首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

Mechanical ventilation (MV) with high tidal volumes (VT) can cause or aggravate lung damage, so-called ventilator induced lung injury (VILI). The relationship between specific mechanical events in the lung and the cellular responses that result in VILI remains incomplete. Since activation of Wnt/β-catenin signaling has been suggested to be central to mechanisms of lung healing and fibrosis, we hypothesized that the Wnt/β-catenin signaling plays a role during VILI.

Methodology/Principal Findings

Prospective, randomized, controlled animal study using adult, healthy, male Sprague-Dawley rats. Animals (n = 6/group) were randomized to spontaneous breathing or two strategies of MV for 4 hours: low tidal volume (VT) (6 mL/kg) or high VT (20 mL/kg). Histological evaluation of lung tissue, measurements of WNT5A, total β-catenin, non-phospho (Ser33/37/Thr41) β-catenin, matrix metalloproteinase-7 (MMP-7), cyclin D1, vascular endothelial growth factor (VEGF), and axis inhibition protein 2 (AXIN2) protein levels by Western blot, and WNT5A, non-phospho (Ser33/37/Thr41) β-catenin, MMP-7, and AXIN2 immunohistochemical localization in the lungs were analyzed. High-VT MV caused lung inflammation and perivascular edema with cellular infiltrates and collagen deposition. Protein levels of WNT5A, non-phospho (Ser33/37/Thr41) β-catenin, MMP-7, cyclin D1, VEGF, and AXIN2 in the lungs were increased in all ventilated animals although high-VT MV was associated with significantly higher levels of WNT5A, non-phospho (Ser33/37/Thr41) β-catenin, MMP-7, cyclin D1, VEGF, and AXIN2 levels.

Conclusions/Significance

Our findings demonstrate that the Wnt/β-catenin signaling pathway is modulated very early by MV in lungs without preexistent lung disease, suggesting that activation of this pathway could play an important role in both VILI and lung repair. Modulation of this pathway might represent a therapeutic option for prevention and/or management of VILI.  相似文献   

2.
As the crucial biological regulators, microRNAs that act by suppressing their target genes are involved in a variety of pathophysiological processes. It is generally accepted that microRNAs are often dysregulated in many types of neoplasm and other human diseases. In neoplasm, microRNAs may function as oncogenes or tumor suppressors. As constitutive activation of the Wnt signaling pathway is a common feature of neoplasm and contributes to its development, progression and metastasis in various cancers, numerous studies have revealed that microRNA-mediated gene regulation are interconnected with the Wnt/β-catenin signaling pathway, forming a Wnt/β-catenin–microRNA regulatory network, which is critical to successful targeting of the Wnt/β-catenin pathway for oncotherapy. In this review, we aim to accumulate recent advances on microRNAs that work in tandem with Wnt/β-catenin signaling in tumorigenesis, with particular focus on how microRNAs affect Wnt/β-catenin activity as well as how microRNAs are regulated through the Wnt/β-catenin pathway.  相似文献   

3.
This study aims to elucidate the mechanisms of Wnt/β-catenin signaling pathway in the development of preeclampsia (PE). The mRNA levels of Wnt1, β-catenin, c-myc and cyclinD1 were determined by real-time PCR in the placentas. Moreover, the expression levels of Wnt1, β-catenin, Dickkopf-1 (DKK1) and glycogen synthase kinase 3β (GSK-3β) proteins were detected by Western blot. Immunohistochemistry was used in placental tissue microarray to localize the expression of Wnt1, β-catenin, DKK1 proteins in the placentas of two groups. Compared with the control placentas, the mRNA levels of Wnt1, β-catenin, c-myc and cyclinD1 were decreased in the severe preeclamptic placentas. The Western blot results showed that the expression levels of Wnt1, β-catenin, and GSK-3β proteins were significantly elevated in the control group, while the expression level of DKK1 was significantly decreased. In addition, the staining intensity of Wnt1, β-catenin were weaker in the placentas of the severe PE group while the staining intensity of DKK1 was significantly stronger in the placentas of the severe PE group. Wnt/β-catenin signaling pathway may play a significant role in the pathogenesis of PE by regulating the invasion and proliferation of trophoblast.  相似文献   

4.
5.
6.
Molecular Biology Reports - This study was designed to investigate whether genetic polymorphisms of the Wnt/β-catenin signaling pathway and its interactions are involved in the development of...  相似文献   

7.
8.
9.
In neural crest cell development, the expression of the cell adhesion proteins cadherin-7 and cadherin-11 commences after delamination of the neural crest cells from the neuroepithelium. The canonical Wnt signaling pathway is known to drive this delamination step and is a candidate for inducing expression of these cadherins at this time. This project was initiated to investigate the role of canonical Wnt signaling in the expression of cadherin-7 and cadherin-11 by treating neural crest cells with Wnt3a ligand. Expression of cadherin-11 was first confirmed in the neural crest cells for the chicken embryo. The changes in the expression level of cadherin-7 and -11 following the treatment with Wnt3a were studied using real-time RT-PCR and immunostaining. Statistically significant upregulation in the mRNA expression of cadherin-7 and cadherin-11 and in the amount of cadherin-7 and cadherin-11 protein found in cell-cell interfaces between neural crest cells was observed in response to Wnt, demonstrating that cadherin-7 and cadherin-11 expressed by the migrating neural crest cells can be regulated by the canonical Wnt pathway.Key words: neural crest, Wnt, cadherin-7, cadherin-11  相似文献   

10.
Background: The aim of this study was to investigate the potential effects of the 5, 10, 15, 20-tetrakis (1-methylpyridinium-4-yl) porphyrin (TMPyP4) on the proliferation and apoptosis of SW480 cells and the underlying mechanisms by which TMPyP4 exerted its actions. Methods: After treated with different doses of TMPyP4, cell viability was determined by MTT method, the apoptosis was observed by flow cytometry (FCM) and the expression of Wnt, GSK-3β, β-catenin and cyclinD1 was measured by RT-PCR and Western blot analysis. Results: The analysis revealed that TMPyP4 potently suppressed cell viability and induced the apoptosis of SW480 cells in a dose-dependent manner. In addition, the downregulation of Wnt, β-catenin and cyclinD1 expression levels was detected in TMPyP4-treated SW480 cells. However, followed by the block of Wnt signaling pathway using siRNA methods, the effects of TMPyP4 on proliferation and apoptosis of SW480 cells were significantly reduced. Conclusion: It indicates that the TMPyP4-inhibited proliferation and -induced apoptosis in SW480 cells was accompanied by the suppression of Wnt/β-catenin signaling pathway. Therefore, TMPyP4 may represent a potential therapeutic method for the treatment of colon carcinoma.  相似文献   

11.

Background  

β-catenin is an essential mediator of canonical Wnt signaling and a central component of the cadherin-catenin epithelial adhesion complex. Dysregulation of β-catenin expression has been described in pancreatic neoplasia. Newly published studies have suggested that β-catenin is critical for normal pancreatic development although these reports reached somewhat different conclusions. In addition, the molecular mechanisms by which loss of β-catenin affects pancreas development are not well understood. The goals of this study then were; 1] to further investigate the role of β-catenin in pancreatic development using a conditional knockout approach and 2] to identify possible mechanisms by which loss of β-catenin disrupts pancreatic development. A Pdx1-cre mouse line was used to delete a floxed β-catenin allele specifically in the developing pancreas, and embryonic pancreata were studied by immunohistochemistry and microarray analysis.  相似文献   

12.

Background

Stem cells are mainly characterized by two properties: self-renewal and the potency to differentiate into diverse cell types. These processes are regulated by different growth factors including members of the Wnt protein family. Wnt proteins are secreted glycoproteins that can activate different intracellular signaling pathways.

Scope of review

Here we summarize our current knowledge on the role of Wnt/β-catenin signaling with respect to these two main features of stem cells.

Major conclusions

A particular focus is given on the function of Wnt signaling in embryonic stem cells. Wnt signaling can also improve reprogramming of somatic cells towards iPS cells highlighting the importance of this pathway for self-renewal and pluripotency. As an example for the role of Wnt signaling in adult stem cell behavior, we furthermore focus on intestinal stem cells located in the crypts of the small intestine.

General significance

A broad knowledge about stem cell properties and the influence of intrinsic and extrinsic factors on these processes is a requirement for the use of these cells in regenerative medicine in the future or to understand cancer development in the adult. This article is part of a Special Issue entitled Biochemistry of Stem Cells.  相似文献   

13.
J Mao  S Fan  W Ma  P Fan  B Wang  J Zhang  H Wang  B Tang  Q Zhang  X Yu  L Wang  B Song  L Li 《Cell death & disease》2014,5(1):e1039
The Wnt1 protein, a secreted ligand that activates Wnt signaling pathways, contributes to the self-renewal of cancer stem cells (CSCs) and thus may be a major determinant of tumor progression and chemoresistance. In a series of gastric cancer specimens, we found strong correlations among Wnt1 expression, CD44 expression, and the grade of gastric cancer. Stable overexpression of Wnt1 increased AGS gastric cancer cells'' proliferation rate and spheroids formation, which expressed CSC surface markers Oct4 and CD44. Subcutaneous injection of nude mice with Wnt1-overexpressing AGS cells resulted in larger tumors than injection of control AGS cells. Salinomycin, an antitumor agent, significantly reduced the volume of tumor caused by Wnt1-overexpressing AGS cells in vivo. This is achieved by inhibiting the proliferation of CD44+Oct4+ CSC subpopulation, at least partly through the suppression of Wnt1 and β-catenin expression. Taken together, activation of Wnt1 signaling accelerates the proliferation of gastric CSCs, whereas salinomycin acts to inhibit gastric tumor growth by suppressing Wnt signaling in CSCs. These results suggest that Wnt signaling might have a critical role in the self-renewal of gastric CSCs, and salinomycin targeting Wnt signaling may have important clinical applications in gastric cancer therapy.  相似文献   

14.
The canonical Wnt/β-catenin signaling is activated during development, tumorigenesis, and in adult homeostasis, yet its role in maintenance of hematopoietic stem/progenitor cells is not firmly established. Here, we demonstrate that conditional expression of an active form of β-catenin in vivo induces a marked increase in the frequency of apoptosis in hematopoietic stem/progenitor cells (HSCs/HPCs). Activation of Wnt/β-catenin signaling in HPCs in vitro elevates the activity of caspases 3 and 9 and leads to a loss of mitochondrial membrane potential (ΔΨ(m)), indicating that it induces the intrinsic mitochondrial apoptotic pathway. In vivo, expression of activated β-catenin in HPCs is associated with down-regulation of Bcl2 and expression of Casp3. Bone marrow transplantation assays reveal that enhanced cell survival by a Bcl2 transgene re-establishes the reconstitution capacity of HSCs/HPCs that express activated β-catenin. In addition, a Bcl2 transgene prevents exhaustion of these HSCs/HPCs in vivo. Our data suggest that activation of the Wnt/β-catenin pathway contributes to the defective function of HPCs in part by deregulating their survival.  相似文献   

15.
《Organogenesis》2013,9(2):92-99
Wnt/β-catenin signaling has come to the forefront of liver biology in recent years. This pathway regulates key pathophysiological events inherent to the liver including development, regeneration, and cancer, by dictating several biological processes such as proliferation, apoptosis, differentiation, adhesion, zonation and metabolism in various cells of the liver. This review will examine the studies that have uncovered the relevant roles of Wnt/β-catenin signaling during the process of liver development. We will discuss the potential roles of Wnt/β-catenin signaling during the phases of development, including competence, hepatic induction, expansion, and morphogenesis. In addition, we will discuss the role of negative and positive regulation of this pathway and how the temporal expression of Wnt/β-catenin can direct key processes during hepatic development. We will also identify some of the major deficits in the current understanding of the role of Wnt/β-catenin signaling in liver development in order to provide a perspective for future studies. Thus, this review will provide a contextual overview of the role of Wnt/β-catenin signaling during hepatic organogenesis.  相似文献   

16.
Multiple developmental processes require tightly controlled Wnt signaling, and its misregulation leads to congenital abnormalities and diseases. Glypicans are extracellular proteins that modulate the Wnt pathway. In addition to interacting with Wnts, these glycosophosphotidylinositol (GPI)-anchored, heparan-sulfate proteoglycans bind ligands of several other signaling pathways in both vertebrates and invertebrates. In Drosophila, Notum, a secreted α/β-hydrolase, antagonizes the signaling of the prototypical Wnt Wingless (Wg), by releasing glypicans from the cell surface. Studies of mammalian Notum indicate promiscuous target specificity in cell culture, but the role of Notum in vertebrate development has not been studied. Our work shows that zebrafish Notum 1a, an ortholog of mammalian Notum, contributes to a self-regulatory loop that restricts Wnt/β-catenin signaling. Notum 1a does not interact with Glypican 4, an essential component of the Wnt/planar cell polarity (PCP) pathway. Our results suggest a surprising specific role of Notum in the developing vertebrate embryo.  相似文献   

17.
18.
19.
20.
The pronephric kidney controls water and electrolyte balance during early fish and amphibian embryogenesis. Many Wnt signaling components have been implicated in kidney development. Specifically, in Xenopus pronephric development as well as the murine metanephroi, the secreted glycoprotein Wnt-4 has been shown to be essential for renal tubule formation. Despite the importance of Wnt signals in kidney organogenesis, little is known of the definitive downstream signaling pathway(s) that mediate their effects. Here we report that inhibition of Wnt/β-catenin signaling within the pronephric field of Xenopus results in significant losses to kidney epithelial tubulogenesis with little or no effect on adjoining axis or somite development. We find that the requirement for Wnt/β-catenin signaling extends throughout the pronephric primordium and is essential for the development of proximal and distal tubules of the pronephros as well as for the development of the duct and glomus. Although less pronounced than effects upon later pronephric tubule differentiation, inhibition of the Wnt/β-catenin pathway decreased expression of early pronephric mesenchymal markers indicating it is also needed in early pronephric patterning. We find that upstream inhibition of Wnt/β-catenin signals in zebrafish likewise reduces pronephric epithelial tubulogenesis. We also find that exogenous activation of Wnt/β-catenin signaling within the Xenopus pronephric field results in significant tubulogenic losses. Together, we propose Wnt/β-catenin signaling is required for pronephric tubule, duct and glomus formation in Xenopus laevis, and this requirement is conserved in zebrafish pronephric tubule formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号