change their environment during photoconversion of Pr to Pfr, which can be reversed by subsequent photoconversion back to Pr. Through three-dimensional NMR spectroscopy before and after light photoexcitation, it should now be possible to define the movements of the chromophore and binding pocket during photoconversion. We also generated a series of strongly red fluorescent derivatives of SyB-Cph1, which based on their small size and thermostability may be useful as cell biological reporters.  相似文献   

12.
In nature, sensory photoreceptors underlie diverse spatiotemporally precise and generally reversible biological responses to light. Photoreceptors also serve as genetically encoded agents in optogenetics to control by light organismal state and behavior. Phytochromes represent a superfamily of photoreceptors that transition between states absorbing red light (Pr) and far-red light (Pfr), thus expanding the spectral range of optogenetics to the near-infrared range. Although light of these colors exhibits superior penetration of soft tissue, the transmission through bone and skull is poor. To overcome this fundamental challenge, we explore the activation of a bacterial phytochrome by a femtosecond laser emitting in the 1 μm wavelength range. Quantum chemical calculations predict that bacterial phytochromes possess substantial two-photon absorption cross sections. In line with this notion, we demonstrate that the photoreversible Pr ↔ Pfr conversion is driven by two-photon absorption at wavelengths between 1170 and 1450 nm. The Pfr yield was highest for wavelengths between 1170 and 1280 nm and rapidly plummeted beyond 1300 nm. By combining two-photon activation with bacterial phytochromes, we lay the foundation for enhanced spatial resolution in optogenetics and unprecedented penetration through bone, skull, and soft tissue.  相似文献   

13.
Constitutive expression of a chimeric oat phytochrome gene in tobacco (Nicotiana tabacum) results in the accumulation of a functional 124-kilodalton photoreceptor that markedly alters the phenotype of light-grown tobacco (Keller et al. [1989] EMBO J 8: 1005-1012). Here, we provide a detailed phenotypic and biochemical characterization of homozygous tobacco expressing high levels of oat phytochrome. Phenotypic changes include a substantial inhibition of stem elongation, decreased apical dominance, increased leaf chlorophyll content, and delayed leaf senescence. Oat phytochrome synthesized in tobacco is indistinguishable from that present in etiolated oats, having photoreversible difference spectrum maxima at 665 and 730 nanometers, exhibiting negligible dark reversion of phytochrome—far red-absorbing form (Pfr) to phytochrome—red-absorbing form (Pr), and existing as a dimer with an apparent size of approximately 300 kilodaltons. Heterodimers between the oat and tobacco chromoproteins were detected. Endogenous tobacco phytochrome and transgenically expressed oat phytochrome are rapidly degraded in vivo upon photoconversion of Pr to Pfr. Breakdown of both oat and tobacco Pfr is associated with the accumulation of ubiquitin-phytochrome conjugates, suggesting that degradation occurs via the ubiquitin-dependent proteolytic pathway. This result indicates that the factors responsible for selective recognition of Pfr by the ubiquitin pathway are conserved between monocot and dicot phytochromes. More broadly, it demonstrates that the domain(s) within a plant protein responsible for its selective breakdown can be recognized by the degradation machinery of heterologous species.  相似文献   

14.
Environmental light information such as quality, intensity, and duration in red (approximately 660 nm) and far-red (approximately 730 nm) wavelengths is perceived by phytochrome photoreceptors in plants, critically influencing almost all developmental strategies from germination to flowering. Phytochromes interconvert between red light-absorbing Pr and biologically functional far-red light-absorbing Pfr forms. To ensure optimal photoresponses in plants, the flux of light signal from Pfr-phytochromes should be tightly controlled. Phytochromes are phosphorylated at specific serine residues. We found that a type 5 protein phosphatase (PAPP5) specifically dephosphorylates biologically active Pfr-phytochromes and enhances phytochrome-mediated photoresponses. Depending on the specific serine residues dephosphorylated by PAPP5, phytochrome stability and affinity for a downstream signal transducer, NDPK2, were enhanced. Thus, phytochrome photoreceptors have developed an elaborate biochemical tuning mechanism for modulating the flux of light signal, employing variable phosphorylation states controlled by phosphorylation and PAPP5-mediated dephosphorylation as a mean to control phytochrome stability and affinity for downstream transducers.  相似文献   

15.
Fluence-rate response curves for wavelengths from 640 nm to 730 nm were constructed for the day-extension promotion of flowering in green, light-grown, wheat (Triticum aestivum L., cv. Alexandria), a long-day plant. The resultant action spectrum had action maxima at 660 nm and 716 nm and resembles spectra for the high-irradiance reaction (HIR) seen in etiolated plants. Because, the HIR is thought to be controlled by type I pytochrome (that which is most abundant in etiolated tissue) our results indicate the involvement of type I phytochrome in the photomorphogenesis of a light-grown, green plant.Abbreviations Pr red-light-absorbing form of phytochrome - Pfr far-red-light-absorbing form of phytochrome - Ptot total phytochrome level (Pr+Pfr) - HIR high-irradiance reaction - SDP short-day plant(s) - LDP long-day plant(s)  相似文献   

16.
The dynamic behavior of phytochrome A (phyA) in seedlings of the model plant Arabidopsis was examined by in vivo spectroscopy and by western and northern blotting. Rapid accumulation of phyA was observed, reaching a steady state after 3 d. Both red and far-red light initiated a rapid destruction of the far-red-light-absorbing form of phytochrome (Pfr); the apparent half-life was only 4-fold longer in far-red than in red light. Furthermore, the Pfr-induced destruction of the red-light-absorbing form of phytochrome (Pr) of phyA occurred in darkness with a rate identical to that of Pfr destruction. A 2-fold decrease in mRNA abundance was observed after irradiation, irrespective of the applied light quality. However, reaccumulation occurred rapidly after far-red but slowly after red irradiation, indicating different modes of regulation of phytochrome expression after light-dark transitions depending on the light quality of the preceding irradiation. The wavelength dependency of the destruction rates was distinct from that of mustard, a close relative of Arabidopsis, and was explained on the basis of Pfr-induced Pr destruction and a simple kinetic two-step model. No dark reversion was detectable in the destruction kinetics after a red pulse. From these data we conclude that Arabidopsis phyA differs significantly in several aspects from other dicot phytochromes.  相似文献   

17.
Phytochromes are biliprotein photoreceptors that are found in plants, bacteria, and fungi. Prototypical phytochromes have a Pr ground state that absorbs in the red spectral range and is converted by light into the Pfr form, which absorbs longer-wavelength, far-red light. Recently, some bacterial phytochromes have been described that undergo dark conversion of Pr to Pfr and thus have a Pfr ground state. We show here that such so-called bathy phytochromes are widely distributed among bacteria that belong to the order Rhizobiales. We measured in vivo spectral properties and the direction of dark conversion for species which have either one or two phytochrome genes. Agrobacterium tumefaciens C58 contains one bathy phytochrome and a second phytochrome which undergoes dark conversion of Pfr to Pr in vivo. The related species Agrobacterium vitis S4 contains also one bathy phytochrome and another phytochrome with novel spectral properties. Rhizobium leguminosarum 3841, Rhizobium etli CIAT652, and Azorhizobium caulinodans ORS571 contain a single phytochrome of the bathy type, whereas Xanthobacter autotrophicus Py2 contains a single phytochrome with dark conversion of Pfr to Pr. We propose that bathy phytochromes are adaptations to the light regime in the soil. Most bacterial phytochromes are light-regulated histidine kinases, some of which have a C-terminal response regulator subunit on the same protein. According to our phylogenetic studies, the group of phytochromes with this domain arrangement has evolved from a bathy phytochrome progenitor.Phytochromes are biological photoreceptors that were discovered in plants, where they control development throughout the life cycle in manifold ways (21, 33). Today, a large number of homologs are known also from cyanobacteria, other bacteria, and fungi, which are termed cyanobacterial phytochromes (Cphs), bacteriophytochromes (BphPs), and fungal phytochromes (Fphs), respectively (20, 24). The chromophore is autocatalytically assembled within the N-terminal part of the protein, the photosensory core module (PCM), which contains the PAS, GAF, and PHY domains (30). Typically, phytochromes are converted by light between two spectrally different forms, the red-absorbing Pr and the far-red-absorbing Pfr forms. Photoconversion is initiated by an isomerization of the covalently bound bilin chromophore (32).Plant and cyanobacterial phytochromes incorporate phytochromobilin (PΦB) and phycocyanobilin (PCB) as natural chromophores, respectively, which are covalently bound to Cys residues in the GAF domains. All characterized phytochromes that belong to these groups have a Pr ground state. Plant phytochromes can undergo dark conversion of Pfr to Pr (5), whereas the Pfr form of typical cyanobacterial phytochromes is stable in darkness (26).Bacteriophytochromes utilize biliverdin (BV) instead as a natural chromophore (1), which is covalently attached to a Cys residue in the N terminus of the PAS domain (26). Since the conjugated system of BV is longer than that of PΦB or PCB, the absorption maxima of bacteriophytochromes are found at higher wavelengths than those of cyanobacterial or plant homologs.With the discovery of a bacterial phytochrome from Bradyrhizobium sp. strain ORS278, termed BrBphP1, the first phytochrome with a Pfr ground state and dark conversion from Pr to Pfr was found (10). Thereafter, five more phytochromes with dark conversion of Pr to Pfr were described: Rhodopseudomonas palustris BphP1 (RpBphP1) from strain CEA001, RpBphP5, and RpBphP6 from strain CGA009 (11); Agrobacterium tumefaciens Agp2 (or AtBphP2) from strain C58 (18); and Pseudomonas aeruginosa BphP1 (PaBphP1) (40). These phytochromes are now termed bathy phytochromes because the absorption maxima of their ground states are bathochromically (to longer wavelengths) shifted compared to those of all other phytochromes.Moreover, some other bacterial phytochromes with unusual properties have been described. In the Ppr from Rhodospirillum centenum, a photoactive yellow protein (PYP) domain is fused to the N terminus of a phytochrome homolog. The phytochrome part of Ppr assembles with BV to form a Pr adduct. However, irradiation does not result in the formation of Pfr but in a bleaching of the Pr spectrum (23). The BV adduct of RpBphP3 from R. palustris, which has a Pr ground state, photoconverts to the so-called Pnr form with a blue-shifted absorption maximum (12). RpBphP4 from R. palustris strains Ha2 and BisB5 and Bradyrhizobium BphP3 (BrBphP3) from Bradyrhizobium BTAi1, both with a Pr ground state, photoconvert into a long-lived MetaR form (8, 42). MetaRa and MetaRc are intermediates in the photoconversion from Pr to Pfr of prototypical phytochromes (3). BphP3 from the Bradyrhizobium strain ORS 278 is an exception among bacteriophytochromes as it binds PCB as a natural chromophore. This phytochrome adopts a so-called Po (P-orange) ground state with an absorbance maximum in the orange range (11, 15). Upon irradiation, this phytochrome converts into the Pr form. RpBphP4 from R. palustris CGA009 lacks the biliverdin binding cysteine and does not bind a chromophore (42).With the rapidly growing number of bacterial genome sequences, many new bacterial phytochromes are being discovered. Thus, a large and increasing number of newly identified phytochromes remain spectroscopically uncharacterized. We established an in vivo photometry approach which allowed the rapid acquisition of spectral information about phytochromes from intact bacterial cells. In the beginning period of plant phytochrome research, in vivo photometry was extensively applied (4, 6, 29, 34). This method, in fact, allowed the identification of phytochromes for the first time in plant tissues (6), which led to the purification of phytochromes from plant extracts (37). Here, we apply in vivo photometry for the first time to organisms outside the plant kingdom. This method is especially useful for studying species with single phytochrome genes. The approach is also helpful for comparing properties of native phytochromes in vivo and of their recombinant proteins in vitro.In the present study, we concentrate on nonphotosynthetic species of the order Rhizobiales which belongs to the Alphaproteobacteria. The family Rhizobiaceae comprises plant-interacting soil bacteria. A. tumefaciens and Agrobacterium vitis can transfer genes into plants to induce plant tumors, whereas many other Rhizobiaceae can live as plant symbionts in nodules of stems or roots in which they assimilate molecular nitrogen to produce NH4+, which is used by the plant for synthesis of amino acids and other nitrogen-containing molecules. A. tumefaciens C58 contains two phytochromes, termed Agp1 (or AtBphP1) and Agp2 (or AtBphP2), that have been characterized as recombinant proteins (14, 18, 26, 35) and whose spectral activities have been measured in extracts of wild-type and knockout mutants (31). A large number of phytochromes from photosynthetic Bradyrhizobium and Rhodopseudomonas species, which also belong to the order Rhizobiales, have been characterized as recombinant proteins (11), some of which have already been noted above.It turned out that most of our analyzed phytochromes undergo dark conversion of Pr to Pfr and thus belong to the group of bathy phytochromes. Such phytochromes, which absorb at around 750 nm, clearly dominate among Rhizobiales. We propose that this specific property reflects an adaptation to the light regime in the soil. Our studies also suggest that bacterial phytochromes with a C-terminal response regulator have evolved from a bathy phytochrome progenitor.  相似文献   

18.
Phytochromes act as photoswitches between the red- and far-red absorbing parent states of phytochromes (Pr and Pfr). Plant phytochromes display an additional thermal conversion route from the physiologically active Pfr to Pr. The same reaction pattern is found in prototypical biliverdin-binding bacteriophytochromes in contrast to the reverse thermal transformation in bathy bacteriophytochromes. However, the molecular origin of the different thermal stabilities of the Pfr states in prototypical and bathy bacteriophytochromes is not known. We analyzed the structures of the chromophore binding pockets in the Pfr states of various bathy and prototypical biliverdin-binding phytochromes using a combined spectroscopic-theoretical approach. For the Pfr state of the bathy phytochrome from Pseudomonas aeruginosa, the very good agreement between calculated and experimental Raman spectra of the biliverdin cofactor is in line with important conclusions of previous crystallographic analyses, particularly the ZZEssa configuration of the chromophore and its mode of covalent attachment to the protein. The highly homogeneous chromophore conformation seems to be a unique property of the Pfr states of bathy phytochromes. This is in sharp contrast to the Pfr states of prototypical phytochromes that display conformational equilibria between two sub-states exhibiting small structural differences at the terminal methine bridges A-B and C-D. These differences may mainly root in the interactions of the cofactor with the highly conserved Asp-194 that occur via its carboxylate function in bathy phytochromes. The weaker interactions via the carbonyl function in prototypical phytochromes may lead to a higher structural flexibility of the chromophore pocket opening a reaction channel for the thermal (ZZEZZZ) Pfr to Pr back-conversion.  相似文献   

19.
The surface topography of aromatic amino acid residues and/or other hydrophobic groups of phytochrome has been investigated by ultraviolet absorption spectra and ultraviolet circular dichroism using phytochrome-cyclodextrin inclusion complexation. Three different types of cyclodextrins (alpha, beta and gamma) with varying hydrophobic cavity sizes, were used. Complexation resulted in significant changes in the circular dichroic signals of both the red-light-absorbing (Pr) and far-red-light-absorbing (Pfr) forms of phytochrome in the ultraviolet region at 222 nm, mid-ultraviolet at 280 nm and 300 nm and in the near-ultraviolet and visible regions at 365 nm and 670 mm, respectively, alpha- and beta-Cyclodextrins were markedly (1.7-4.5-fold) more effective in reducing the mid-ultraviolet CD signal of Pr than that of Pfr, indicating a differential inclusion of the aromatic amino acid residues. gamma-Cyclodextrin did not exhibit any significant differentiation. Secondary structure analysis of the phytochrome-cyclodextrin complexes revealed a considerable increase in the alpha-helical contents of both Pr and Pfr forms. The increase in the Pfr form (17-25%) was about twice that in the Pr form (8-9%), indicating a differential effect of complexation on the conformation of the phytochrome protein. Although the photostationary-state equilibrium of the phytochrome was not affected by the cyclodextrin complexation, the Pr----Pfr phototransformation rate was significantly increased. However, the Pfr----Pr photoreversion was not affected significantly. The results suggest a differential complexation of cyclodextrins with the Pr and Pfr forms of phytochrome as a result of a difference in accessibility of aromatic amino acids in the two forms. A detailed analysis of absorption difference spectra and circular dichroic spectra around 280 nm also revealed evidence for a difference in the exposure of aromatic amino acids.  相似文献   

20.
Phytochrome is a key photoregulation pigment in plants which determines the strategy of their development throughout their life cycle. The major achievement in the recent investigations of the pigment is the discovery of its structural and functional heterogeneity: existence of a family of phytochromes (phyA-phyE) differing by the apoprotein was demonstrated. We approach this problem by investigating the chromophore component of the pigment with the use of the developed method of in vivo low-temperature fluorescence spectroscopy of phytochrome. In etiolated plants, phytochrome fluorescence was detected and attributed to its red-light absorbing form (Pr) and the first photoproduct (lumi-R), and a scheme of the photoreaction in phytochrome, a distinction of which is the activation barrier in the excited state, was put forward. It was found that the spectroscopic and photochemical characteristics of Pr depend on the plant species and phytochrome mutants and overexpressors used, on localization of the pigment in organs and tissues, plant age, effect of preillumination and other physiological factors. This variability of the parameters was interpreted as the existence of at least two phenomenological Pr populations, which differ by their spectroscopic characteristics and activation parameters of the Pr --> lumi-R photoreaction (in particular, by the extent of the Pr --> lumi-R photoconversion at low temperatures, gamma1): the longer-wavelength major and variable by its content in plant tissues Pr' with gamma1 = 0.5 and the shorter-wavelength minor relatively constant Pr" with gamma1 < or = 0.05. The analysis of the phytochrome mutants and overexpressors allows a conclusion that phytochrome A (phyA), which dominates in etiolated seedlings, is presented by two isoforms attributed to Pr' and Pr" (phyA' and phyA", respectively). Phytochrome B (phyB) accounts for less than 10% of the total phytochrome fluorescence and belongs to the Pr" type. It is also characterized by the relatively low extent of the Pr photoconversion into the far-red-light absorbing physiologically active phytochrome form, Pfr. Fluorescence of the minor phytochromes (phyC-phyE) is negligible. The recently discovered phytochrome of the cyanobacterium Synechocystis also belongs to the phenomenological Pr" type. PhyA' is a light-labile and soluble fraction, while phyA" is a relatively light-stable and, possibly, membrane (protein)-associated. Experiments with transgenic tobacco plants overexpressing full-length and C- and N-terminally truncated oat phytochrome A suggest that phyA' and phyA" might differ by the post-translational modification of the small N-terminal segment (amino acid residues 7-69) of the pigment. PhyA' is likely to be active in the de-etiolation processes while phyA" together with phyB, in green plants as revealed by the experiments on transgenic potato plants and phytochrome mutants of Arabidopsis and pea with altered levels of phytochromes A and B and modified phenotypes. And finally, within phyA', there are three subpopulations which are, possibly, different conformers of the chromophore. Thus, there is a hierarchical system of phytochromes which include: (i) different phytochromes; (ii) their post-translationally modified states and (iii) conformers within one molecular type. Its existence might be the rationale for the multiplicity of the photoregulation reactions in plants mediated by phytochrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号