首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neural stimuli associated with traumatic events can readily become conditioned so as to reinstate the memory of the original trauma. These conditioned fear responses can last a lifetime and may be especially resistant to extinction. A large amount of data from many different laboratories indicate that the amygdala plays a crucial role in conditioned fear. The amygdala receives information from all sensory modalities and projects to a variety of hypothalamic and brainstem target areas known to be critically involved in specific signs that are used to define fear and anxiety. Electrical stimulation of the amygdala elicits a pattern of behaviours that mimic natural or conditioned states of fear. Lesions of the amygdala block innate or conditioned fear and local infusion of drugs into the amygdala have anxiolytic effects in several behavioural tests. Excitatory amino acid receptors in the amygdala are critical for the acquisition, expression and extinction of conditioned fear.  相似文献   

2.
The Emotional Brain, Fear, and the Amygdala   总被引:18,自引:0,他引:18  
1. Considerable progress has been made over the past 20 years in relating specific circuits of the brain to emotional functions. Much of this work has involved studies of Pavlovian or classical fear conditioning, a behavioral procedure that is used to couple meaningless environmental stimuli to emotional (defense) response networks.2. The major conclusion from studies of fear conditioning is that the amygdala plays critical role in linking external stimuli to defense responses.3. Before describing research on the role of the amygdala in fear conditioning, though, it will be helpful to briefly examine the historical events that preceded modern research on conditioned fear.  相似文献   

3.
The amygdala is a subcortical structure implicated in both the expression of conditioned fear and social fear recognition. Social fear recognition deficits following amygdala lesions are often interpreted as reflecting perceptual deficits, or the amygdala''s role in coordinating responses to threats. But these explanations fail to capture why amygdala lesions impair both physiological and behavioural responses to multimodal fear cues and the ability to identify them. We hypothesized that social fear recognition deficits following amygdala damage reflect impaired conceptual understanding of fear. Supporting this prediction, we found specific impairments in the ability to predict others'' fear (but not other emotions) from written scenarios following bilateral amygdala lesions. This finding is consistent with the suggestion that social fear recognition, much like social recognition of states like pain, relies on shared internal representations. Preserved judgements about the permissibility of causing others fear confirms suggestions that social emotion recognition and morality are dissociable.  相似文献   

4.
Stress during postnatal development is associated with an increased risk for depression, anxiety disorders, and substance abuse later in life, almost as if mental illness is able to be programed by early life stressors. Recent studies suggest that such “programmed” effects can be caused by epigenetic regulation. With respect to conditioned fear, previous studies have indicated that early life stress influences its development in adulthood, whereas no potential role of epigenetic regulation has been reported. Neurotensin (NTS) is an endogenous neuropeptide that has receptors densely located in the amygdala and hippocampus. Recently, NTS systems have constituted an emerging target for the treatment of anxiety. The aim of the present work is to clarify whether the NTS system is involved in the disturbance of conditioned fear in rats stressed by maternal separation (MS). The results showed that MS enhanced freezing behaviors in fear-conditioned stress and reduced the gene expression of NTS receptor (NTSR) 1 but not of NTS or NTSR2 in the amygdalas of adult rats. The microinjection of a NTSR1 antagonist into the amygdala increased the percentage of freezing in conditioned fear, whereas the microinjection of NTSR1 agonist decreased freezing. These results suggest that NTSR1 in the amygdala may play a role in the effects of MS on conditioned fear stress in adult rats. Moreover, MS increased DNA methylation in the promoter region of NTSR1 in the amygdala. Taken together, MS may leave epigenetic marks in the NTSR1 gene in the amygdala, which may enhance conditioned fear in adulthood. The MS-induced alternations of DNA methylation in the promoter region of NTSR1 in the amygdala may be associated with vulnerability to the development of anxiety disorders and depression in adulthood.  相似文献   

5.
Extinction learning in humans: role of the amygdala and vmPFC   总被引:20,自引:0,他引:20  
Understanding how fears are acquired is an important step in translating basic research to the treatment of fear-related disorders. However, understanding how learned fears are diminished may be even more valuable. We explored the neural mechanisms of fear extinction in humans. Studies of extinction in nonhuman animals have focused on two interconnected brain regions: the amygdala and the ventral medial prefrontal cortex (vmPFC). Consistent with animal models suggesting that the amygdala is important for both the acquisition and extinction of conditioned fear, amygdala activation was correlated across subjects with the conditioned response in both acquisition and early extinction. Activation in the vmPFC (subgenual anterior cingulate) was primarily linked to the expression of fear learning during a delayed test of extinction, as might have been expected from studies demonstrating this region is critical for the retention of extinction. These results provide evidence that the mechanisms of extinction learning may be preserved across species.  相似文献   

6.
Links between synaptic plasticity in the lateral amygdala (LA) and Pavlovian fear learning are well established. Neuropeptides including gastrin-releasing peptide (GRP) can modulate LA function. GRP increases inhibition in the LA and mice lacking the GRP receptor (GRPR KO) show more pronounced and persistent fear after single-trial associative learning. Here, we confirmed these initial findings and examined whether they extrapolate to more aspects of amygdala physiology and to other forms of aversive associative learning. GRP application in brain slices from wildtype but not GRPR KO mice increased spontaneous inhibitory activity in LA pyramidal neurons. In amygdala slices from GRPR KO mice, GRP did not increase inhibitory activity. In comparison to wildtype, short- but not long-term plasticity was increased in the cortico-lateral amygdala (LA) pathway of GRPR KO amygdala slices, whereas no changes were detected in the thalamo-LA pathway. In addition, GRPR KO mice showed enhanced fear evoked by single-trial conditioning and reduced spontaneous firing of neurons in the central nucleus of the amygdala (CeA). Altogether, these results are consistent with a potentially important modulatory role of GRP/GRPR signaling in the amygdala. However, administration of GRP or the GRPR antagonist (D-Phe(6), Leu-NHEt(13), des-Met(14))-Bombesin (6-14) did not affect amygdala LTP in brain slices, nor did they affect the expression of conditioned fear following intra-amygdala administration. GRPR KO mice also failed to show differences in fear expression and extinction after multiple-trial fear conditioning, and there were no differences in conditioned taste aversion or gustatory neophobia. Collectively, our data indicate that GRP/GRPR signaling modulates amygdala physiology in a paradigm-specific fashion that likely is insufficient to generate therapeutic effects across amygdala-dependent disorders.  相似文献   

7.
Little is known about the molecular mechanisms of learned and innate fear. We have identified stathmin, an inhibitor of microtubule formation, as highly expressed in the lateral nucleus (LA) of the amygdala as well as in the thalamic and cortical structures that send information to the LA about the conditioned (learned fear) and unconditioned stimuli (innate fear). Whole-cell recordings from amygdala slices that are isolated from stathmin knockout mice show deficits in spike-timing-dependent long-term potentiation (LTP). The knockout mice also exhibit decreased memory in amygdala-dependent fear conditioning and fail to recognize danger in innately aversive environments. By contrast, these mice do not show deficits in the water maze, a spatial task dependent on the hippocampus, where stathmin is not normally expressed. We therefore conclude that stathmin is required for the induction of LTP in afferent inputs to the amygdala and is essential in regulating both innate and learned fear.  相似文献   

8.
The basal nucleus of the amygdala (BA) is involved in the formation of context-dependent conditioned fear and extinction memories. To understand the underlying neural mechanisms we developed a large-scale neuron network model of the BA, composed of excitatory and inhibitory leaky-integrate-and-fire neurons. Excitatory BA neurons received conditioned stimulus (CS)-related input from the adjacent lateral nucleus (LA) and contextual input from the hippocampus or medial prefrontal cortex (mPFC). We implemented a plasticity mechanism according to which CS and contextual synapses were potentiated if CS and contextual inputs temporally coincided on the afferents of the excitatory neurons. Our simulations revealed a differential recruitment of two distinct subpopulations of BA neurons during conditioning and extinction, mimicking the activation of experimentally observed cell populations. We propose that these two subgroups encode contextual specificity of fear and extinction memories, respectively. Mutual competition between them, mediated by feedback inhibition and driven by contextual inputs, regulates the activity in the central amygdala (CEA) thereby controlling amygdala output and fear behavior. The model makes multiple testable predictions that may advance our understanding of fear and extinction memories.  相似文献   

9.
Recent efforts to translate basic research to the treatment of clinical disorders have led to a growing interest in exploring mechanisms for diminishing fear. This research has emphasized two approaches: extinction of conditioned fear, examined across species; and cognitive emotion regulation, unique to humans. Here, we sought to examine the similarities and differences in the neural mechanisms underlying these two paradigms for diminishing fear. Using an emotion regulation strategy, we examine the neural mechanisms of regulating conditioned fear using fMRI and compare the resulting activation pattern with that observed during classic extinction. Our results suggest that the lateral PFC regions engaged by cognitive emotion regulation strategies may influence the amygdala, diminishing fear through similar vmPFC connections that are thought to inhibit the amygdala during extinction. These findings further suggest that humans may have developed complex cognition that can aid in regulating emotional responses while utilizing phylogenetically shared mechanisms of extinction.  相似文献   

10.
Understanding the physical encoding of a memory (the engram) is a fundamental question in neuroscience. Although it has been established that the lateral amygdala is a key site for encoding associative fear memory, it is currently unclear whether the spatial distribution of neurons encoding a given memory is random or stable. Here we used spatial principal components analysis to quantify the topography of activated neurons, in a select region of the lateral amygdala, from rat brains encoding a Pavlovian conditioned fear memory. Our results demonstrate a stable, spatially patterned organization of amygdala neurons are activated during the formation of a Pavlovian conditioned fear memory. We suggest that this stable neuronal assembly constitutes a spatial dimension of the engram.  相似文献   

11.
Lamprecht R  Farb CR  LeDoux JE 《Neuron》2002,36(4):727-738
We used fear conditioning, which is known to alter synaptic efficacy in lateral amygdala (LA), to study molecular mechanisms underlying long-term memory. Following fear conditioning, the tyrosine phosphorylated protein p190 RhoGAP becomes associated with GRB2 in LA significantly more in conditioned than in control rats. RasGAP and Shc were also found to associate with GRB2 in LA significantly more in the conditioned animals. Inhibition of the p190 RhoGAP-downstream kinase ROCK in LA during fear conditioning impaired long- but not short-term memory. Thus, the p190 RhoGAP/ROCK pathway, which regulates the morphology of dendrites and axons during neural development, plays a central role, through a GRB2-mediated molecular complex, in fear memory formation in the lateral amygdala.  相似文献   

12.
Fear learning ensures survival through an expression of certain behavior as a conditioned fear response. Fear memory is processed and stored in a fear memory circuit, including the amygdala, hippocampus, and prefrontal cortex. A gradual decrease in conditioned fear response can be induced by fear extinction, which is mediated through the weakening of the original fear memory traces and the newly formed inhibition of those traces. Fear memory can also recover after extinction, which shows flexible control of the fear memory state. Here, we demonstrate how fear engram, which is a physical substrate of fear memory, changes during fear extinction and relapse by reviewing recent studies regarding engram.  相似文献   

13.
A deficient extinction of memory is particularly important in the regime of fear, where it limits the beneficial outcomes of treatments of anxiety disorders. Fear extinction is thought to involve inhibitory influences of the prefrontal cortex on the amygdala, although the detailed synaptic mechanisms remain unknown. Here, we report that neuropeptide S (NPS), a recently discovered transmitter of ascending brainstem neurons, evokes anxiolytic effects and facilitates extinction of conditioned fear responses when administered into the amygdala in mice. An NPS receptor antagonist exerts functionally opposing responses, indicating that endogenous NPS is involved in anxiety behavior and extinction. Cellularly, NPS increases glutamatergic transmission to intercalated GABAergic neurons in the amygdala via presynaptic NPS receptors on connected principal neurons. These results identify mechanisms of NPS in the brain, a key role of intercalated neurons in the amygdala for fear extinction, and a potential pharmacological avenue for treating anxiety disorders.  相似文献   

14.
The molecular processes that establish fear memory are complex and involve a combination of genetic and epigenetic influences. Dysregulation of these processes can manifest in humans as a range of fear-related anxiety disorders like post-traumatic stress disorders (PTSD). In the present study, immunohistochemistry for acetyl H3, H4, c-fos, CBP (CREB-binding protein) in the infralimbic prefrontal cortex (IL-PFC) and prelimbic prefrontal cortex (PL-PFC) of mPFC (medial prefrontal cortex) and basal amygdala (BA), lateral amygdala (LA), centrolateral amygdala (CeL), centromedial amygdala (CeM) of the amygdala was performed to link region-specific histone acetylation to fear and extinction learning. It was found that the PL-PFC and IL-PFC along with the sub-regions of the amygdala responded differentially to the fear learning and extinction. Following fear learning, c-fos and CBP expression and acetylation of H3 and H4 increased in the BA, LA, CeM, and CeL and the PL-PFC but not in the IL-PFC as compared to the naive control. Similarly, following extinction learning, c-fos and CBP expression increased in BA, LA, CeL, and IL-PFC but not in PL-PFC and CeM as compared to the naive control and conditioned group. However, the acetylation of H3 increased in both IL and PL as opposed to H4 which increased only in the IL-PFC following extinction learning. Overall, region-specific activation in amygdala and PFC following fear and extinction learning as evident by the c-fos activation paralleled the H3/H4 acetylation in these regions. These results suggest that the differential histone acetylation in the PFC and amygdala subnuclei following fear learning and extinction may be associated with the region-specific changes in the neuronal activation pattern resulting in more fear/less fear.  相似文献   

15.
In this paper, we studied differences in the density of N-methyl-D-aspartate (NMDA) receptor GluN2B subunits in the brains of low (LR) and high (HR) anxiety rats subjected to extinction trials and re-learning of a conditioned fear response, modeling a natural course of anxiety disorders. Classifications of animals as LR or HR was determined by fear-induced freezing responses in the contextual fear test. Increased basal concentrations of GluN2B subunits were observed in the amygdala of HR rats as compared to the unconditioned control group by Western blot analysis. Re-exposure of HR animals to the fear-conditioned context resulted in elevated concentrations of GluN2B subunits in the amygdala, hippocampus and the prefrontal cortex compared to LR rats as well as in the hippocampus and prefrontal cortex vs. the control group. In addition, it was shown that re-test of a conditioned fear increased the number of cells expressing GluN2B subunits in the basolateral amygdala, dentate gyrus of the hippocampus and secondary motor cortex (M2) in the HR group relative to the LR group. Together, these data suggest that animals that are more anxious have altered patterns of GluN2B subunit expression in the frontal cortex and limbic structures, which control emotional behaviour.  相似文献   

16.
Theta oscillations are considered crucial mechanisms in neuronal communication across brain areas, required for consolidation and retrieval of fear memories. One form of inhibitory learning allowing adaptive control of fear memory is extinction, a deficit of which leads to maladaptive fear expression potentially leading to anxiety disorders. Behavioral responses after extinction training are thought to reflect a balance of recall from extinction memory and initial fear memory traces. Therefore, we hypothesized that the initial fear memory circuits impact behavioral fear after extinction, and more specifically, that the dynamics of theta synchrony in these pathways signal the individual fear response. Simultaneous multi-channel local field and unit recordings were obtained from the infralimbic prefrontal cortex, the hippocampal CA1 and the lateral amygdala in mice. Data revealed that the pattern of theta coherence and directionality within and across regions correlated with individual behavioral responses. Upon conditioned freezing, units were phase-locked to synchronized theta oscillations in these pathways, characterizing states of fear memory retrieval. When the conditioned stimulus evoked no fear during extinction recall, theta interactions were directional with prefrontal cortical spike firing leading hippocampal and amygdalar theta oscillations. These results indicate that the directional dynamics of theta-entrained activity across these areas guide changes in appraisal of threatening stimuli during fear memory and extinction retrieval. Given that exposure therapy involves procedures and pathways similar to those during extinction of conditioned fear, one therapeutical extension might be useful that imposes artificial theta activity to prefrontal cortical-amygdalo-hippocampal pathways that mimics the directionality signaling successful extinction recall.  相似文献   

17.
Extinction describes the process of attenuating behavioral responses to neutral stimuli when they no longer provide the reinforcement that has been maintaining the behavior. There is close correspondence between fear and human anxiety, and therefore studies of extinction learning might provide insight into the biological nature of anxiety-related disorders such as post-traumatic stress disorder, and they might help to develop strategies to treat them. Preclinical research aims to aid extinction learning and to induce targeted plasticity in extinction circuits to consolidate the newly formed memory. Vagus nerve stimulation (VNS) is a powerful approach that provides tight temporal and circuit-specific release of neurotransmitters, resulting in modulation of neuronal networks engaged in an ongoing task. VNS enhances memory consolidation in both rats and humans, and pairing VNS with exposure to conditioned cues enhances the consolidation of extinction learning in rats. Here, we provide a detailed protocol for the preparation of custom-made parts and the surgical procedures required for VNS in rats. Using this protocol we show how VNS can facilitate the extinction of conditioned fear responses in an auditory fear conditioning task. In addition, we provide evidence that VNS modulates synaptic plasticity in the pathway between the infralimbic (IL) medial prefrontal cortex and the basolateral complex of the amygdala (BLA), which is involved in the expression and modulation of extinction memory.  相似文献   

18.
The metabotropic glutamate receptor subtype 1 (mGluR1) is thought to be crucial for several forms of memory, but its role in memory extinction has not been determined. Here, we examined a role of mGluR1 in the extinction of conditioned fear using microinjection of an mGluR1 antagonist, CPCCOEt, into the lateral amygdala (LA), a critical structure for fear conditioning and extinction. Intra-LA injection of 3 microg CPCCOEt impaired extinction that was initiated 48 h after the conditioning, but not that initiated 2h after the conditioning, indicating that the effectiveness of CPCCOEt depends upon the length of time since fear conditioning. The CPCCOEt injection failed to alter an mGluR1-like receptor (mGluR5)-dependent acquisition of fear memory, further supporting the specificity of the injected CPCCOEt on mGluR1. Together, our results suggest that amygdala mGluR1 plays a critical role in the extinction of learned fear, but not in the acquisition of fear memory.  相似文献   

19.
Hsu YC  Yu L  Chen HI  Lee HL  Kuo YM  Jen CJ 《PloS one》2012,7(4):e32855
The conditioned fear learning and memory occurs when a neutral conditioned stimulus (CS) is paired with an aversive unconditioned stimulus (US). This process is critically dependent on the amygdala and inevitably involves blood pressure (BP) alterations. We hypothesized that BP variations could instantaneously reveal individual steps during conditioned fear learning and memory. An implanted telemetric probe was used to monitor the BP real-time in rats during training and testing sessions of the fear-potentiated startle. Our results showed that (i) the conditioned fear learning during the training sessions was reflected by light (CS)-induced rapid BP elevations and by electric shock (US)-evoked sympathetic tone elevations; (ii) these two BP-related parameters were not only negatively correlated with each other but also coupled to each other in the training session trials; (iii) both parameters closely predicted the performance of fear-potentiated startle on the next day; and (iv) although local blocking of one of the two fear-conditioned pathways in the training session partially inhibited fear learning, the fear memory retrieval still used both pathways. Altogether, real-time blood pressure variations faithfully revealed the critical steps involved in conditioned fear learning and memory, and our results supported a coupling between the cued learning and the post-shock calmness.  相似文献   

20.
The amygdala plays a central role in fear conditioning, a model of anticipatory anxiety. It has massive projections to brainstem regions involved in rapid eye movement sleep (REM) and ponto-geniculo-occipital (PGO) wave generation. PGO waves occur spontaneously in REM or in response to stimuli. Electrical stimulation of the central nucleus of the amygdala enhances spontaneous PGO wave activity during REM and the amplitude of both the acoustic startle response and the elicited PGO wave (PGOE), a neural marker of alerting. This study examined the effects of fear conditioning on REM and on PGOE. On conditioning days, the number of REM episodes, the average REM duration and the REM percentage were decreased while REM latency was increased. The presentation of auditory stimuli in the presence of a light conditioned stimulus produced PGOE of greater amplitudes. The results suggest that fear, most likely involving the amygdala, can influence REM and brainstem alerting mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号