首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Testicular torsion is associated with damage to the testicular tissue as a result of ischemia-reperfusion injury (IRI) and induction of apoptosis leading to progressive damage to spermatogenesis. Survivin is suggested to be an important regulator in the control of the mitochondrial apoptotic pathway, although its role in torsion-induced IRI is unknown. Therefore, we sought to evaluate testicular survivin expression after long term IRI induced by testicular torsion. Survivin expression was measured by real-time PCR in 6-12 month old New Zealand white rabbits divided into three groups (4 animals/group): group (A) sham control, group (B) ischemia alone for 60 min and group (C) ischemia for 60 min followed by reperfusion for 6 months. Germ cell apoptosis was evaluated by TUNEL assay, Bax/Bcl-2 ratio and DNA fragmentation. The Johnsen score was used to assess testicular morphological damage, while lipid peroxidation was used as an indicator for oxidative stress. Survivin expression was detected in all testicular tissue samples. The rate of survivin expression after IRI was significantly higher (p < 0.05) compared with ischemic only and sham control testes. Its expression in IRI samples was inversely correlated with the significant increase (p < 0.05) in apoptosis, oxidative levels and spermatogenic damage. In conclusion, down-regulation of testicular survivin expression after long term IRI to the testis and its association with apoptosis induction suggests its involvement in the regulation of this apoptotic pathway. These findings also identify survivin as a potential new target for the prevention of germ cell death during testicular torsion.  相似文献   

2.
The purpose of this study is to determine whether inducible nitric oxide synthase (iNOS) is involved in the pathogenesis of testicular ischemia-reperfusion (I/R) injury in association with germ cell death, through either necrosis or apoptosis. Western blot analysis showed that iNOS expression was markedly increased 1 h after ischemia, and was accompanied by a huge nitric oxide (NO) production, as measured by the Griess method, with a peak at 48 h of reperfusion. Immunohistochemistry showed that iNOS was expressed predominantly in the macrophage-like cells infiltrated in the interstitial tissues of the testis. Intraperitoneal injection of aminoguanidine (AMG) (400 mg/day), the inhibitor of iNOS, reduced NO production by 57.7% at 96 h of reperfusion. Calpain activation and proteolysis of alpha-fodrin induced by I/R were inhibited by AMG. Germ cell apoptosis was demonstrated by in situ TUNEL and DNA fragmentation on agarose gel electrophoresis. Germ cell apoptosis was maximally induced at 24 h of reperfusion, and was not inhibited by AMG. NO produced by iNOS in the delayed phase of reperfusion promoted alpha-fodrin proteolysis, which is closely associated with necrosis. Inducible NOS inhibition combined with calpain inhibition may improve impaired spermatogenesis after testicular torsion.  相似文献   

3.
This review will focus the roles of TNF-alpha, IL-1 alpha, and IL-1 beta in the mammalian testis and in two testicular pathologies, testicular torsion and orchitis. TNF alpha in the testis is produced by round spermatids, pachytene spermatocytes, and testicular macrophages. The type 1 TNF receptor has been found on Sertoli and Leydig cells and numerous studies suggest a paracrine mode of action for TNF alpha in the normal testis. IL-1 alpha has been reported to be produced by Sertoli cells, testicular macrophages, and possibly postmeiotic germ cells. IL-1 receptors have been reported on Sertoli cells, Leydig cells, testicular macrophages, and germ cells suggesting both autocrine and paracrine functions. While these proinflammatory cytokines have important roles in normal testicular homeostasis, an elevation of their expression can lead to testicular dysfunctions. Testicular torsion is a clinical pathology with results in testicular ischemia and surgical intervention is often required for reperfusion. A pivotal role for IL-1beta in the pathology of testicular torsion has been recently described whereby an increase in IL-1beta production after reperfusion of the testis is correlated with the activation of the stress-related kinase, c-jun N-terminal kinase, and ultimately resulting in neutrophil recruitment to the testis and germ cell apoptosis. In autoimmune orchitis, on the other hand, TNF alpha produced by T-lymphocytes and macrophages of the testis has been implicated in the development and progression of the disease. Thus, both proinflammatory cytokines, TNF alpha and IL-1, have significant roles in normal testicular functions as well as in certain testicular pathologies.  相似文献   

4.
Ischemia-reperfusion (IR) of the testis results in germ-cell-specific apoptosis (GCA) and a reduction in daily sperm production. This has been correlated with and is dependent upon neutrophil recruitment to the testis. In a rat model of testicular IR, this has also been correlated with an increase in reactive oxygen species (ROS). We have investigated ROS in the mouse testis after IR and determined whether the observed GCA is mediated via a mitochondrial caspase-9-dependent pathway involving the upstream mediators caspase 2 and BAX. Mice were subjected to a 2-h period of testicular ischemia followed by reperfusion. An accumulation of 8-isoprostane, a marker of oxidative stress, occurred 4 h after reperfusion. Activation of a mitochondrial dependent pathway to GCA after testicular IR was determined based on the observations that both BAX and caspase 2 translocated to the mitochondria, and that an increase occurred in cytoplasmic cytochrome c. Moreover, microinfusion of a specific caspase 9 inhibitor significantly reduced active caspase 3 after testicular IR and the number of apoptotic germ cells. These results suggest that oxidative stress products accumulate in the testis following IR and demonstrate that the observed GCA is stimulated through a mitochondrial caspase-9-dependent pathway. The identification of the germ-cell apoptotic pathway induced after testicular IR, including the key players in the pathway subsequent to ROS (BAX, caspase 9, and caspase 2), aids our understanding of IR injury in the testis and provides a wider background for the development of therapeutic interventions to rescue testis function. The work was supported by grants P50 DK45179 and DK53072.  相似文献   

5.
6.
7.
8.
9.
目的:探讨巨噬细胞在大鼠肾脏缺血/再灌注损伤过程中的亚型转变及意义。方法:将30只雄性SD大鼠随机分成假手术组(Sham,n=6)和缺血/再灌组(IRI,夹闭肾动脉45 min,n=24)。IRI组分别于术后0、6、24和72 h取肾组织,每个时相组6只大鼠。用HE染色观察肾组织损伤程度;免疫组化染色检测细胞增殖核抗原(PCNA)的表达;实时定量RT-PCR检测巨噬细胞移动抑制因子(MIF) mRNA的表达;免疫组织荧光染色检测MIF、单核巨噬细胞趋化蛋白-1(MCP-1)以及活化巨噬细胞标志物CD68的表达,流式细胞分析检测巨噬细胞M1和M2亚型的分布特征。结果:病理结果显示大鼠肾局部损伤情况和炎症细胞浸润程度在24 h时最为严重,之后逐渐恢复。PCNA在再灌后表达明显增加,6 h达峰值,72 h表达下降。相比于正常组,再灌组大鼠肾组织中MIF的mRNA和蛋白表达明显升高;MCP-1表达则在6 h达峰值,随后下降;而CD68阳性的巨噬细胞数量明显增加,24 h达峰值,72 h表达下降。更进一步研究发现缺血/再灌注6 h时,M1亚型分布达最高值;之后随着缺血/再灌注时间延长,M1亚群相对含量开始下调,M2随之升高。结论:在肾脏缺血/再灌注早期,M1巨噬细胞介导的组织损伤发挥主要作用,随后M2型表达逐渐上调,并通过促进细胞增殖修复肾组织损伤。  相似文献   

10.
Hypoxia-inducible factor-1 (HIF-1) could ameliorate renal ischemia reperfusion injury (IRI), but the underlying mechanism remains elusive. In the current study, we aim to investigate the possible role of prolyl hydroxylases inhibitor dimethyloxalylglycine (DMOG) in inducing delayed preconditioning-like effects against IRI. Mice were divided into four groups (n = 6): sham group; IRI group; DMOG group: pretreated with DMOG 24 h before IRI; and GW274150 + DMOG group: pretreated with DMOG followed by iNOS inhibitor GW274150 treatment 24 h before IRI. The results showed that the protein level of HIF-1a and the expression of its targets inducible nitric oxide synthase (iNOS), erythropoietin, and heme oxygenase-1 were obviously increased after administration of DMOG. Histological analysis of renal function showed improvement in tubulointerstitial injury due to ischemia by delayed preconditioning with DMOG. GW274150 antagonized the delayed renal protection afforded by DMOG as reflected by deteriorated renal dysfunction, aggravated histological injury, increased renal cell apoptosis, and increased vimentin expression in the kidney. In conclusion, our data demonstrate that DMOG pretreatment induces delayed renal protection against IRI in mice and the beneficial effects are mitigated by pharmacological inhibition of iNOS, suggesting that the protective effects derived from HIF-1 activation via DMOG in the kidney are partially mediated by iNOS.  相似文献   

11.
The Th1/Th2 balance represents an important factor in the pathogenesis of renal ischemia-reperfusion injury (IRI). In addition, IRI causes a systemic inflammation that can affect other tissues, such as the lungs. To investigate the ability of renal IRI to modulate pulmonary function in a specific model of allergic inflammation, C57Bl/6 mice were immunized with ovalbumin/albumen on days 0 and 7 and challenged with an ovalbumin (OA) aerosol on days 14 and 21. After 24 h of the second antigen challenge, the animals were subjected to 45 minutes of ischemia. After 24 h of reperfusion, the bronchoalveolar lavage (BAL) fluid, blood and lung tissue were collected for analysis. Serum creatinine levels increased in both allergic and non-immunized animals subjected to IRI. However, BAL analysis showed a reduction in the total cells (46%) and neutrophils (58%) compared with control allergic animals not submitted to IRI. In addition, OA challenge induced the phosphorylation of ERK and Akt and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in lung homogenates. After renal IRI, the phosphorylation of ERK and expression of COX-2 and iNOS were markedly reduced; however, there was no difference in the phosphorylation of Akt between sham and ischemic OA-challenged animals. Mucus production was also reduced in allergic mice after renal IRI. IL-4, IL-5 and IL-13 were markedly down-regulated in immunized/challenged mice subjected to IRI. These results suggest that renal IRI can modulate lung allergic inflammation, probably by altering the Th1/Th2 balance and, at least in part, by changing cellular signal transduction factors.  相似文献   

12.
13.
14.
Inflammation and renal tubular injury are major features of acute kidney injury (AKI). Many cytokines and chemokines are released from injured tubular cells and acts as proinflammatory mediators. However, the role of IL-19 in the pathogenesis of AKI is not defined yet. In bilateral renal ischemia/reperfusion injury (IRI)-induced and HgCl2-induced AKI animal models, real-time quantitative (RTQ)-PCR showed that the kidneys, livers, and lungs of AKI mice expressed significantly higher IL-19 and its receptors than did sham control mice. Immunohistochemical staining showed that IL-19 and its receptors were strongly stained in the kidney, liver, and lung tissue of AKI mice. In vitro, IL-19 upregulated MCP-1, TGF-β1, and IL-19, and induced mitochondria-dependent apoptosis in murine renal tubular epithelial M-1 cells. IL-19 upregulated TNF-α and IL-10 in cultured HepG2 cells, and it increased IL-1β and TNF-α expression in cultured A549 cells. In vivo, after renal IRI or a nephrotoxic dose of HgCl2 treatment, IL-20R1-deficient mice (the deficiency blocks IL-19 signaling) showed lower levels of blood urea nitrogen (BUN) in serum and less tubular damage than did wild-type mice. Therefore, we conclude that IL-19 mediates kidney, liver, and lung tissue damage in murine AKI and that blocking IL-19 signaling may provide a potent therapeutic strategy for treating AKI.  相似文献   

15.
16.
Intestinal ischemia/reperfusion (I/R) produces reactive oxygen species (ROS) activating signal transduction and apoptosis. The aim of this study was to evaluate the effect of (-)-epigallocatechin-3-gallate (EGCG) administration in inhibition of apoptosis by attenuating the expression of NF-kB, c-Jun and caspace-3 in intestinal I/R. Thirty male wistar rats were used. Group A sham operation, B I/R, C I/R-EGCG 50 mg/kg ip. Intestinal ischemia was induced for 60 min by clamping the superior mesenteric artery. Malondialdehyde (MDA), myeloperoxidase (MPO), light histology, Fragment End Labelling of DNA (TUNEL), immunocytochemistry for NF-kB, c-Jun and caspace-3 analysis in intestinal specimens were performed 120 min after reperfusion. Apoptosis as indicated by TUNEL and Caspace-3, NF-kB and c-Jun was widely expressed in I/R group but only slightly expressed in EGCG treated groups. MDA and MPO showed a marked increase in the I/R group and a significant decrease in the EGCG treated group. Light histology showed preservation of architecture in the EGCG treated group. In conclusion, EGCG pre-treatment is likely to inhibit intestinal I/R-induced apoptosis by down-regulating the expression of NF-kB, c-Jun and caspase-3.  相似文献   

17.
Intestinal ischemia/reperfusion (I/R) produces reactive oxygen species (ROS) activating signal transduction and apoptosis. The aim of this study was to evaluate the effect of (?)-epigallocatechin-3-gallate (EGCG) administration in inhibition of apoptosis by attenuating the expression of NF-kB, c-Jun and caspace-3 in intestinal I/R. Thirty male wistar rats were used. Group A sham operation, B I/R, C I/R-EGCG 50 mg/kg ip. Intestinal ischemia was induced for 60 min by clamping the superior mesenteric artery. Malondialdehyde (MDA), myeloperoxidase (MPO), light histology, Fragment End Labelling of DNA (TUNEL), immunocytochemistry for NF-kB, c-Jun and caspace-3 analysis in intestinal specimens were performed 120 min after reperfusion. Apoptosis as indicated by TUNEL and Caspace-3, NF-kB and c-Jun was widely expressed in I/R group but only slightly expressed in EGCG treated groups. MDA and MPO showed a marked increase in the I/R group and a significant decrease in the EGCG treated group. Light histology showed preservation of architecture in the EGCG treated group. In conclusion, EGCG pre-treatment is likely to inhibit intestinal I/R-induced apoptosis by down-regulating the expression of NF-kB, c-Jun and caspase-3.  相似文献   

18.
Mild testicular heating safely and reversibly suppresses spermatogenesis. In this study, we attempted to clarify the underlying molecular mechanism(s) involved in heat‐induced spermatogenesis suppression in human testis. We conducted global proteomic analyses of human testicular biopsies before, and at 2 and 9 wk after heat treatment. Thirty‐one and Twenty‐six known proteins were identified with significant differential expression at 2 and 9 wk after heat treatment, respectively. These were used to characterize the cellular and molecular events in the testes when seminiferous epithelia became damaged (2 wk) and recovered (9 wk). At 2 wk post‐treatment, the changed expression of a series of proteins could promote apoptosis or suppress proliferation and cell survival. At 9 wk post‐treatment, the changed expression of proteins mainly promoted cell proliferation, differentiation and survival, but resisted cell apoptosis. Among those heat‐regulated proteins, HNRNPH1 was selected for the further functional study. We found that HNRNPH1 was an anti‐apoptosis protein that could regulate the expression of other heat‐induced proteins. In conclusion, heat‐induced reversible suppression of spermatogenesis occurred by modulating the expression of proteins related to proliferation, differentiation, apoptosis and cell survival pathways. These differentially expressed proteins were found to be key molecular targets affecting spermatogenesis after heat treatment.  相似文献   

19.
In vitro data have indicated that nitric oxide (NO) inhibits Leydig cell testosterone production, suggesting that NO may play a role in the suppression of steroidogenesis and spermatogenic function during inflammation. Consequently, we investigated expression of the inflammation-inducible isoform of NO synthase (iNOS) in the inflamed adult rat testis and the ability of a broad-spectrum inhibitor of NO production, L-nitro-L-arginine methyl ester, to prevent Leydig cell dysfunction during inflammation. Unexpectedly, immunohistochemical and mRNA data established that iNOS is expressed constitutively in Leydig cells and in a stage-specific manner in Sertoli, peritubular, and spermatogenic cells in the normal testis. Expression was increased in a dose-dependent manner in all these cell types during lipopolysaccharide (LPS)-induced inflammation. In noninflamed testes, treatment with the NO synthase inhibitor reduced testicular interstitial fluid formation and testosterone production without any effect on serum LH levels. Administration of the inhibitor did not prevent the suppression of testicular interstitial fluid and testosterone production that occurs within 6 h after LPS treatment. Collectively, these data indicate a novel role for iNOS in autocrine or paracrine regulation of the testicular vasculature, Leydig cell steroidogenesis, and spermatogenesis in the normal testis. The data suggest that increased NO is not the major cause of acute Leydig cell dysfunction in the LPS-treated inflammation model, although a role for NO in this process cannot be excluded, particularly at other time points. Moreover, up-regulation of iNOS may contribute to the seminiferous epithelium damage caused by LPS-induced inflammation.  相似文献   

20.
目的研究局灶性脑缺血再灌注损伤中iNOS在不同脑区的表达.方法用改良的血管内栓线技术制造大鼠局灶性脑缺血与再灌注模型,应用免疫组织化学技术检测脑组织中的iNOS的表达.结果 (1)脑缺血再灌注损伤24h后,缺血组缺血侧大脑皮层、海马CA1区、CA3区神经元iNOS的表达显著增强,与正常对照组比较有显著性差异(P<0.05);(2)脑缺血再灌注损伤24h后,缺血组对照侧大脑皮层、海马CA1区、CA3区神经元iNOS的表达也明显增强,与正常对照组比较有显著性差异(P<0.05);(3) 与对照侧比较,脑缺血再灌注大鼠缺血侧皮质的iNOS表达显著增强(P<0.05),而海马CA1区、CA3区缺血侧的iNOS表达与对照侧相比无显著性差异(P>0.05).结论局灶性脑缺血再灌注损伤后,缺血侧皮层和海马iNOS表达显著升高,未缺血脑区(对照侧)iNOS反应性也较对照组者升高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号