首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A classification scheme for those population models which allow variation in development rates is proposed, based on two ways of modifying standard age-structured models. The resulting classes of models are termed development index models and sojourn time models. General formulations for the two classes of models are developed from two basic balance equations, and numerous specific models from the literature are shown to fit into the scheme. Concepts from competing risks theory are shown to be important in understanding the interplay between mortality and maturation. Relationships among the classes are investigated both for the most general forms of the models and for the simpler forms often used. The scheme can provide guidance in developing appropriate insect population models for specific modelling situations.Contribution 3878871  相似文献   

2.
前列腺癌鼠模型是研究前列腺癌的重要工具,目前常见以下4类:自发和诱发鼠模型,异种移植鼠模型,转基因鼠模型和基因敲除鼠模型。简要综述了前列腺癌鼠模型的研究进展。  相似文献   

3.
4.
Results are summarized from the literature on three commonly used stochastic population models with regard to persistence time. In addition, several new results are introduced to clearly illustrate similarities between the models. Specifically, the relations between the mean persistence time and higher-order moments for discrete-time Markov chain models, continuous-time Markov chain models, and stochastic differential equation models are compared for populations experiencing demographic variability. Similarities between the models are demonstrated analytically, and computational results are provided to show that estimated persistence times for the three stochastic models are generally in good agreement when the models are consistently formulated. As an example, the three stochastic models are applied to a population satisfying logistic growth. Logistic growth is interesting as different birth and death rates can yield the same logistic differential equation. However, the persistence behavior of the population is strongly dependent on the explicit forms for the birth and death rates. Computational results demonstrate how dramatically the mean persistence time can vary for different populations that experience the same logistic growth.  相似文献   

5.
Ecological indicators are often collected to detect and monitor environmental change. Statistical models are used to estimate natural variability, pre-existing trends, and environmental predictors of baseline indicator conditions. Establishing standard models for baseline characterization is critical to the effective design and implementation of environmental monitoring programs. An anthropogenic activity that requires monitoring is the development of Marine Renewable Energy sites. Currently, there are no standards for the analysis of environmental monitoring data for these development sites. Marine Renewable Energy monitoring data are used as a case study to develop and apply a model evaluation to establish best practices for characterizing baseline ecological indicator data. We examined a range of models, including six generalized regression models, four time series models, and three nonparametric models. Because monitoring data are not always normally distributed, we evaluated model ability to characterize normal and non-normal data using hydroacoustic metrics that serve as proxies for ecological indicator data. The nonparametric support vector regression and random forest models, and parametric state-space time series models generally were the most accurate in interpolating the normal metric data. Support vector regression and state-space models best interpolated the non-normally distributed data. If parametric results are preferred, then state-space models are the most robust for baseline characterization. Evaluation of a wide range of models provides a comprehensive characterization of the case study data, and highlights advantages of models rarely used in Marine Renewable Energy environmental monitoring. Our model findings are relevant for any ecological indicator data with similar properties, and the evaluation approach is applicable to any monitoring program.  相似文献   

6.
Compartmental models for influenza that include control by vaccination and antiviral treatment are formulated. Analytic expressions for the basic reproduction number, control reproduction number and the final size of the epidemic are derived for this general class of disease transmission models. Sensitivity and uncertainty analyses of the dependence of the control reproduction number on the parameters of the model give a comparison of the various intervention strategies. Numerical computations of the deterministic models are compared with those of recent stochastic simulation influenza models. Predictions of the deterministic compartmental models are in general agreement with those of the stochastic simulation models.  相似文献   

7.
Loglinear symmetry and quasi-symmetry models are proposed as tools for investigating various hypotheses about change. First, a survey of model representations is provided, including model specification in terms of hierarchical loglinear models and in design matrix notation. Secondly, the range of symmetry and quasi-symmetry models is extended to the joint analysis of several groups. Parameter constraints are discussed which allow one to test specific hypotheses about group differences in symmetric frequency distributions. Finally, symmetry and quasi-symmetry models are considered for multiway contigency tables. In this context, loglinear total score models are proposed for the analysis of symmetry in several marginal distributions. The proposed models reflect cross-sectional as well as longitudinal facets of development.  相似文献   

8.
A complete enumeration and classification of two-locus disease models   总被引:7,自引:0,他引:7  
Li W  Reich J 《Human heredity》2000,50(6):334-349
There are 512 two-locus, two-allele, two-phenotype, fully penetrant disease models. Using the permutation between two alleles, between two loci, and between being affected and unaffected, one model can be considered to be equivalent to another model under the corresponding permutation. These permutations greatly reduce the number of two-locus models in the analysis of complex diseases. This paper determines the number of nonredundant two-locus models (which can be 102, 100, 96, 51, 50, or 58, depending on which permutations are used, and depending on whether zero-locus and single-locus models are excluded). Whenever possible, these nonredundant two-locus models are classified by their property. Besides the familiar features of multiplicative models (logical AND), heterogeneity models (logical OR), and threshold models, new classifications are added or expanded: modifying-effect models, logical XOR models, interference and negative interference models (neither dominant nor recessive), conditionally dominant/recessive models, missing lethal genotype models, and highly symmetric models. The following aspects of two-locus models are studied: the marginal penetrance tables at both loci, the expected joint identity-by-descent (IBD) probabilities, and the correlation between marginal IBD probabilities at the two loci. These studies are useful for linkage analyses using single-locus models while the underlying disease model is two-locus, and for correlation analyses using the linkage signals at different locations obtained by a single-locus model.  相似文献   

9.
In this paper, we consider selection based on the best predictor of animal additive genetic values in Gaussian linear mixed models, threshold models, Poisson mixed models, and log normal frailty models for survival data (including models with time-dependent covariates with associated fixed or random effects). In the different models, expressions are given (when these can be found – otherwise unbiased estimates are given) for prediction error variance, accuracy of selection and expected response to selection on the additive genetic scale and on the observed scale. The expressions given for non Gaussian traits are generalisations of the well-known formulas for Gaussian traits – and reflect, for Poisson mixed models and frailty models for survival data, the hierarchal structure of the models. In general the ratio of the additive genetic variance to the total variance in the Gaussian part of the model (heritability on the normally distributed level of the model) or a generalised version of heritability plays a central role in these formulas.  相似文献   

10.
Most multipopulation epidemic models are of the contact distribution type, in which the locations of successive contacts are chosen independently from appropriate contact distributions. This paper is concerned with an alternative class of models, termed dynamic population epidemic models, in which infectives move among the populations and can infect only within their current population. Both the stochastic and deterministic versions of such models are considered. Their threshold behavior is analyzed in some depth, as are their final outcomes. Velocities of spread of infection are considered when the populations have a spatial structure. A criterion for finding the equivalent contact distribution epidemic for any given dynamic population epidemic is provided, enabling comparisons to be made for the velocities and final outcomes displayed by the two classes of models. The relationship between deterministic and stochastic epidemic models is also discussed briefly.  相似文献   

11.
For the first time, kinetic information from the literature was collected and used to construct integrative dynamical mathematical models of sphingolipid metabolism. One model was designed primarily with kinetic equations in the tradition of Michaelis and Menten whereas the other two models were designed as alternative power-law models within the framework of Biochemical Systems Theory. Each model contains about 50 variables, about a quarter of which are dependent (state) variables, while the others are independent inputs and enzyme activities that are considered constant. The models account for known regulatory signals that exert control over the pathway. Standard mathematical testing, repeated revisiting of the literature, and numerous rounds of amendments and refinements resulted in models that are stable and rather insensitive to perturbations in inputs or parameter values. The models also appear to be compatible with the modest amount of experimental experience that lends itself to direct comparisons. Even though the three models are based on different mathematical representations, they show dynamic responses to a variety of perturbations and changes in conditions that are essentially equivalent for small perturbations and similar for large perturbations. The kinetic information used for model construction and the models themselves can serve as a starting point for future analyses and refinements.  相似文献   

12.
The effects of calcium++ on bursting neurons. A modeling study.   总被引:1,自引:1,他引:0       下载免费PDF全文
Many observed effects of ionized calcium on bursting pacemaker neurons may be accounted for by assuming that calcium has multiple effects on the membrane conductance mechanisms. Two models are proposed that represent extreme cases of a set of possible models for these multiple effects. Both models are a priori designed to account for directly observed phenomena, and both are found to be able to simulate a posteriori certain observed phenomena, including persistent inactivation, increasing spike width, and decreasing after-polarization. Experimental tests are proposed for the decision of validity between the set of models discussed and the null hypothesis, and for the decision of validity between the two models themselves. Extensions of the models are discussed. One of these extensions leads to a simulation of the behavior of the cell when placed in a calcium-free bathing medium.  相似文献   

13.
Animal models of osteoarthritis are used to study the pathogenesis of cartilage degeneration and to evaluate potential antiarthritic drugs for clinical use. Animal models of naturally occurring osteoarthritis (OA) occur in knee joints of guinea pigs, mice and other laboratory animal species. Transgenic models have been developed in mice. Commonly utilized surgical instability models include medial meniscal tear in guinea pigs and rats, medial or lateral partial meniscectomy in rabbits, medial partial or total meniscectomy or anterior cruciate transection in dogs. Additional models of cartilage degeneration can be induced by intra-articular iodoacetate injection or by administration of oral or parenteral quinolone antibiotics. None of these models have a proven track record of predicting efficacy in human disease since there are no agents that have been proven to provide anything other than symptomatic relief in human OA. However, agents that are active in these models are currently in clinical trials. Methodologies, gross and histopathologic features and comparisons to human disease will be discussed for the various models.  相似文献   

14.
The dynamics of a microbial community consisting of a eucaryotic ciliateTetrahymena pyriformis and procaryoticEscherichia coli in a batch culture is explored by employing an individual-based approach. In this portion of the article, Part I, population models are presented. Because both models are individual-based, models of individual organisms are developed prior to construction of the population models. The individual models use an energy budget method in which growth depends on energy gain from feeding and energy sinks such as maintenance and reproduction. These models are not limited by simplifying assumptions about constant yield, constant energy sinks and Monod growth kinetics as are traditional models of microbal organisms. Population models are generated from individual models by creating distinct individual types and assigning to each type the number of real individuals they represent. A population is a compilation of individual types that vary in a phase of cell cycle and physiological parameters such as filtering rate for ciliates and maximum anabolic rate for bacteria. An advantage of the developed models is that they realistically describe the growth of the individual cells feeding on resource which varies in density and composition. Part II, the core of the project, integrates models into a dynamic microbial community and provides model analysis based upon available data.  相似文献   

15.
Summary .   Frailty models are widely used to model clustered survival data. Classical ways to fit frailty models are likelihood-based. We propose an alternative approach in which the original problem of "fitting a frailty model" is reformulated into the problem of "fitting a linear mixed model" using model transformation. We show that the transformation idea also works for multivariate proportional odds models and for multivariate additive risks models. It therefore bridges segregated methodologies as it provides a general way to fit conditional models for multivariate survival data by using mixed models methodology. To study the specific features of the proposed method we focus on frailty models. Based on a simulation study, we show that the proposed method provides a good and simple alternative for fitting frailty models for data sets with a sufficiently large number of clusters and moderate to large sample sizes within covariate-level subgroups in the clusters. The proposed method is applied to data from 27 randomized trials in advanced colorectal cancer, which are available through the Meta-Analysis Group in Cancer.  相似文献   

16.
Many different types of generative models for protein sequences have been proposed in literature. Their uses include the prediction of mutational effects, protein design and the prediction of structural properties. Neural network (NN) architectures have shown great performances, commonly attributed to the capacity to extract non-trivial higher-order interactions from the data. In this work, we analyze two different NN models and assess how close they are to simple pairwise distributions, which have been used in the past for similar problems. We present an approach for extracting pairwise models from more complex ones using an energy-based modeling framework. We show that for the tested models the extracted pairwise models can replicate the energies of the original models and are also close in performance in tasks like mutational effect prediction. In addition, we show that even simpler, factorized models often come close in performance to the original models.  相似文献   

17.
Klein RD 《Mutation research》2005,576(1-2):111-119
The ability to modify the expression of specific genes in the mouse through genetic engineering technologies allows for the generation of previously unavailable models for prostate cancer prevention research. Although animal models have existed for some time for the study of prostate cancer prevention (primarily in the rat), it is uncertain if the mechanisms that drive prostate carcinogenesis in these models are relevant to those in human prostate cancer. Cell culture studies are of limited usefulness because the conditions are inherently artificial. Factors such as relevant physiologic concentrations and metabolism of putative chemoprevention compounds are difficult to model in an in vitro system. These studies also preclude the types of interactions known to occur between multiple cell types in vivo. In addition, all prostate cancer cell lines are already highly progressed and are not representative of the type of cells to which most preventive strategies would be targeted. Due to the advent of genetically engineered mouse (GEM) models, we now have models of prostate cancer that are dependent on molecular mechanisms already implicated in human prostate carcinogenesis. With these models we can perform a variety of experiments that could previously only be done in cell culture or in prostate cancer cell line xenografts. The currently available GEM models of prostate cancer have been extensively reviewed therefore, this review will focus on the types of models available and their usefulness for various types of preclinical studies relevant to prostate cancer prevention.  相似文献   

18.
In this paper, we consider local and non-local spatially explicit mathematical models for biological phenomena. We show that, when rate differences between fast and slow local dynamics are great enough, non-local models are adequate simplifications of local models. Non-local models thus avoid describing fast processes in mechanistic detail, instead describing the effects of fast processes on slower ones. As a consequence, non-local models are helpful to biologists because they describe biological systems on scales that are convenient to observation, data collection, and insight. We illustrate these arguments by comparing local and non-local models for the aggregation of hypothetical organisms, and we support theoretical ideas with concrete examples from cell biology and animal behavior.  相似文献   

19.
Constrained mixture models for soft tissue growth and remodeling have attracted increasing attention over the last decade. They can capture the effects of the simultaneous presence of multiple constituents that are continuously deposited and degraded at in general different rates, which is important to understand essential features of living soft tissues that cannot be captured by simple kinematic growth models. Recently the novel concept of homogenized constrained mixture models was introduced. It was shown that these models produce results which are very similar (and in certain limit cases even identical) to the ones of constrained mixture models based on multi-network theory. At the same time, the computational cost and complexity of homogenized constrained mixture models are much lower. This paper discusses the theory and implementation of homogenized constrained mixture models for anisotropic volumetric growth and remodeling in three dimensions. Previous constrained mixture models of volumetric growth in three dimensions were limited to the special case of isotropic growth. By numerical examples, comparison with experimental data and a theoretical discussion, we demonstrate that there is some evidence raising doubts whether isotropic growth models are appropriate to represent growth and remodeling of soft tissue in the vasculature. Anisotropic constrained mixture models, as introduced in this paper for the first time, may be required to avoid unphysiological results in simulations of vascular growth and remodeling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号