首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Yoo S  Kim Y  Lee H  Park S  Park S 《Molecules and cells》2012,34(1):103-108
Tiam-1 has been implicated in the development of the central nervous system. However, the in vivo function of Tiam-1 has not been fully determined in the developing mouse brain. In this study, we generated Tiam-1 knockout mice using a Tiam-1 gene-trapped embryonic stem cell line. Insertion of a gene trap vector into a genomic site downstream of exon 5 resulted in a mutant allele encoding a truncated protein fused with the β-geo LacZ gene. Primary mouse embryonic fibroblasts lacking Tiam-1 revealed a significant decrease in Rac activity and cell proliferation. In addition, whole-mount embryonic LacZ expression analysis demonstrated that Tiam-1 is specifically expressed in regions of the developing brain, such as the caudal telencephalon and rostral diencephalon. More importantly, mouse embryos deficient in Tiam-1 gene expression displayed a severe defect in embryonic brain development, including neural tube closure defects or a dramatic decrease in brain size. These findings suggest that embryonic Tiam-1 expression plays a critical role during early brain development in mice.  相似文献   

5.
The regulation of apoptosis is critical for controlling tissue homeostasis and preventing tumor formation and growth. Reactive oxygen species (ROS) generation plays a key role in such regulation. Here, we describe a HIF-1 target, Vasn/ATIA (anti-TNFα-induced apoptosis), which protects cells against TNFα- and hypoxia-induced apoptosis. Through the generation of ATIA knockout mice, we show that ATIA protects cells from apoptosis through regulating the function of the mitochondrial antioxidant, thioredoxin-2, and ROS generation. ATIA is highly expressed in human glioblastoma, and ATIA knockdown in glioblastoma cells renders them sensitive to hypoxia-induced apoptosis. Therefore, ATIA is not only a HIF-1 target that regulates mitochondrial redox pathways but also a potentially diagnostic marker and therapeutic target in human glioblastoma.  相似文献   

6.
7.
8.
Members of transforming growth factor-β (TGF-β) superfamily play important roles in diverse biological functions including early development. These extracellular factors exert their effects by interacting with membrane receptors followed by signal transduction by a group of Smad proteins. Smad7 is an inhibitory Smad protein that specifically antagonizes TGF-β and activin signaling. To characterize the developmental role of Smad7, a transgenic mouse model was generated using a 4.3 kb mouse Smad7 promoter driving β-galactosidase expression. In these mice, the Smad7 promoter defined a restrictive expression pattern of β-galactosidase in a tightly regulated temporal and spatial manner. The β-galactosidase gene was transiently expressed in the cardiovascular structures including heart cushion tissues and the endothelium of major arteries at E11.5 to E12.5. Through E12.5 to E17.5, β-galactosidase expression was prominently detected in the epithelium of developing cochlea and nasolacrimal duct. In addition, it was temporally expressed in trigeminal ganglion, the skeletal muscles surrounding major joints, primordium of the jaws, as well as genital tubercle. These studies indicated that the 4.3 kb Smad7 promoter contains sufficient regulatory elements to define controlled gene expression during mouse development.  相似文献   

9.
The Wnt genes encode a large family of secreted proteins that play a key role in embryonic development and tissue differentiation in many species (Rijsewijk et al., 1987 and Nusse and Varmus, 1992). Genetic and biochemical studies have suggested that the frizzled proteins are cell surface receptors for Wnts (Vinson et al., 1989, Chan et al., 1992, Bhanot et al., 1996 and Wang et al., 1996). In parallel, a number of secreted frizzled-like proteins with a conserved N-terminal frizzled motif have been identified (Finch et al., 1997, Melkonyan et al., 1997 and Rattner et al., 1997). One of these proteins, FrzA, the bovine counterpart of the murine sFRP-1 (93% identity) is involved in vascular cell growth control, binds Wg in vitro and antagonizes Xwnt-8 and hWnt-2 signaling in Xenopus embryos (Xu et al., 1998 and Duplàa et al., 1999). In this study, we report that sFRP-1 is expressed in the heart and in the visceral yolk sac during mouse development, and that sFRP-1 and mWnt-8 display overlapping expression patterns during heart morphogenesis. From 8.5 to 12.5 d.p.c., sFRP-1 is expressed in cardiomyocytes together with mWnt-8 but neither in the pericardium nor in the endocardium; at 17.5 d.p.c., they are no longer present in the heart. In mouse adult tissues, while sFRP-1 is highly detected in the aortic endothelium and media and in cardiomyocytes, mWnt-8 is not detected in these areas. Immunoprecipitation experiments demonstrates that FrzA binds to mWnt-8 in cell culture experiments.  相似文献   

10.
The hippocampus develops from the medial wall of the forming cerebral cortex during embryonic life. Morphogenic signals from the Wnt pathway regulate several events during hippocampal development (Galceran et al.: Development 127:469-482, 2000; Lee et al.: Development 127:457-467, 2000; Zhou et al.: J Neurosci 24:121-126, 2004) and we have previously shown that Wnt receptors from the Frizzled (Fzd) family are expressed in discreet cortical domains during development (Kim et al.: Mech Dev 103:167-172, 2001). We generated transgenic mice using the putative control elements of the Fzd9 gene, normally selectively expressed in the developing and adult hippocampus, driving expression of a marker gene. These mice express LacZ in the brain in the same developmental distribution as endogenous Fzd protein. Postnatally, expression remains strong in the dendritic fields of hippocampal principal cells as well as hippocampal efferent axons. These mice provide a genetic and anatomic tool for analyzing development and reorganization in the hippocampus.  相似文献   

11.
Extracellular matrix (ECM) proteins play an important role in early cortical development, specifically in the formation of neural connections and in controlling the cyto-architecture of the central nervous system. F-spondin and Mindin are a family of matrix-attached adhesion molecules that share structural similarities and overlapping domains of expression. Genes for both proteins contain a thrombospondin type I repeat(s) at the C terminus and an FS1-FS2 (spondin) domain. Both the vertebrate F-spondin and the zebrafish mindins are expressed on the embryonic floor plate. In the current study we have cloned the rat homologue of mindin and studied its expression and activity together with F-spondin in the developing rodent brain. The two genes are abundantly expressed in the developing hippocampus. In vitro studies indicate that both F-spondin and Mindin promote adhesion and outgrowth of hippocampal embryonic neurons. We have also demonstrated that the two proteins bind to a putative receptor(s) expressed on both hippocampal and sensory neurons.  相似文献   

12.
Ruble DM  Foster DN 《Immunogenetics》2000,51(4-5):347-357
 Differential hybridization cloning has been used to isolate a novel chicken thymic activation and developmental sequence (cTADS). The nucleotide sequence of the cTADS cDNA predicts an open reading frame of 439 amino acids. The inferred cTADS protein possesses a hydrophobic membrane-spanning domain and putative intracellular kinase activation domains. Its extracellular domain shares similarities with the immunoglobulin protein superfamily, featuring two conserved immunoglobulin folds that resemble C1 and C2 constant regions. The cTADS sequence shows similarity to a subfamily of proteins involved in cellular adhesion: chicken neural cell adhesion molecule and human opioid-binding adhesion molecule, and to proteins that have a biological role in intracellular signaling: mouse platelet-derived growth factor receptor and human fibroblast growth factor receptor. cTADS is differentially expressed in chicken thymic cells during embryonic development and during activation through the T-cell receptor. Sequence similarities and expression patterns suggest that cTADS could be involved in cell recognition and adhesion, and/or peptide ligand binding. Received: 1 May 1999 / Revised: 1 October 1999  相似文献   

13.
Laminins are heterotrimeric extracellular glycoproteins found in, but not confined to, basement membranes (BMs). They are important components in formation of the molecular networks of BMs as well as in cell polarity, cell differentiation and tissue morphogenesis. Each laminin is composed by an α, a β and a γ chain. Previous studies have shown that the γ3 chain is partnered with either the β1 chain (in placenta) or β2 chain (in the CNS) (Libby et al., 2000). Several studies, including our own, suggested that the γ3 chain is expressed in both apical and basal compartments (Koch et al., 1999; Gersdorff et al., 2005; Yan and Cheng, 2006). This study investigates the expression pattern of the γ3 chain in mouse. We developed three new γ3-reactive antibodies, and we show that the γ3 chain is present in BMs. The distribution pattern is considerably more restricted than that of the γ1 chain and within any tissue there is differential deposition into BM compartments. This is particularly true in the retina and brain, where γ3 is uniquely expressed in a subset of the vascular basement membranes and the pial surface. We used conventional genetic ablation techniques to remove the γ3 chain in mice; unlike other laminin null mice (α5, β2, γ1 nulls), these mice live a normal lifespan and have only minor abnormalities, the most striking of which are ectopic granule cells in the cerebellum and an apparent increase in capillary branching in the outer retina. These data support the suggestion that the γ3 chain is deposited in BMs and contributes some unique properties to their function, particularly in the nervous system.  相似文献   

14.
15.
16.
The Drosophila pair-rule gene odz (Tenm) has many patterning roles throughout development. We have identified four mammalian homologs of this gene, including one previously described as a mouse ER stress response gene, Doc4 (Wang et al., 1998). The Odz genes encode large polypeptides displaying the hallmarks of Drosophila Odz: a putative signal peptide; eight EGF-like repeats; and a putative transmembrane domain followed by a 1800-amino-acid stretch without homology to any proteins outside of this family. The mouse genes Odz3 and Doc4/Odz4 exhibit partially overlapping, but clearly distinct, embryonic expression patterns. The major embryonic sites of expression are in the nervous system, including the tectum, optic recess, optic stalk, and developing eye. Additional sites of expression include trachea and mesodermally derived tissues, such as mesentery, and forming limb and bone. Expression of the Odz2 gene is restricted to the nervous system. The expression patterns suggest that each of the genes has its own distinct developmental role. Comparisons of Drosophila and vertebrate Odz expression patterns suggest evolutionarily conserved functions.  相似文献   

17.
A novel protein expressed by entero-endocrine cells of the mouse stomach was named prepromotilin Related Peptide (ppMTLRP) since it shares sequence similarities with the prepromotilin (Tomasetto et al.). The mouse ppMTLRP was found identical to the rat precursor of ghrelin (ppghrelin), an endogenous ligand specific for the Growth Hormone Secretagogue receptor identified from rat stomach (Kojima et al.). In the present study the cDNA encoding the dog counterpart of ppMTLRP/Ghrelin has been isolated and sequenced. The dog ppMTLRP/Ghrelin cDNA showed scores of respectively 80% and 75% homology with its human and mouse counterparts. By translation of the dog ppMTLRP/Ghrelin cDNA sequences, two ORFs could be deduced encoding either a 117 amino acid ppMTLRP/Ghrelin or the deleted Gln14 ppMTLRP/Ghrelin, as it was also known in mouse, rat and man. The dog ppMTLRP/Ghrelin shared 91% similarity and 78% identity, and 89% similarity and 78% identity with the human and mouse ppMTLRP/Ghrelin proteins respectively. The best score of homology was found in the MTLRP/Ghrelin sequence itself. Indeed the dog MTLRP/Ghrelin peptide shared 100% similarity and 93% identity, and 96% identity and similarity, with the human and mouse MTLRP/Ghrelin. Using Northern blot analysis to study dog ppMTLRP/Ghrelin gene expression on dog adult gut tissues, maximal expression level was found in the stomach fundus and corpus, and no expression could be detected in the stomach antrum nor in the duodenum, jejunum, ileum, colon or liver. In conclusion, we have identified ppMTLRP/Ghrelin from dog, and found that it is highly conserved with man, mouse or rat. The expression pattern along the gastro-intestinal tract is similar to the expression pattern previously described in mouse.  相似文献   

18.
The mammalian sex determining region on the Y chromosome, SRY, is the founding member of the SOX gene family. SOX genes share a common DNA-binding motif termed the HMG box and have diverse roles in vertebrate embryonic development and tissue differentiation. Sox15 expression was analysed during mouse embryogenesis by whole-mount in situ hybridisation and Real Time RT-PCR. Sox15 was found to be expressed in developing mouse gonads from 11.5 dpc to 13.5 dpc with a peak of expression at 12.5 dpc. Expression was approximately twice as high in the male gonad as in the female gonad.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号