首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study is to determine the errors of scapular localisation due to skin relative to bone motion with an optoelectronic tracking system. We compared three-dimensional (3D) scapular positions obtained with skin markers to those obtained through palpation of three scapular anatomical landmarks. The scapular kinematics of nine subjects were collected. Static positions of the scapula were recorded with the right arm elevated at 0°, 40°, 80°, 120° and 160° in the sagittal plane. Palpation and subsequent digitisation of anatomical landmarks on scapula and thorax were done at the same positions. Scapular 3D orientation was also computed during 10 repeated movements of arm elevation between 0° and 180°. Significant differences in scapular kinematics were seen between static positions and palpation when considering anterior/posterior tilt and upward/downward rotation at angles over 120° of humeral elevation and only at 120° for internal/external rotation. There was no significant difference between positions computed during static positions and during the movement for the three scapular orientations. A rotation correction model is presented in order to reduce the errors between static position and palpation measurement.  相似文献   

2.
The measurement of dynamic scapular kinematics is complex due to the sliding nature of the scapula beneath the skin surface. The aim of the study was to clearly describe the acromion marker cluster (AMC) method of determining scapular kinematics when using a passive marker motion capture system, with consideration for the sources of error which could affect the validity and reliability of measurements. The AMC method involves placing a cluster of markers over the posterior acromion, and through calibration of anatomical landmarks with respect to the marker cluster it is possible to obtain valid measurements of scapular kinematics. The reliability of the method was examined between two days in a group of 15 healthy individuals (aged 19-38 years, eight males) as they performed arm elevation, to 120°, and lowering in the frontal, scapular and sagittal planes. Results showed that between-day reliability was good for upward scapular rotation (Coefficient of Multiple Correlation; CMC = 0.92) and posterior tilt (CMC = 0.70) but fair for internal rotation (CMC = 0.53) during the arm elevation phase. The waveform error was lower for upward rotation (2.7° to 4.4°) and posterior tilt (1.3° to 2.8°), compared to internal rotation (5.4° to 7.3°). The reliability during the lowering phase was comparable to results observed during the elevation phase. If the protocol outlined in this study is adhered to, the AMC provides a reliable measurement of upward rotation and posterior tilt during the elevation and lowering phases of arm movement.  相似文献   

3.
Conclusions about normal and pathologic shoulder motion are frequently made from studies using skin surface markers, yet accuracy of such sensors representing humeral motion is not well known. Nineteen subjects were investigated with flock of birds electromagnetic sensors attached to transcortical pins placed into the scapula and humerus, and a thermoplastic cuff secured on the arm. Subjects completed two repetitions of raising and lowering the arm in the sagittal, scapular and coronal planes, as well as shoulder internal and external rotation with the elbow at the side and abducted to 90°. Humeral motion was recorded simultaneously from surface and bone fixed sensors. The average magnitude of error was calculated for the surface and bone fixed measurements throughout the range of motion. ANOVA tested for differences across angles of elevation, raising and lowering, and differences in body mass index. For all five motions tested, the plane of elevation rotation average absolute error ranged from 0-2°, while the humeral elevation rotation average error ranged from 0-4°. The axial rotation average absolute error was much greater, ranging from 5° during elevation motions to approaching 30° at maximum excursion of internal/external rotation motions. Average absolute error was greater in subjects with body mass index greater than 25. Surface sensors are an accurate way of measuring humeral elevation rotations and plane of elevation rotations. Conversely, there is a large amount of average error for axial rotations when using a humeral cuff to measure glenohumeral internal/external rotation as the primary motion.  相似文献   

4.
Trunk rotation often accompanies humeral elevation, during daily activities as well as sports activities. Earlier studies have demonstrated that changes in spinal posture contribute to scapular motion during humeral elevation. However, the effect of trunk rotation on scapular kinematics during humeral elevation has received scant attention. This study aimed to clarify how trunk rotation affects scapular kinematics and muscle activities during humeral elevation. Electromagnetic motion capture and electromyography were used to assess scapular and clavicular motion and muscle activity in the right and left sides of 12 healthy young men. The subjects were seated and instructed to elevate both arms with the trunk in neutral, ipsilaterally rotated, or contralaterally rotated position. Ipsilaterally rotated trunk position decreased the internal rotation (by 5°, relative to neutral trunk position) and increased the upward rotation (by 4°, relative to neutral trunk position) of the scapula. Trunk position did not affect clavicular motion during humeral movement. Electromyography showed that contralaterally rotated trunk position increased the activity of the upper trapezius and serratus anterior muscles and decreased the activity of the lower trapezius. Therapists should consider the importance of trunk rotation, which may be the key to developing more efficient rehabilitation programs.  相似文献   

5.
6.
Characterization of scapular kinematics under demanding load conditions might aid to distinguish between physiological and clinically relevant alterations. Previous investigations focused only on submaximal external load situations. How scapular movement changes with maximal load remains unclear. Therefore, the present study aimed to evaluate 3D scapular kinematics during unloaded and maximal loaded shoulder flexion and extension. Twelve asymptomatic individuals performed shoulder flexion and extension movements under unloaded and maximal concentric and eccentric loaded isokinetic conditions. 3D scapular kinematics assessed with a motion capture system was analyzed for 20° intervals of humeral positions from 20° to 120° flexion. Repeated measures ANOVAs were used to evaluate kinematic differences between load conditions for scapular position angles, scapulohumeral rhythm and scapular motion extent. Increased scapular upward rotation was seen during shoulder flexion and extension as well as decreased posterior tilt and external rotation during eccentric and concentric arm descents of maximal loaded compared to unloaded conditions. Load effects were further seen for the scapulohumeral rhythm with greater scapular involvement at lower humeral positions and increased scapular motion extent under maximal loaded shoulder movements. With maximal load applied to the arm physiological scapular movement pattern are induced that may imply both impingement sparing and causing mechanisms.  相似文献   

7.
The aim of this study was to establish the optimal methodology for skin-fixed measurement of the scapula during dynamic movement. This was achieved by comparing an optimally positioned Scapula Tracker device (ST) to a previously described palpation device, taken as the true measure of scapular kinematics. These measurements were compared across a range of calibration positions, including the use of multiple calibration positions for a single movement, in order to establish an optimal calibration approach. Ten subjects' scapular motion was measured using this ST and a previously described Acromial Method (AM). The two datasets were compared at a standard, an optimal and a 'multiple' calibration position, thus allowing a direct comparison between two common skin-fixed methods to track the bony kinematics of the scapula across different calibration positions. A comparison was also made with a bone-fixed technique from the literature. At both the standard and optimal calibration positions the ST was shown to be the more accurate measure of internal rotation and posterior tilt, particularly above 100° of humerothoracic elevation. The ST errors were found to be acceptable in relation to clinically important levels. Calibration positions have been shown to have a significant effect on the errors of both skin-fixed measurement techniques and therefore the importance of correct calibration is highlighted. It has thus been shown that a ST can be used to accurately quantify scapular motion when appropriately calibrated for the range of motion being measured.  相似文献   

8.
9.
Superior humeral head translation and scapula reorientation can reduce the subacromial space. While these kinematic abnormalities exist in injured populations, the effect of muscle fatigue is unclear. Additionally, these mechanisms were typically studied independently, thereby neglecting potential covariance. This research evaluated the influence of upper extremity muscle fatigue on glenohumeral and scapulothoracic kinematics and defined their relationship. Radiography and motion tracking systems captured these kinematic relationships, during scapula plane elevation, both before and after fatigue. Fatigue-induced changes in humeral head position, scapular orientation and the minimum subacromial space width were measured. High inter-subject variability existed for each measure which precluded identification of mean differences at the population level. However, significant scapular upward rotation occurred following fatigue (p = 0.0002). Despite similar population mean results, between 39% and 57% of participants exhibited fatigue-related changes in disadvantageous orientations. Additionally, correlations between measures were generally fair (0.21–0.40) and highly dependent on elevation, likely attributed to the variable fatigue responses. Overall, the data confirms that fatigue-induced changes in kinematics poses highly variable risk of subacromial impingement syndrome across individuals. Thus, solely considering the “average” or mean population response likely underestimates potentially injurious fatigue consequences.  相似文献   

10.
Identification of scapular dyskinesis and evaluation of interventions depend on the ability to properly measure scapulothoracic (ST) motion. The most widely used measurement approach is the acromion marker cluster (AMC), which can yield large errors in extreme humeral elevation and can be inaccurate in children and patient populations. Recently, an individualized regression approach has been proposed as an alternative to the AMC. This technique utilizes the relationship between ST orientation, humerothoracic orientation and acromion process position derived from calibration positions to predict dynamic ST orientations from humerothoracic and acromion process measures during motion. These individualized regressions demonstrated promising results for healthy adults; however, this method had not yet been compared to the more conventional AMC. This study compared ST orientation estimates by the AMC and regression approaches to static ST angles determined by surface markers placed on palpated landmarks in typically developing adolescents performing functional tasks. Both approaches produced errors within the range reported in the literature for skin-based scapular measurement techniques. The performance of the regression approach suffered when applied to positions outside of the range of motion in the set of calibration positions. The AMC significantly underestimated ST internal rotation across all positions and overestimated posterior tilt in some positions. Overall, root mean square errors for the regression approach were smaller than the AMC for every position across all axes of ST motion. Accordingly, we recommend the regression approach as a suitable technique for measuring ST kinematics in functional motion.  相似文献   

11.
The purpose of this study was to assess the effect of standardized anterior glenohumeral capsular lesions on axial humeral rotation in a full arc of glenohumeral elevation. Using a testing apparatus, the range of internal and external humeral rotation was assessed in an arc of glenohumeral elevation in the scapular plane with steps of 15 degrees in six isolated shoulder joint specimens. Cutting of the glenohumeral joint capsule 1 cm laterally from, and parallel to the glenoid rim was performed in seven steps of 1 cm till the anterior capsule was cut. Capsular lesions were made in three ways: from inferior, from superior and from the middle of the capsule. Anterior capsular lesions resulted in significant increase of external humeral rotation. This occurred particularly at 15-60 degrees glenohumeral elevation. Lesions of the inferior part of the capsule mainly increased external rotation at 30-60 degrees glenohumeral elevation, lesions of the superior part mainly in lower elevation angles and lesions of the middle more gradually in the range till 60 degrees of glenohumeral elevation. Cutting of the anterior glenohumeral capsule barely increased passive axial humeral rotation at elevation angles over 60 degrees. Above 60 degrees glenohumeral elevation, tightening of the inferior posterior glenohumeral joint capsule prevented both internal and, increasingly, external humeral rotation. From these observations it is concluded that increased external rotation correlates with progressive anterior capsular lesions, mainly below 60 degrees glenohumeral elevation. To assess anterior glenohumeral capsular lesions in patients, axial humeral rotation tests should probably not exceed 60 degrees glenohumeral elevation, i.e. 90 degrees thoracohumeral elevation.  相似文献   

12.
Clinical theory suggests that altered alignment of the shoulder girdle has the potential to create or sustain symptomatic mechanical dysfunction in the cervical and thoracic spine. The alignment of the shoulder girdle is described by two clavicle rotations, i.e, elevation and retraction, and by three scapular rotations, i.e., upward rotation, internal rotation, and anterior tilt. Elevation and retraction have until now been assessed only in patients with neck pain. The aim of the study was to determine whether there is a pattern of altered alignment of the shoulder girdle and the cervical and thoracic spine in patients with neck pain. A three-dimensional device measured clavicle and scapular orientation, and cervical and thoracic alignment in patients with insidious onset neck pain (IONP) and whiplash-associated disorder (WAD). An asymptomatic control group was selected for baseline measurements. The symptomatic groups revealed a significantly reduced clavicle retraction and scapular upward rotation as well as decreased cranial angle. A difference was found between the symptomatic groups on the left side, whereas the WAD group revealed an increased scapular anterior tilt and the IONP group a decreased clavicle elevation. These changes may be an important mechanism for maintenance and recurrence or exacerbation of symptoms in patients with neck pain.  相似文献   

13.
This study determined the ratio between glenohumeral and three-dimensional scapular motion during arm elevation and lowering in 91 individuals without shoulder pain. Scapular kinematics were assessed using an electromagnetic tracking device. Individuals performed 3 repetitions of elevation and lowering of the arm in the sagittal plane. Two-way ANOVAs (interval: 30–60°, 60–90°, 90–120° x phase: elevation and lowering) and paired t-tests were used for data analysis. For scapular internal/external rotation, lesser scapular internal rotation contribution was found during the 60–90° interval as compared to the 90–60° interval. Lesser scapular external rotation was identified in the 60–30° interval of arm lowering. The ratio was greater during arm elevation (1.89) compared to lowering (1.74) across the entire motion arc. For scapular upward rotation, greater upward rotation contribution was observed during arm elevation at the 30–60° interval, and less scapular downward rotation contribution in the final range of arm lowering. For scapular tilt, lesser scapular posterior tilt contribution during arm elevation was observed compared to arm lowering. The ratios between glenohumeral elevation/lowering and each individual scapulothoracic motion showed either differences between intervals and/or between elevation and lowering during specific intervals in healthy individuals.  相似文献   

14.
Altered scapular motions premeditate shoulder impingement and other musculoskeletal disorders. Divergent experimental conditions in previous research precludes rigorous comparisons of non-invasive scapular tracking techniques. This study evaluated scapular orientation measurement methods across an expanded range of humeral postures. Scapular medial/lateral rotation, anterior/posterior tilt and protraction/retraction was measured using an acromion marker cluster (AMC), a scapular locator, and a reference stylus. Motion was captured using reflective markers on the upper body, as well as on the AMC, locator and stylus. A combination of 5 arm elevation angles, 3 arm elevation planes and 3 arm axial rotations was examined. Measurement method interacted with elevation angle and plane of elevation for all three scapular orientation directions (p < 0.01). Method of measurement interacted with axial rotation in anterior/posterior tilt and protraction/retraction (p < 0.01). The AMC had strong agreement with the reference stylus than the locator for the majority of humeral elevations, planes and axial rotations. The AMC underestimated lateral rotation, with the largest difference of ∼2° at 0° elevation. Both the locator and AMC overestimated posterior tilt at high arm elevation by up to 7.4°. Misestimations from using the locator could be enough to potentially obscure meaningful differences in scapular rotations.  相似文献   

15.
An analysis of secondary shoulder motions (humeral rotation, humeral head anterior/posterior translation, scapular tipping, and scapular upward/downward rotation) in subjects with anterior/posterior shoulder tightness provides the opportunity to examine the role of tightness as a means of affecting shoulder motions. Subjects with shoulder tightness (anterior, n = 12; posterior, n = 12) elevated their arms in the scapular plane. Three replicated movements were performed to the maximum motions. Kinematics data were collected by FASTRAK 3D electromagnetic system. To determine if a significant difference of the secondary motions existed between anterior/posterior shoulder tightness, two-factor mixed ANOVA models with the repeated factor of elevation angle (five elevation angles) and the independent factor of group were calculated. The relationships between the self-reported functional scores (Flexilevel Scale of Shoulder Function, FLEX-SF) and abnormal shoulder kinematics were assessed. For humeral head anterior/posterior translation, the subjects with posterior tightness demonstrated anterior humeral head translation (10 mm, p = 0.019) compared to subjects with anterior tightness. The subjects with anterior tightness demonstrated less posterior tipping (2.2°, p = 0.045) compared to subjects with posterior tightness. The humeral anterior translation had moderate relationships with FLEX-SF scores (r = ?0.535) in subjects with posterior tightness. The scapular tipping had moderate relationships with FLEX-SF scores (r = 0.432) in subjects with anterior tightness. In conclusion, the secondary motions were different between subjects with anterior and posterior shoulder tightness. During arm elevation, less scapular posterior tipping and less posterior humeral head translation in subjects with anterior and posterior shoulder tightness, respectively, are significantly related to self-reported functional disability in these subjects.  相似文献   

16.
Non-invasive dynamical measurements of 3D scapular motion can be performed easily by attachment of a 6 DOF electromagnetic receiver onto the skin above the acromion. To quantify the introduction of possible errors due to skin displacement, we assessed 3D scapular positions on n=8 subjects by both tripod and skin-fixed method. Error analysis included the variables method (tripod, skin-fixed simultaneously with tripod, separate skin-fixed at 0 and 0.25Hz of elevation speed), plane of elevation (0 degrees and 90 degrees ) and observation (receiver replacement: n=3). Inter-individual 'group' differences depended on elevation plane and showed an average underestimation of scapular rotation of 6.5 degrees (worst case 13 degrees ) using the skin-fixed method. Only the group RMSE, not the individual RMSE, could be successfully lowered using linear regression (to about 2 degrees ). Inter-trial reliability (RMSE <3.24 degrees , ICC>0.94) and RMSE between 0 and 0.25Hz recordings (about 2.5 degrees ) were satisfactory. Intra-observer RMSE after replacement of the skin-fixed receiver was 5 degrees . The skin-fixed method is suitable for dynamic recordings of scapular rotations; however, measurements are precise only when the acromion receiver is not replaced. Combined with a relatively low accuracy, we conclude that the skin-fixed method should be used only in combination with tripod 'calibration'.  相似文献   

17.
Markerless motion capture systems have developed in an effort to evaluate human movement in a natural setting. However, the accuracy and reliability of these systems remain understudied. Therefore, the goals of this study were to quantify the accuracy and repeatability of joint angles using a single camera markerless motion capture system and to compare the markerless system performance with that of a marker-based system. A jig was placed in multiple static postures with marker trajectories collected using a ten camera motion analysis system. Depth and color image data were simultaneously collected from a single Microsoft Kinect camera, which was subsequently used to calculate virtual marker trajectories. A digital inclinometer provided a measure of ground-truth for sagittal and frontal plane joint angles. Joint angles were calculated with marker data from both motion capture systems using successive body-fixed rotations. The sagittal and frontal plane joint angles calculated from the marker-based and markerless system agreed with inclinometer measurements by <0.5°. The systems agreed with each other by <0.5° for sagittal and frontal plane joint angles and <2° for transverse plane rotation. Both systems showed a coefficient of reliability <0.5° for all angles. These results illustrate the feasibility of a single camera markerless motion capture system to accurately measure lower extremity kinematics and provide a first step in using this technology to discern clinically relevant differences in the joint kinematics of patient populations.  相似文献   

18.
The purpose was to compare glenohumeral (GH) migration, during dynamic shoulder elevation and statically held positions using digital fluoroscopic videos (DFV). Thirty male volunteers (25±4 years) without right shoulder pathology were analyzed using DFV (30 Hz) during arm elevation in the scapular plane. DFV were obtained at the arm at side position, 45°, 90°, and 135° for static and dynamic conditions. GH migration was measured as the distance from the center of the humeral head migrated superiorly or inferiorly relative to the center of the glenoid fossa. Inter-rater reliability was considered good; ICC (2,3) ranged from 0.83 to 0.92. A main effect was revealed for contraction type (p=0.031), in which post-hoc t-tests revealed that humeral head was significantly more superior on the glenoid fossa during dynamic contraction. A main effect was also revealed for arm angle (p<0.001), in which post-hoc t-tests revealed significantly more superior humeral head positioning at 45°, 90°, and 135° when compared to arm at side (p<0.001), as well as at 90° compared to 45° (p=0.024). There was no interaction effect between angle and contraction type (p=0.400). Research utilizing static imaging may underestimate the amount of superior GH migration that occurs dynamically.  相似文献   

19.
The most recent non-invasive methods for the recording of scapular motion are based on an acromion marker (AM) set and a single calibration (SC) of the scapula in a resting position. However, this method fails to accurately measure scapular kinematics above 90° of arm elevation, due to soft tissue artifacts of the skin and muscles covering the acromion. The aim of this study was to evaluate the accuracy, and inter-trial and inter-session repeatability of a double calibration method (DC) in comparison with SC. The SC and DC data were measured with an optoelectronic system during arm flexion and abduction at different angles of elevation (0-180°). They were compared with palpation of the scapula using a scapula locator. DC data was not significantly different from palpation for 5/6 axes of rotation tested (Y, X, and Z in abduction and flexion), where as SC showed significant differences for 5/6 axes. The root mean square errors ranged from 2.96° to 4.48° for DC and from 6° to 9.19° for SC. The inter-trial repeatability was good to excellent for SC and DC. The inter-session repeatability was moderate to excellent for SC and moderate to good for DC. Coupling AM and DC is an easy-to-use method, which yields accurate and reliable measurements of scapular kinematics for the complete range of arm motion. It can be applied to the measurement of shoulder motion in many fields (sports, orthopaedics, and rehabilitation), especially when large ranges of arm motion are required.  相似文献   

20.
Numerous techniques have been employed to monitor humeral head translation due to its involvement with several shoulder pathologies. However, most of the techniques were not validated. The objective of this study is to compare the accuracy of manual digitization and contour registration in measuring superior translation of the humeral head. Eight pairs of cadaver scapulae and humerii bones were harvested for this study. Each scapula and humerus was secured in a customized jig that allowed for control of humeral head translations and a vise that permitted rotations of the scapula about three axes. Fluoroscopy was used to take images of the shoulder bones. Scapular orientation was manipulated in different positions while the humerus was at 90° of humeral elevation in the scapular plane. Humeral head translation was measured using the two methods and was compared to the known translation. Additionally, accuracy of the contour registration method to measure 2-D scapular rotations was assessed. The range for the root mean square (RMS) error for manual digitization method was 0.27 mm - 0.43 mm and the contour registration method had a RMS error ranging from 0.18 mm - 0.40 mm. In addition, the RMS error for the scapular angle rotation using the contour registration method was 2.4°. Both methods showed acceptable errors. However, on average, the contour registration method showed lesser measurement error compared to the manual digitization method. In addition, the contour registration method was able to show good accuracy in measuring rotation that is useful in 2-D image analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号