首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The non-canonical amino acid (ncAA) analogue of methionine (Met), β-cyclopropylalanine (Cpa), was successfully incorporated into recombinant proteins expressed in Escherichia coli in a residue-specific manner. Proteins substituted in this way are congeners because they derive from the same gene sequence as the parent protein but contain a fraction of ncAAs. We have expressed congeners using parent and mutant gene sequences of various proteins (lipase, annexin A5, enhanced green fluorescent protein, and barstar) and found that Cpa incorporation is highly dependent on the protein sequence composition. These results indicate that the global amino acid composition of proteins might be a crucial parameter that influences the outcome of unnatural translation. In addition, we could also demonstrate that the chemical nature of the second residue could be essential for successful ncAA incorporation.  相似文献   

3.
Many biophysical techniques that are available to study the structure, function and dynamics of cellular constituents require modification of the target molecules. Site-specific labelling of a protein is of particular interest for fluorescence-based single-molecule measurements including single-molecule FRET or super-resolution microscopy. The labelling procedure should be highly specific but minimally invasive to preserve sensitive biomolecules. The modern molecular engineering toolkit provides elegant solutions to achieve the site-specific modification of a protein of interest often necessitating the incorporation of an unnatural amino acid to introduce a unique reactive moiety. The Amber suppression strategy allows the site-specific incorporation of unnatural amino acids into a protein of interest. Recently, this approach has been transferred to the mammalian expression system. Here, we demonstrate how the combination of unnatural amino acid incorporation paired with current bioorthogonal labelling strategies allow the site-specific engineering of fluorescent dyes into proteins produced in the cellular environment of a human cell. We describe in detail which parameters are important to ensure efficient incorporation of unnatural amino acids into a target protein in human expression systems. We furthermore outline purification and bioorthogonal labelling strategies that allow fast protein preparation and labelling of the modified protein. This way, the complete eukaryotic proteome becomes available for single-molecule fluorescence assays.  相似文献   

4.
Preuss M  Miller AD 《FEBS letters》2000,466(1):75-79
The affinity of four short peptides for the Escherichia coli molecular chaperone GroEL was studied in the presence of the co-chaperone GroES and nucleotides. Our data show that binding of GroES to one ring enhances the interaction of the peptides with the opposite GroEL ring, a finding that was related to the structural readjustments in GroEL following GroES binding. We further report that the GroEL/GroES complex has a high affinity for peptides during ATP hydrolysis when protein substrates would undergo repeated cycles of assisted folding. Although we could not determine at which step(s) during the cycle our peptides interacted with GroEL, we propose that successive state changes in GroEL during ATP hydrolysis may create high affinity complexes and ensure maximum efficiency of the chaperone machinery under conditions of protein folding.  相似文献   

5.
6.
In this study, we investigated the efficiencies by which the pET and pQE expression systems produce unnatural recombinant proteins by residue-specific incorporation of unnatural amino acids, a method through which it was found that type of gene expression system tremendously influences the production yield of unnatural proteins in Escherichia coli. Green fluorescent protein (GFP) and a single-chain Fv antibody against c-Met were utilized as model recombinant proteins while L-homopropargylglycine (Hpg), a methionine analogue that incorporates into the methionine residues of a recombinant protein, was used as model unnatural amino acid. The pET system produced an almost negligible amount of Hpg-incorporated unnatural protein compared to the amount of methionine-incorporated natural protein. However, comparable amounts of unnatural and natural protein were produced by the pQE expression system. The amount of unnatural GFP protein produced through pET expression was not increased despite the over-expression of methionyl tRNA synthetase, which can enhance the activation rate of methionyl-tRNA with a methionine analogue. Incorporation of Hpg decreased the productivity of active GFP by approximately 2.5 fold, possibly caused by the inefficient folding of Hpg-incorporated GFP. Conversely, the productivity of functional anti-c-Met sc-Fv was not influenced by incorporation of Hpg. We confirmed through LC-MS and LCMS/MS that Hpg was incorporated into the methionine residues of the recombinant proteins produced by the pQE expression system. The first two authors equally contributed to this work.  相似文献   

7.
The major heat shock proteins from Thiobacillus ferrooxidans were identified as DnaK and GroEL equivalents by Western blotting and analysis of the N-terminal amino acid sequence of spots isolated from dried 2-D polyacrylamide electrophoresis gels. The T. ferrooxidans chaperonins showed 70% and 80% identity with the Escherichia coli GroEL and DnaK, respectively. By using electrophoresis with a transverse pore gradient of cross-linked polyacrylamide and nondenaturing conditions followed by Western blotting, we found that the GroEL proteins from both bacteria formed a 14-mer, whereas E. coli DnaK protein existed partially as a dimer and the T. ferrooxidans DnaK-equivalent showed only a monomeric nature under our experimental conditions.  相似文献   

8.
9.
Expression of the human apoptosis modulator protein Bax in Escherichia coli is highly toxic, resulting in cell lysis at very low concentrations (Asoh, S., et al., J. Biol. Chem. 273, 11384-11391, 1998). Attempts to express a truncated form of murine Bax in the periplasm by using an expression vector that attached the OmpA signal sequence to the protein failed to alleviate this toxicity. In contrast, attachment of a peptide based on a portion of the E. coli cochaperone GroES reduced Bax's toxicity significantly and allowed good expression. The peptide, which was attached to the N-terminus, included the amino acid sequence of the mobile loop of GroES that has been demonstrated to interact with the chaperonin, GroEL. Under normal growth conditions, expression of this construct was still toxic, but generated a small amount of detectable recombinant Bax. However, when cells were grown in the presence of 2% ethanol, which stimulated overproduction of the molecular chaperones GroEL and DnaK, toxicity was reduced and good overexpression occurred. Two-dimensional gel electrophoresis analysis showed that approximately 15-fold more GroES-loop-Bax was produced under these conditions than under standard conditions and that GroEL and DnaK were elevated approximately 3-fold.  相似文献   

10.
Liu W  Brock A  Chen S  Chen S  Schultz PG 《Nature methods》2007,4(3):239-244
We developed a general approach that allows unnatural amino acids with diverse physicochemical and biological properties to be genetically encoded in mammalian cells. A mutant Escherichia coli aminoacyl-tRNA synthetase (aaRS) is first evolved in yeast to selectively aminoacylate its tRNA with the unnatural amino acid of interest. This mutant aaRS together with an amber suppressor tRNA from Bacillus stearothermophilus is then used to site-specifically incorporate the unnatural amino acid into a protein in mammalian cells in response to an amber nonsense codon. We independently incorporated six unnatural amino acids into GFP expressed in CHO cells with efficiencies up to 1 mug protein per 2 x 10(7) cells; mass spectrometry confirmed a high translational fidelity for the unnatural amino acid. This methodology should facilitate the introduction of biological probes into proteins for cellular studies and may ultimately facilitate the synthesis of therapeutic proteins containing unnatural amino acids in mammalian cells.  相似文献   

11.

Genetic code expansion is a powerful technique for site-specific incorporation of an unnatural amino acid into a protein of interest. This technique relies on an orthogonal aminoacyl-tRNA synthetase/tRNA pair and has enabled incorporation of over 100 different unnatural amino acids into ribosomally synthesized proteins in cells. Pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNA from Methanosarcina species are arguably the most widely used orthogonal pair. Here, we investigated whether beneficial effect in unnatural amino acid incorporation caused by N-terminal mutations in PylRS of one species is transferable to PylRS of another species. It was shown that conserved mutations on the N-terminal domain of MmPylRS improved the unnatural amino acid incorporation efficiency up to five folds. As MbPylRS shares high sequence identity to MmPylRS, and the two homologs are often used interchangeably, we examined incorporation of five unnatural amino acids by four MbPylRS variants at two temperatures. Our results indicate that the beneficial N-terminal mutations in MmPylRS did not improve unnatural amino acid incorporation efficiency by MbPylRS. Knowledge from this work contributes to our understanding of PylRS homologs which are needed to improve the technique of genetic code expansion in the future.

  相似文献   

12.
Stop codons have been exploited for genetic incorporation of unnatural amino acids (Uaas) in live cells, but their low incorporation efficiency, which is possibly due to competition from release factors, limits the power and scope of this technology. Here we show that the reportedly essential release factor 1 (RF1) can be knocked out from Escherichia coli by 'fixing' release factor 2 (RF2). The resultant strain JX33 is stable and independent, and it allows UAG to be reassigned from a stop signal to an amino acid when a UAG-decoding tRNA-synthetase pair is introduced. Uaas were efficiently incorporated at multiple UAG sites in the same gene without translational termination in JX33. We also found that amino acid incorporation at endogenous UAG codons is dependent on RF1 and mRNA context, which explains why E. coli tolerates apparent global suppression of UAG. JX33 affords a unique autonomous host for synthesizing and evolving new protein functions by enabling Uaa incorporation at multiple sites.  相似文献   

13.
Klein G  Georgopoulos C 《Genetics》2001,158(2):507-517
Genetic experiments have shown that the GroEL/GroES chaperone machine of Escherichia coli is absolutely essential, not only for bacterial growth but also for the propagation of many bacteriophages including lambda. The virulent bacteriophages T4 and RB49 are independent of the host GroES function, because they encode their own cochaperone proteins, Gp31 and CocO, respectively. E. coli groEL44 mutant bacteria do not form colonies above 42 degrees nor do they propagate bacteriophages lambda, T4, or RB49. We found that the vast majority (40/46) of spontaneous groEL44 temperature-resistant colonies at 43 degrees were due to the presence of an intragenic suppressor mutation. These suppressors define 21 different amino acid substitutions in GroEL, each affecting one of 13 different amino acid residues. All of these amino acid residues are located at or near the hinge, which regulates the large en bloc movements of the GroEL apical domain. All of these intragenic suppressors support bacteriophages lambda, T4, and RB49 growth to various extents in the presence of the groEL44 allele. Since it is known that the GroEL44 mutant protein does not interact effectively with Gp31, the suppressor mutations should enhance cochaperone binding. Analogous intragenic suppressor studies were conducted with the groEL673 temperature-sensitive allele.  相似文献   

14.
A variety of strategies to incorporate unnatural amino acids into proteins have been pursued, but all have limitations with respect to technical accessibility, scalability, applicability to in vivo studies, or site specificity of amino acid incorporation. The ability to selectively introduce unnatural functional groups into specific sites within proteins, in vivo, provides a potentially powerful approach to the study of protein function and to large-scale production of novel proteins. Here we describe a combined genetic selection and screen that allows the rapid evolution of aminoacyl-tRNA synthetase substrate specificity. Our strategy involves the use of an "orthogonal" aminoacyl-tRNA synthetase and tRNA pair that cannot interact with any of the endogenous synthetase-tRNA pairs in Escherichia coli. A chloramphenicol-resistance (Cm(r)) reporter is used to select highly active synthetase variants, and an amplifiable fluorescence reporter is used together with fluorescence-activated cell sorting (FACS) to screen for variants with the desired change in amino acid specificity. Both reporters are contained within a single genetic construct, eliminating the need for plasmid shuttling and allowing the evolution to be completed in a matter of days. Following evolution, the amplifiable fluorescence reporter allows visual and fluorimetric evaluation of synthetase activity and selectivity. Using this system to explore the evolvability of an amino acid binding pocket of a tyrosyl-tRNA synthetase, we identified three new variants that allow the selective incorporation of amino-, isopropyl-, and allyl-containing tyrosine analogs into a desired protein. The new enzymes can be used to produce milligram-per-liter quantities of unnatural amino acid-containing protein in E. coli.  相似文献   

15.
The development of a method for the site-specific incorporation of unnatural amino acids into proteins in vivo would significantly facilitate studies of the cellular function of proteins, as well as make possible the synthesis of proteins with novel structures and activities. Our approach to this problem consists of the generation of amber suppressor tRNA/aminoacyl-tRNA synthetase pairs that are not catalytically competent with all the endogenous Escherichia coli tRNAs and aminoacyl-tRNA synthetases, followed by directed evolution of such orthogonal aminoacyl-tRNA synthetases to alter their amino acid specificities. To evolve the desired amino acid specificity, a direct selection for site-specific incorporation of unnatural amino acids into a reporter epitope displayed on the surface of M13 phage has been developed and characterized. Under simulated selection conditions, phage particles displaying aspartate were enriched over 300-fold from a pool of phage displaying asparagine using monoclonal antibodies raised against the aspartate-containing epitope. The direct phage selection offers high specificity for the amino acid of interest, eliminating the potential for contamination with synthetases active towards wild-type amino acids in multiple rounds of selection.  相似文献   

16.
Using aminoacyl-tRNA synthetase/suppressor tRNA pairs derived from Methanocaldococcus jannaschii, an Escherichia coli cell-free protein production system affords proteins with site-specifically incorporated unnatural amino acids (UAAs) in high yields through the use of optimized amber suppressor tRNA(CUA)(opt) and optimization of reagent concentrations. The efficiency of the cell-free system allows the incorporation of trifluoromethyl-phenylalanine using a polyspecific synthetase evolved previously for p-cyano-phenylalanine, and the incorporation of UAAs at two different sites of the same protein without any re-engineering of the E. coli cells used to make the cell-free extract.  相似文献   

17.
In this study we have replaced all 13 methionine residues in the cytochrome P450 BM-3 heme domain (463 amino acids) with the isosteric methionine analog norleucine. This experiment has provided a means of testing the functional limits of globally incorporating into an enzyme an unnatural amino acid in place of its natural analog, and also an efficient way to test whether inactivation during peroxide-driven P450 catalysis involves methionine oxidation. Although there was no increase in the stability of the P450 under standard reaction conditions (in 10 mM hydrogen peroxide), complete substitution with norleucine resulted in nearly two-fold-increased peroxygenase activity. Thermostability was significantly reduced. The fact that the enzyme can tolerate such extensive amino acid replacement suggests that we can engineer enzymes with unique chemical properties via incorporation of unnatural amino acids while retaining or improving catalytic properties. This system also provides a platform for directing enzyme evolution using an extended set of protein building blocks.  相似文献   

18.
The protein refolding of inclusion bodies was investigated using reversed micelles formed by aerosol OT (AOT). Ribonuclease A (RNase A) was overexpressed in Escherichia coli and used as native inclusion bodies. The enzymatic activity of RNase A was completely regained from the inclusion bodies within 14 h by solubilization in reversed micelles. To further enhance the refolding rate, a molecular chaperone, GroEL, was incorporated into the refolding system. The resultant refolding system including GroEL showed better performance under optimized conditions for the refolding of RNase A inclusion bodies. The refolding rate was considerably improved by the addition of the molecular chaperone, and the refolding step was completed in 1 h. The protein refolding in the GroEL-containing refolding system was strongly dependent on the coexistence of ATP and Mg2+, suggesting that the GroEL hosted in the reversed micelles was biologically active and assisted in the renaturation of the inclusion bodies. The addition of cold acetone to the reversed micellar solution allowed over 90% recovery of the renatured RNase A.  相似文献   

19.
In vivo incorporation of unnatural amino acids by amber codon suppression is limited by release factor-1-mediated peptide chain termination. Orthogonal ribosome-mRNA pairs function in parallel with, but independent of, natural ribosomes and mRNAs. Here we show that an evolved orthogonal ribosome (ribo-X) improves tRNA(CUA)-dependent decoding of amber codons placed in orthogonal mRNA. By combining ribo-X, orthogonal mRNAs and orthogonal aminoacyl-tRNA synthetase/tRNA pairs in Escherichia coli, we increase the efficiency of site-specific unnatural amino acid incorporation from approximately 20% to >60% on a single amber codon and from <1% to >20% on two amber codons. We hypothesize that these increases result from a decreased functional interaction of the orthogonal ribosome with release factor-1. This technology should minimize the functional and phenotypic effects of truncated proteins in experiments that use unnatural amino acid incorporation to probe protein function in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号