共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Alternative splicing of the TrkB gene produces a full length tyrosine kinase receptor as well as two truncated isoforms that contain extracellular and transmembrane domains but lack the kinase domain and have unique C terminal tails. The function of the truncated TrkB isoforms is unclear and to gain insights into their function, we have isolated a protein from 15N neuroblastoma cells that specifically binds the TrkB.T1 isoform. Pulldown experiments using a GST fusion protein containing the TrkB.T1 intracellular domain identified a 61 kDa protein from radiolabeled 15N lysates. Coimmunoprecipitation experiments showed that the 61 kDa protein interacted with epitope-tagged TrkB.T1 overexpressed in 15N cells as well as with TrkB.T1 which was endogenously expressed. Peptide competition experiments revealed that the protein, designated TTIP (for Truncated TrkB Interacting Protein), showed specific binding to the TrkB.T1 tail. MALDI MS and MS/MS analysis has revealed that TTIP is a novel protein not yet listed in the current databases. 相似文献
3.
Neha Patel David Hoang Nathan Miller Sara Ansaloni Qihong Huang Jack T Rogers Jeremy C Lee Aleister J Saunders 《Molecular neurodegeneration》2008,3(1):1-6
A number of studies have shown that increased APP levels, resulting from either a genomic locus duplication or alteration in APP regulatory sequences, can lead to development of early-onset dementias, including Alzheimer's disease (AD). Therefore, understanding how APP levels are regulated could provide valuable insight into the genetic basis of AD and illuminate novel therapeutic avenues for AD. Here we test the hypothesis that APP protein levels can be regulated by miRNAs, evolutionarily conserved small noncoding RNA molecules that play an important role in regulating gene expression. Utilizing human cell lines, we demonstrate that miRNAs hsa-mir-106a and hsa-mir-520c bind to their predicted target sequences in the APP 3'UTR and negatively regulate reporter gene expression. Over-expression of these miRNAs, but not control miRNAs, results in translational repression of APP mRNA and significantly reduces APP protein levels. These results are the first to demonstrate that levels of human APP can be regulated by miRNAs. 相似文献
4.
Anja Kittel Renke Maas Jörg König Maren Mieth Norbert Weiss Natalia Jarzebska Bernd Hohenstein Jens Martens-Lobenhoffer Stefanie M. Bode-Böger Roman N. Rodionov 《Biochemical and biophysical research communications》2013,430(1):84-89
Elevated plasma concentrations of the asymmetric (ADMA) and symmetric (SDMA) dimethylarginine have repeatedly been linked to adverse cardiovascular clinical outcomes. Both dimethylarginines can be degraded by alanine–glyoxylate aminotransferase 2 (Agxt2), which is also the key enzyme responsible for the degradation of endogenously formed β-aminoisobutyrate (BAIB). In the present study we wanted to investigate the effect of BAIB on Agxt2 expression and Agxt2-mediated metabolism of dimethylarginines. We infused BAIB or saline intraperitoneally for 7 days in C57/BL6 mice via minipumps. Expression of Agxt2 was determined in liver and kidney. The concentrations of BAIB, dimethylarginines and the Agxt2-specific ADMA metabolite α-keto-δ-(N(G),N(G)-dimethylguanidino)valeric acid (DMGV) was determined by LC–MS/MS in plasma and urine. As compared to controls systemic administration of BAIB increased plasma and urine BAIB levels by a factor of 26.5 (p < 0.001) and 25.8 (p < 0.01), respectively. BAIB infusion resulted in an increase of the plasma ADMA and SDMA concentrations of 27% and 31%, respectively, (both p < 0.05) and a 24% decrease of plasma DMGV levels (p < 0.05), while expression of Agxt2 was not different.Our data demonstrate that BAIB can inhibit Agxt2-mediated metabolism of dimethylarginines and show for the first time that endogenous Agxt2 is involved in the regulation of systemic ADMA, SDMA and DMGV levels. The effect of BAIB excess on endogenous dimethylarginine levels may have direct clinical implications for humans with the relatively common genetic trait of hyper-β-aminoisobutyric aciduria. 相似文献
5.
6.
Evidence that CFTR channels can regulate the open duration of other CFTR channels: cooperativity 总被引:2,自引:0,他引:2
CFTR channels mediate secretion and absorption in epithelia, and cystic fibrosis is caused by their malfunction. CFTR proteins are members of the ABC transporter family and are complexly regulated by phosphorylation and nucleosides; they also influence other channel activity. Do CFTR molecules also influence one another? Cooperativity has been observed among other channels and has been suggested for CFTR. Therefore, we looked for evidence of cooperativity among CFTR channels using three independent approaches. All three methods provided evidence for cooperativity in CFTR gating. We estimated mean open times, independent of the number of channels in the patch, in multi-channel patches and showed that, on average, they increased as channel number increased. We observed many trials having larger than expected variances, consistent with cooperative gating. We also measured deviations from binomial statistics, which revealed cooperativity and further indicated that its magnitude is underestimated to an unknown extent because of masking that occurs when CFTR channel populations within a single patch have heterogeneous open probabilities. Simulations showed that the observed departures from binomial statistics were too large to have arisen by chance. The evidence that CFTR P(o) increases with channel density has important functional implications. 相似文献
7.
We examined the influence of elevated CO2 concentration on denitrifier enzyme activity in wheat rhizoplanes by using controlled environments and solution culture techniques. Potential denitrification activity was from 3 to 24 times higher on roots that were grown under an elevated CO2 concentration of 1,000 micromoles of CO2 mol-1 than on roots grown under ambient levels of CO2. Nitrogen loss, as determined by a nitrogen mass balance, increased with elevated CO2 levels in the shoot environment and with a high NO3- concentration in the rooting zone. These results indicated that aerial CO2 concentration can play a role in rhizosphere denitrifier activity. 相似文献
8.
Evidence that elevated CO2 levels can indirectly increase rhizosphere denitrifier activity. 下载免费PDF全文
We examined the influence of elevated CO2 concentration on denitrifier enzyme activity in wheat rhizoplanes by using controlled environments and solution culture techniques. Potential denitrification activity was from 3 to 24 times higher on roots that were grown under an elevated CO2 concentration of 1,000 micromoles of CO2 mol-1 than on roots grown under ambient levels of CO2. Nitrogen loss, as determined by a nitrogen mass balance, increased with elevated CO2 levels in the shoot environment and with a high NO3- concentration in the rooting zone. These results indicated that aerial CO2 concentration can play a role in rhizosphere denitrifier activity. 相似文献
9.
Mrunal S. Chapekar Michael Bustin Robert I. Glazer 《Biochimica et Biophysica Acta (BBA)/General Subjects》1985,838(3):351-354
The high mobility group proteins 14 and 17 were reported previously to be phosphorylated in murine and human tumor cell lines. Recently, it was suggested that subgroups of HMG-14, HMG-14a and 14b, but not HMG-17, were phosphorylated in situ in HeLa cells. In order to definitively determine whether HMG-17 is indeed phosphorylated or whether the protein previously identified as [32P]HMG-17 was a subgroup of HMG-14, we have used the technique of electroblotting in conjunction with an immunochemical procedure utilizing anti-HMG-17 IgG. Our results indicate that HMG-17 was not phosphorylated in human colon carcinoma cell line HT-29 incubated for 18 h with 32Pi, but that HMG-14a and HMG-14b were phosphorylated. In contrast, HMG-14a, -14b and -17 were phosphorylated in vitro in isolated nuclei incubated with [γ-32P]ATP. 相似文献
10.
11.
Evidence that changes in platelet cyclic AMP levels regulate the fibrinogen receptor on human platelets 总被引:7,自引:0,他引:7
Fibrinogen binds to human platelets after specific receptor sites are exposed by thrombin, ADP, epinephrine, and other stimuli. Since prostaglandin I2 (PGI2), a potent activator of platelet adenylate cyclase, prevents mobilization of the fibrinogen receptor by aggregating agents, we investigated the relationship between platelet cAMP levels and fibrinogen receptor status in thrombin-stimulated human platelets. A dose-dependent rise in platelet cAMP in response to two adenylate cyclase agonists, PGI2 and forskolin, correlated with progressive inhibition of fibrinogen binding. Moreover, the receptor inhibition produced by either agonist was sustained up to 2 h and was associated with a persistent increase in cAMP levels. The phosphodiesterase inhibitor, 1-methyl-3-isobutylxanthine, in the presence of a subthreshold concentration of PGI2 also raised cAMP and inhibited fibrinogen binding. In contrast, the effects of PGI2 on both cAMP and fibrinogen binding were markedly attenuated by 9-(tetrahydro-2-furyl) adenine, an adenylate cyclase inhibitor. These results indicate that the inhibition of fibrinogen binding by PgI2 is linked to its effect on cAMP levels and suggest that elevation of platelet cAMP levels from any cause prevents exposure of the fibrinogen receptor. 相似文献
12.
13.
Tanaka H Yamamoto M Moriyama Y Yamao M Furukawa S Sagisaka A Nakazawa H Mori H Yamakawa M 《Biochimica et biophysica acta》2005,1730(1):10-21
Two cDNAs encoding novel Rel proteins were cloned from the silkworm, Bombyx mori. These cDNA clones (BmRelA and BmRelB) showed identical nucleotide sequences except for the 5'-region. BmRelB cDNA derived probably from an alternatively spliced mRNA lacked 241 bp nucleotides at the 5'-region of the BmRelA cDNA, resulting in a loss of the first 52 amino acids. Expression of antibacterial peptide genes was strongly inhibited upon infection with Micrococcus luteus in transgenic silkworms in which BmRel gene expression was knocked down, suggesting that these two Rel proteins are involved in activation of antibacterial peptide genes. Co-transfection experiments indicated that BmRelB activated the Attacin gene strongly and other genes to a lesser extent, whereas BmRelA activated Lebocin 4 gene strongly and Attacin and Lebocin 3 genes very weakly. The Rel homology domain of BmRelA and BmRelB was shown to bind specifically to kappaB sites of antibacterial peptide genes. Proline-rich domains of the BmRels were necessary for activation of antibacterial peptide genes. These results illustrate that a minor structural change in Rel proteins can provoke a dramatic differential activation of antibacterial peptide genes, suggesting a novel regulatory mechanism for insect antibacterial peptide gene expression. 相似文献
14.
Tschan MP Fischer KM Fung VS Pirnia F Borner MM Fey MF Tobler A Torbett BE 《The Journal of biological chemistry》2003,278(44):42750-42760
15.
A novel isoform of Cbl-associated protein (CAP) was identified in a yeast two-hybrid screen for A-kinase anchoring proteins expressed in the heart. CAP is a scaffold protein implicated in insulin signaling and cytoskeleton regulation. The protein kinase A binding site is encoded by a previously unidentified, alternatively spliced exon. 相似文献
16.
Passariello CL Gottardi D Cetrullo S Zini M Campana G Tantini B Pignatti C Flamigni F Guarnieri C Caldarera CM Stefanelli C 《Biochimica et biophysica acta》2012,1823(4):800-807
The responses of AMP-activated protein kinase (AMPK) and Ornithine decarboxylase (ODC) to isoproterenol have been examined in H9c2 cardiomyoblasts, AMPK represents the link between cell growth and energy availability whereas ODC, the key enzyme in polyamine biosynthesis, is essential for all growth processes and it is thought to have a role in the development of cardiac hypertrophy. Isoproterenol rapidly induced ODC activity in H9c2 cardiomyoblasts by promoting the synthesis of the enzyme protein and this effect was counteracted by inhibitors of the PI3K/Akt pathway. The increase in enzyme activity became significant between 15 and 30min after the treatment. At the same time, isoproterenol stimulated the phosphorylation of AMPKα catalytic subunits (Thr172), that was associated to an increase in acetyl coenzyme A carboxylase (Ser72) phosphorylation. Downregulation of both α1 and α2 isoforms of the AMPK catalytic subunit by siRNA to knockdown AMPK enzymatic activity, led to superinduction of ODC in isoproterenol-treated cardiomyoblasts. Downregulation of AMPKα increased ODC activity even in cells treated with other adrenergic agonists and in control cells. Analogue results were obtained in SH-SY5Y neuroblastoma cells transfected with a shRNA construct against AMPKα. In conclusion, isoproterenol quickly activates in H9c2 cardiomyoblasts two events that seem to contrast one another. The first one, an increase in ODC activity, is linked to cell growth, whereas the second, AMPK activation, is a homeostatic mechanism that negatively modulates the first. The modulation of ODC activity by AMPK represents a mechanism that may contribute to control cell growth processes. 相似文献
17.
Evan Ingley 《The international journal of biochemistry & cell biology》2009,41(6):1332-1343
The Src family kinase Lyn is involved in differentiation signals emanating from activated erythropoietin (Epo) receptors, it interacts with COOH-terminal Src kinase-binding protein (Cbp), an adaptor protein that recruits negative regulators COOH-terminal Src kinase (Csk) and suppressor of cytokine signaling-1 (SOCS1). Lyn phosphorylates Cbp on several tyrosine residues, including Tyr314, which recruits Csk/SOCS1, as well as Tyr381 and Tyr409 that bind Lyns own SH2 domain. We show that Cbp alters not only the ability of erythroid cells to differentiate but also their colony morphology. Consequently, we detailed the ability of Cbp to interact with and influence Lyns ability to initiate changes in cellular architecture, which affect cell–cell and cell–substratum interactions. Over-expression of active Lyn promotes filopodia formation while inactive Lyn promotes lamellipodia formation. Conversely, Cbp over-expression, which inhibits Lyn activity, promotes lamellipodia formation, while Cbp mutants preventing its interaction/signaling consequently allow Lyn to promote filopodia formation. Thus, the Lyn–Cbp pathway and subsequent regulation of Lyn signaling and cell morphology involves a dynamic and complex series of interactions. 相似文献
18.
19.