首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Roles for Fgf signaling during zebrafish fin regeneration   总被引:7,自引:0,他引:7  
  相似文献   

2.
During appendage regeneration in urodeles and teleosts, tissue replacement is precisely regulated such that only the appropriate structures are recovered, a phenomenon referred to as positional memory. It is believed that there exists, or is quickly established after amputation, a dynamic gradient of positional information along the proximodistal (PD) axis of the appendage that assigns region-specific instructions to injured tissue. These instructions specify the amount of tissue to regenerate, as well as the rate at which regenerative growth is to occur. A striking theme among many species is that the rate of regeneration is more rapid in proximally amputated appendages compared with distal amputations. However, the underlying molecular regulation is unclear. Here, we identify position-dependent differences in the rate of growth during zebrafish caudal fin regeneration. These growth rates correlate with position-dependent differences in blastemal length, mitotic index and expression of the Fgf target genes mkp3, sef and spry4. To address whether PD differences in amounts of Fgf signaling are responsible for position-dependent blastemal function, we have generated transgenic fish in which Fgf receptor activity can be experimentally manipulated. We find that the level of Fgf signaling exhibits strict control over target gene expression, blastemal proliferation and regenerative growth rate. Our results demonstrate that Fgf signaling defines position-dependent blastemal properties and growth rates for the regenerating zebrafish appendage.  相似文献   

3.
Bone regenerates via dedifferentiation of osteoblasts in the zebrafish fin   总被引:1,自引:0,他引:1  
While mammals have a limited capacity to repair bone defects, zebrafish can completely regenerate amputated bony structures of their fins. Fin regeneration is dependent on formation of a blastema, a progenitor cell pool accumulating at the amputation plane. It is unclear which cells the blastema is derived from, whether it forms by dedifferentiation of mature cells, and whether blastema cells are multipotent. We show that mature osteoblasts dedifferentiate and form part of the blastema. Osteoblasts downregulate expression of intermediate and late bone differentiation markers and induce genes expressed by bone progenitors. Dedifferentiated osteoblasts proliferate in a FGF-dependent manner and migrate to form part of the blastema. Genetic fate mapping shows that osteoblasts only give rise to osteoblasts in the regenerate, indicating that dedifferentiation is not associated with the attainment of multipotency. Thus, bone can regenerate from mature osteoblasts via dedifferentiation, a finding with potential implications for human bone repair.  相似文献   

4.
The work presented in this study focuses on blastema formation in epimorphic regeneration. We describe the expression pattern of Sdf1a and Sdf1b (the chemokines stromal-cell-derived factor-1a and 1b) and their two receptors Cxcr4a and Cxcr4b during zebrafish fin regeneration. We demonstrate that Sdf1a/Cxcr4a plays a critical role in fin regeneration and more precisely in epidermal cell proliferation, an important process for blastema formation. In mammals, a single cxcr4 gene is involved both in chemotaxis and cell proliferation and survival; we discuss in this study a possible functional division of the two cxcr4 zebrafish genes.  相似文献   

5.
Extracellular matrix plays a dynamic role during the process of wound healing, embryogenesis and tissue regeneration. Caudal fin regeneration in zebrafish is an excellent model to study tissue and skeletal regeneration. We have analyzed the expression pattern of some of the well characterized ECM proteins during the process of caudal fin regeneration in zebrafish. Our results show that a transitional matrix analogous to the one formed during newt skeletal and heart muscle regeneration is synthesized during fin regeneration. Here we demonstrate that a provisional matrix rich in hyaluronic acid, tenascin C, and fibronectin is synthesized following amputation. Additionally, we observed that the link protein Hapln1a dependent ECM, consisting of Hapln1a, hyaluronan and proteoglycan aggrecan, is upregulated during fin regeneration. Laminin, the protein characteristic of differentiated tissues, showed only modest change in the expression pattern. Our findings on zebrafish fin regeneration implicates that changes in the extracellular milieu represent an evolutionarily conserved mechanism that proceeds during tissue regeneration, yet with distinct players depending on the type of tissue that is involved.  相似文献   

6.
The origin of cells that generate the blastema following appendage amputation has been a long-standing question in epimorphic regeneration studies. The blastema is thought to originate from either stem (or progenitor) cells or differentiated cells of various tissues that undergo dedifferentiation. Here, we investigate the origin of cells that contribute to the regeneration of zebrafish caudal fin skeletal elements. We provide evidence that the process of lepidotrichia (bony rays) regeneration is initiated as early as 24 hours post-amputation and that differentiated scleroblasts acquire a proliferative state, detach from the lepidotrichia surface, migrate distally, integrate into the blastema and dedifferentiate. These findings provide novel insights into the origin of cells in epimorphic appendage regeneration in zebrafish and suggest conservation of regeneration mechanisms between fish and amphibians.  相似文献   

7.
The epimorphic regeneration of zebrafish caudal fin is rapid and complete. We have analyzed the biomechanism of zebrafish caudal fin regeneration at various time points based on differential proteomics approaches. The spectrum of proteome changes caused by regeneration were analyzed among controls (0 h) and 1, 12, 24, 48, and 72 h postamputation involving quantitative differential proteomics analysis based on two-dimensional gel electrophoresis matrix-assisted laser desorption/ionization and differential in-gel electrophoresis Orbitrap analysis. A total of 96 proteins were found differentially regulated between the control nonregenerating and regenerating tissues of different time points for having at least 1.5-fold changes. 90 proteins were identified as differentially regulated for regeneration based on differential in-gel electrophoresis analysis between the control and regenerating tissues. 35 proteins were characterized for its expression in all of the five regenerating time points against the control samples. The proteins identified and associated with regeneration were found to be directly allied with various molecular, biological, and cellular functions. Based on network pathway analysis, the identified proteome data set for regeneration was majorly associated in maintaining cellular structure and architecture. Also the proteins were found associated for the cytoskeleton remodeling pathway and cellular immune defense mechanism. The major proteins that were found differentially regulated during zebrafish caudal fin regeneration includes keratin and its 10 isoforms, cofilin 2, annexin a1, skeletal α1 actin, and structural proteins. Annexin A1 was found to be exclusively undergoing phosphorylation during regeneration. The obtained differential proteome and the direct association of the various proteins might lead to a new understanding of the regeneration mechanism.  相似文献   

8.
9.
Activin-betaA signaling is required for zebrafish fin regeneration   总被引:1,自引:0,他引:1  
  相似文献   

10.
Regeneration is the ability of multicellular organisms to replace damaged tissues and regrow lost body parts. This process relies on cell fate transformation that involves changes in gene expression as well as in the composition of the cytoplasmic compartment, and exhibits a characteristic age-related decline. Here, we present evidence that genetic and pharmacological inhibition of autophagy – a lysosome-mediated self-degradation process of eukaryotic cells, which has been implicated in extensive cellular remodelling and aging – impairs the regeneration of amputated caudal fins in the zebrafish (Danio rerio). Thus, autophagy is required for injury-induced tissue renewal. We further show that upregulation of autophagy in the regeneration zone occurs downstream of mitogen-activated protein kinase/extracellular signal-regulated kinase signalling to protect cells from undergoing apoptosis and enable cytosolic restructuring underlying terminal cell fate determination. This novel cellular function of the autophagic process in regeneration implies that the role of cellular self-digestion in differentiation and tissue patterning is more fundamental than previously thought.  相似文献   

11.
12.
Embryonic neural crest-derived melanocytes and their precursors express the kit receptor tyrosine kinase and require its function for their migration and survival. However, mutations in kit also cause deficits in melanocytes that make up adult pigment patterns, including melanocytes that re-establish the zebrafish fin stripes during regeneration. As adult melanocytes in mice and zebrafish are generated and maintained by stem cell populations that are presumably established during embryonic development, it has been proposed that adult phenotypes in kit mutants result from embryonic requirements for kit. We have used a temperature-sensitive zebrafish kit mutation to show that kit is required during adult fin regeneration to promote melanocyte differentiation, rather than during embryonic stages to establish their stem cell precursors. We also demonstrate a transient role for kit in promoting the survival of newly differentiated regeneration melanocytes.  相似文献   

13.
14.
目的建立生长激素过表达的转基因斑马鱼,研究生长激素在斑马鱼尾鳍再生过程中的作用。方法利用Gateway技术构建表达质粒"pDestTol2CG2; ubi:GH-polyA",在一细胞期显微注射表达质粒和转座酶mRNA后,通过荧光显微镜和qPCR技术筛选鉴定GH过表达的转基因斑马鱼。将斑马鱼分为对照组(野生型)和生长激素过表达组,尾鳍横切后,记录分析斑马鱼尾鳍再生过程。结果转基因斑马鱼中心脏被绿色荧光蛋白标记。荧光定量PCR检测结果显示GH表达水平显著高于对照组(P<0.05)。斑马鱼尾鳍横断后,生长激素过表达组的再生速度显著提高(P<0.05)。结论建立稳定生长激素过表达的转基因斑马鱼品系,过表达生长激素能够提高斑马鱼尾鳍再生速度。  相似文献   

15.
For many years people have known that amphibians have an amazing ability to regenerate lost body parts. In contrast humans have limited regeneration capacity and even simple wound healing results in scarring. Despite more than a century of scientific inquiry, this remarkable phenomenon remains poorly understood. Recent research has begun to provide insight into how this unique process that is now fully accepted to occur via the reversal of cell differentiation is executed at the molecular level. As more and more is known about regeneration and dedifferentiation we can begin to address the question: if given the right signals could mammals also regenerate body structures?  相似文献   

16.
The skeleton of adult zebrafish fins comprises lepidotrichia, which are dermal bones of the rays, and actinotrichia, which are non-mineralized spicules at the distal margin of the appendage. Little is known about the regenerative dynamics of the actinotrichia-specific structural proteins called Actinodins. Here, we used immunofluorescence analysis to determine the contribution of two paralogous Actinodin proteins, And1/2, in regenerating fins. Both proteins were detected in the secretory organelles in the mesenchymal cells of the blastema, but only And1 was detected in the epithelial cells of the wound epithelium. The analysis of whole mount fins throughout the entire regenerative process and longitudinal sections revealed that And1-positive fibers are complementary to the lepidotrichia. The analysis of another longfin fish, a gain-of-function mutation in the potassium channel kcnk5b, revealed that the long-fin phenotype is associated with an extended size of actinotrichia during homeostasis and regeneration. Finally, we investigated the role of several signaling pathways in actinotrichia formation and maintenance. This revealed that the pulse-inhibition of either TGFβ/Activin-βA or FGF are sufficient to impair deposition of Actinodin during regeneration. Thus, the dynamic turnover of Actinodin during fin regeneration is regulated by multiple factors, including the osteoblasts, growth rate in a potassium channel mutant, and instructive signaling networks between the epithelium and the blastema of the regenerating fin.  相似文献   

17.
18.
19.
Macrophages and neutrophils are the pivotal immune phagocytes that enter the wound after tissue injury to remove the cell debris and invaded microorganisms, which presumably facilitate the regrowth of injured tissues. Taking advantage of the regeneration abilities of zebrafish and the newly generated leukocyte-specific zebrafish lines with labeling of both leukocyte lineages, we assessed the behaviors and functions of neutrophils and macrophages during tail fin regeneration. Live imaging showed that within 6 hours post amputation, the inflammatory stage, neutrophils were the primary cells scavenging apoptotic bodies and small cell debris, although they had limited phagocytic capacity and quickly underwent apoptosis. From 6 hours post amputation on, the resolution and regeneration stage, macrophages became the dominant scavengers, efficiently resolving inflammation and facilitating tissue remodeling and regrowth. Ablation of macrophages but not neutrophils severely impaired the inflammatory resolution and tissue regeneration, resulting in the formation of large vacuoles in the regenerated fins. In contrast, removal of neutrophils slightly accelerates the regrowth of injured fin. Our study documents the differing behaviors and functions of macrophages and neutrophils during tissue regeneration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号