首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microarrays have rapidly become an indispensable tool for gene analysis. Microarray experiments can be cost prohibitive, however, largely due to the price of the arrays themselves. Whilst different methods for stripping filter arrays on membranes have been established, only very few protocols are published for thermal and chemical stripping of microarrays on glass. Most of these protocols for stripping microarrays on glass were developed in combination with specific surface chemistry and different coatings for covalently immobilizing presynthesized DNA in a deposition process. We have developed a method for stripping commercial in situ microarrays using a multi-step procedure. We present a method that uses mild chemical degradation complemented by enzymatic treatment. We took advantage of the differences in biochemical properties of covalently linked DNA oligonucleotides on in situ synthesized microarrays and the antisense cRNA hybridization probes. The success of stripping protocols for microarrays on glass was critically dependent on the type of arrays, the nature of sample used for hybridization, as well as hybridization and washing conditions. The protocol employs alkali hydrolysis of the cRNA, several enzymatic degradation steps using RNAses and Proteinase K, combined with appropriate washing steps. Stripped arrays were rehybridized using the same protocols as for new microarrays. The stripping method was validated with microarrays from different suppliers and rehybridization of stripped in situ arrays yielded comparable results to hybridizations done on unused, new arrays with no significant loss in precision or accuracy. We show that stripping of commercial in situ arrays is feasible and that reuse of stripped arrays gave similar results compared to unused ones. This was true even for biological samples that show only slight differences in their expression profiles. Our analyses indicate that the stripping procedure does not significantly influence data quality derived from post-primary hybridizations. The method is robust, easy to perform, inexpensive, and results after reuse are of comparable accuracy to new arrays.  相似文献   

2.
Holenya P  Kitanovic I  Heigwer F  Wölfl S 《Proteomics》2011,11(10):2129-2133
Commonly used colorimetric detection applied to protein microarrays with enzymatic signal amplification leads to non‐linear signal production upon increase in analyte concentration, thereby considerably limiting the range and accuracy of quantitative readout interpretation. To extend the detection range, we developed a kinetic colorimetric detection protocol for the analysis of ELISA microarrays designed to measure multiple phosphorylated proteins using the platforms ArrayTube? and ArrayStrip?. With our novel quantification approach, microarrays were calibrated over a broad concentration range spanning four orders of magnitude of analyte concentration with picomolar threshold. We used this design for the simultaneous quantitative measurement of 15 phosphorylated proteins on a single chip.  相似文献   

3.
The surfaces and immobilization chemistries of DNA microarrays are the foundation for high quality gene expression data. Four surface modification chemistries, poly-L-lysine (PLL), 3-glycidoxypropyltrimethoxysilane (GPS), DAB-AM-poly(propyleminime hexadecaamine) dendrimer (DAB) and 3-aminopropyltrimethoxysilane (APS), were evaluated using cDNA and oligonucleotide sub-arrays. Two un-silanized glass surfaces, RCA-cleaned and immersed in Tris-EDTA buffer were also studied. DNA on amine-modified surfaces was fixed by UV (90 mJ/cm(2)), while DNA on GPS-modified surfaces was immobilized by covalent coupling. Arrays were blocked with either succinic anhydride (SA), bovine serum albumin (BSA) or left unblocked prior to hybridization with labeled PCR product. Quality factors evaluated were surface affinity for cDNA versus oligonucleotides, spot and background intensity, spotting concentration and blocking chemistry. Contact angle measurements and atomic force microscopy were preformed to characterize surface wettability and morphology. The GPS surface exhibited the lowest background intensity regardless of blocking method. Blocking the arrays did not affect raw spot intensity, but affected background intensity on amine surfaces, BSA blocking being the lowest. Oligonucleotides and cDNA on unblocked GPS-modified slides gave the best signal (spot-to-background intensity ratio). Under the conditions evaluated, the unblocked GPS surface along with amine covalent coupling was the most appropriate for both cDNA and oligonucleotide microarrays.  相似文献   

4.
Expression microarrays are often constructed by the immobilization of PCR products on two-dimensional modified glass slides or on three-dimensional microporous substrates. In this study we investigate whether the length of the immobilized species and the substrate choice influence hybridization dynamics. Using a simple bimolecular mass action controlled model to describe hybridization, we observed that the extent of hybridization and the initial velocities were directly dependent on the length of the immobilized species. An inflection point was noted at a length of 712 bases, above which the influence of length on hybridization rate decreased. Interestingly, we observed no differences in these parameters whether hybridization occurred on a two- or three-dimensional surface. Furthermore, the affinity of the solution phase labeled species for the immobilized species was identical for all arrayed lengths on both surfaces. These data indicate a similar interaction of the noncovalently immobilized species with either surface. Finally, we have determined that competitive hybridization on expression microarrays is nonlinear with respect to time and concentration of competitor. This observation is critical for analysis of expression array data.  相似文献   

5.
Li Y  Lee HJ  Corn RM 《Nucleic acids research》2006,34(22):6416-6424
RNA microarrays were created on chemically modified gold surfaces using a novel surface ligation methodology and employed in a series of surface plasmon resonance imaging (SPRI) measurements of DNA–RNA hybridization and RNA aptamer–protein binding. Various unmodified single-stranded RNA (ssRNA) oligonucleotides were ligated onto identical 5′-phosphate-terminated ssDNA microarray elements with a T4 RNA ligase surface reaction. A combination of ex situ polarization modulation FTIR measurements of the RNA monolayer and in situ SPRI measurements of DNA hybridization adsorption onto the surface were used to determine an ssRNA surface density of 4.0 × 1012 molecules/cm2 and a surface ligation efficiency of 85 ± 10%. The surface ligation methodology was then used to create a five-component RNA microarray of potential aptamers for the protein factor IXa (fIXa). The relative surface coverages of the different aptamers were determined through a novel enzymatic method that employed SPRI measurements of a surface RNase H hydrolysis reaction. SPRI measurements were then used to correctly identify the best aptamer to fIXa, which was previously determined from SELEX measurements. A Langmuir adsorption coefficient of 1.6 × 107 M−1 was determined for fIXa adsorption to this aptamer. Single-base variations from this sequence were shown to completely destroy the aptamer–fIXa binding interaction.  相似文献   

6.
In the present report, we propose a novel approach to synthesize DNA microarrays that employs immobilization of the nucleic acid molecules onto zinc and iron oxide surfaces through their phosphate backbone. Oxide films were prepared by the sol–gel technique and the resulting surfaces were characterized especially with respect to surface chemistry and morphological features by both X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). ZnO films annealed at T ? 300 °C show the most promising surface features to be employed for DNA microarray preparation, i.e. high density of binding sites (hydroxyl groups), smooth and homogeneous surfaces, high optical transmittance in the visible spectral range suitable for detection using fluorescence, and easy handling during preparation procedures. The analysis of nucleic acid retention on the oxide layers was performed by the scanning of dye-labelled DNA previously printed on the substrate using the DNA microarray robotic arm. Clearly visible spots with regular shape were revealed above the background noise indicating that anchoring of the DNA on the treated surface is efficient and does not interfere with hybridization processes. The use of suitably engineered zinc oxide film makes the immobilization strategy ideal for facile, efficient, and cost-effective manufacturing of DNA microarrays.  相似文献   

7.
In the course of exploring the hybridization properties of glass DNA microarrays, multi-stranded DNA structures were observed that could not be accounted for by classical Watson-Crick base pairing. Non-denatured double-stranded DNA array elements were shown to hybridize to single-stranded (ss)DNA probes. Similarly, ssDNA array elements were shown to bind duplex DNA probes. This led to a series of experiments demonstrating the formation of multi-stranded DNA structures on the surface of microarrays. These structures were observed with a number of heterogeneous sequences, including both purine and pyrimidine bases, with shared sequence identity between the ssDNA and one of the duplex strands. Furthermore, we observed a strong binding preference near the ends of duplexes containing a 3'-homologous strand. We suggest that such binding interactions on cationic solid surfaces could serve as a model for a number of biological processes mediated through multi-stranded DNA.  相似文献   

8.
The double helix is known to form as a result of hybridization of complementary nucleic acid strands in aqueous solution. In the helix the negatively charged phosphate groups of each nucleic acid strand are distributed helically on the outside of the duplex and are available for interaction with cationic groups. Cation-coated glass surfaces are now widely used in biotechnology, especially for covalent attachment of cDNAs and oligonucleotides as surface-bound probes on microarrays. These cationic surfaces can bind the nucleic acid backbone electrostatically through the phosphate moiety. Here we describe a simple method to fabricate DNA microarrays based upon adsorptive rather than covalent attachment of oligonucleotides to a positively charged surface. We show that such adsorbed oligonucleotide probes form a densely packed monolayer, which retains capacity for base pair-specific hybridization with a solution state DNA target strand to form the duplex. However, both strand dissociation kinetics and the rate of DNase digestion suggest, on symmetry grounds, that the target DNA binds to such adsorbed oligonucleotides to form a highly asymmetrical and unwound duplex. Thus, it is suggested that, at least on a charged surface, a non-helical DNA duplex can be the preferred structural isomer under standard biochemical conditions.  相似文献   

9.
Cell adhesion is important to develop cell microarrays and biocompatible materials. Collagen has been reported to be able to improve cell adhesion. In this paper, two collagen coating methods (collagen grafted directly on the substrate and chitosan-modified substrate) were carried out, on which the adhesive behaviors of HeLa cells were studied. An atomic force microscope and a surface potential meter were used to characterize morphologies and electric polarization of these surfaces. It was found that surface electric polarization and the its durability and surface topography were key factors to cell adhesion. Collagen (1 mg/mL) grafted on 1% chitosan-modified surface showed the best adhesion of HeLa cell. This work might be helpful to the practical application of cell microarray chips.  相似文献   

10.
The hybridization of oligomeric DNA was investigated using the frequency dependent techniques of quartz crystal microbalance (QCM) and electrochemical impedance spectroscopy (EIS). Synthetic 5'-amine-terminated single stranded oligonucleotides (ssDNA) were immobilized on the surface of the oxidized platinum driving electrodes of AT-cut quartz QCM crystals using 3-glycidoxypropyl-trimethoxysilane. Similar ssDNA coupling was accomplished on the exposed glass surface between the metallic digits of microlithographically fabricated interdigitated microsensor electrodes (IMEs). Confirmation of this covalent coupling surface chemistry was achieved using Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR). Substantial changes in resonant frequency values (0.012% decrease) and electrochemical impedance values (both real and imaginary components) (35.4 and 42.1% increase in impedance magnitude at 1.0 Hz in buffer and deionized water, respectively) were observed resulting from hybridization of the attached ssDNA upon exposure to its complement under appropriate hybridization conditions. Non-complementary (random) oligomer sequence demonstrated a modest change in resonant frequency and a non-detectable change in impedance. Microarray glass slide surfaces modified with 3-glycidoxypropyltrimethoxysilane (GPS), shown to be advantageous in the design and use of microarrays of amine-terminated ssDNA, is confirmed to arise from direct covalent coupling of the DNA to the surface with little non-specific adsorption. The possibility to detect the binding state of DNA in the vicinity of an electrode, without a direct connection between the measurement electrode and the DNA is hereby reported. The potential for development of label-free, low-density DNA microarrays is demonstrated and is being pursued.  相似文献   

11.
Selectivity and sensitivity in the detection of single nucleotide polymorphisms (SNPs) are among most important attributes to determine the performance of DNA microarrays. We previously reported the generation of a novel mesospaced surface prepared by applying dendron molecules on the solid surface. DNA microarrays that were fabricated on the dendron-modified surface exhibited outstanding performance for the detection of single nucleotide variation in the synthetic oligonucleotide DNA. DNA microarrays on the dendron-modified surface were subjected to the detection of single nucleotide variations in the exons 5–8 of the p53 gene in genomic DNAs from cancer cell lines. DNA microarrays on the dendron-modified surface clearly discriminated single nucleotide variations in hotspot codons with high selectivity and sensitivity. The ratio between the fluorescence intensity of perfectly matched duplexes and that of single nucleotide mismatched duplexes was >5–100 without sacrificing signal intensity. Our results showed that the outstanding performance of DNA microarrays fabricated on the dendron-modified surface is strongly related to novel properties of the dendron molecule, which has the conical structure allowing mesospacing between the capture probes. Our microarrays on the dendron-modified surface can reduce the steric hindrance not only between the solid surface and target DNA, but also among immobilized capture probes enabling the hybridization process on the surface to be very effective. Our DNA microarrays on the dendron-modified surface could be applied to various analyses that require accurate detection of SNPs.  相似文献   

12.
Colorimetric silver detection of DNA microarrays   总被引:14,自引:0,他引:14  
Development of microarrays has revolutionized gene expression analysis and molecular diagnosis through miniaturization and the multiparametric features. Critical factors affecting detection efficiency of targets hybridization on microarray are the design of capture probes, the way they are attached to the support, and the sensitivity of the detection method. Microarrays are currently detected in fluorescence using a sophisticated confocal laser-based scanner. In this work, we present a new colorimetric detection method which is intented to make the use of microarray a powerful procedure and a low-cost tool in research and clinical settings. The signal generated with this method results from the precipitation of silver onto nanogold particles bound to streptavidin, the latter being used for detecting biotinylated DNA. This colorimetric method has been compared to the Cy-3 fluorescence method. The detection limit of both methods was equivalent and corresponds to 1 amol of biotinylated DNA attached on an array. Scanning and data analysis of the array were obtained with a colorimetric-based workstation.  相似文献   

13.
A chemical procedure was developed to functionalize poly(methyl methacrylate) (PMMA) substrates. PMMA is reacted with hexamethylene diamine to yield an aminated surface for immobilizing DNA in microarrays. The density of primary NH2 groups was 0.29 nmol/cm2. The availability of these primary amines was confirmed by the immobilization of DNA probes and hybridization with a complementary DNA strand. The hybridization signal and the hybridization efficiency of the chemically aminated PMMA slides were comparable to the hybridization signal and the hybridization efficiency obtained from differently chemically modified PMMA slides, silanized glass, commercial silylated glass and commercial plastic Euray™ slides. Immobilized and hybridized densities of 10 and 0.75 pmol/cm2, respectively, were observed for microarrays on chemically aminated PMMA. The immobilized probes were heat stable since the hybridization performance of microarrays subjected to 20 PCR heat cycles was only reduced by 4%. In conclusion, this new strategy to modify PMMA provides a robust procedure to immobilize DNA, which is a very useful substrate for fabricating single use diagnostics devices with integrated functions, like sample preparation, treatment and detection using microfabrication and microelectronic techniques.  相似文献   

14.
To explore a method for enhancing the immobilization and hybridization efficiency of oligonucleotides on DNA microarrays, conventional protocols of poly‐L‐lysine coating were modified by means of surface chemistry, namely, the slides were prepared by the covalently coupling of poly‐L‐lysine to a glycidoxy‐modified glass surface. The modified slides were then used to print microarrays for the detection of the SARS coronavirus by means of 60mer oligonucleotide probes. The characteristics of the modified slides concerning immobilization efficiency, hybridization dynamics, and probe stripping cycles were determined. The improved surface exhibited high immobilization efficiency, a good quality uniformity, and satisfactory hybridization dynamics. The spotting concentration of 10 μmol/L can meet the requirements of detection; the spots were approximately 170 nm in diameter; the mean fluorescence intensity of the SARS spots were between 3.2 × 104 and 5.0 × 104 after hybridization. Furthermore, the microarrays prepared by this method demonstrated more resistance to consecutive probe stripping cycles. The activated GOPS‐PLL slide could undergo hybridization stripping cycles for at least three cycles, and the highest loss in fluorescence intensity was found to be only 11.9 % after the third hybridization. The modified slides using the above‐mentioned method were superior to those slides treated with conventional approaches, which theoretically agrees with the fact that modification by surface chemistry attaches the DNA covalently firmly to the slides. This protocol may have great promise in the future for application in large‐scale manufacture.  相似文献   

15.
Giardia lamblia is an intestinal protozoan that inhabits the intestinal tract of man and other mammals by attaching to the mucosal surface via the contractile activity of an attachment organelle called the ventral adhesive disk. We have investigated the presence of other attachment mechanisms in G. lamblia trophozoites by using microfabricated substrates that sterically interfere with formation of the hypothesized "negative pressure" under the ventral adhesive disk that would mediate attachment to a substratum. Pillars measuring 1 microm high and 2 microm in diam. were constructed in microarrays with spacings smaller than the diameter of the ventral adhesive disk. Using high resolution field emission scanning electron microscopy, the attachment of trophozoites to the tops of pillars in the microfabricated substrates was investigated. Firm adhesion of trophozoites was observed to be mediated by direct attachment of the ventrolateral flange membrane to the tops of microfabricated pillars. Attachment to microfabricated surfaces was 16% of that observed for attachment mediated by the ventral adhesive disk (4.4 +/- 1.5 cells/100 micro2 micropillar surface vs. 25.9 +/- 3.1 cells/100 micro2 flat substrate, p < 0.0001) This is the first report of trophozoite adhesion to a substratum by a mechanism other than the direct attachment of the ventral adhesive disk, and provides experimental evidence that the ventrolateral flange may play a role in trophozoite adhesion. A hypothesis is presented describing how the adhesive nature of the ventrolateral flange might be involved in normal attachment of G. lamblia trophozoites to a substratum.  相似文献   

16.

Background

Sandblasting particles which remain on the surfaces of dental restorations are removed prior to cementation. It is probable that adhesive strength between luting material and sandblasting particle remnants might exceed that with restorative material. If that being the case, blasting particles adhere to sandblasted material surface could be instrumental to increasing adhesive strength like underlying bonding mechanism between luting material and silanized particles of tribochemical silica coating-treated surface. We hypothesize that ultrasonic cleaning of bonding surfaces, which were pretreated with sandblasting, may affect adhesive strength of a resin luting material to dental restorative materials.

Methods

We therefore observed adhesive strength of resin luting material to aluminum oxide was greater than those to zirconia ceramic and cobalt-chromium alloy beforehand. To measure the shear bond strengths of resin luting material to zirconia ceramic and cobalt-chromium alloy, forty specimens of each restorative material were prepared. Bonding surfaces were polished with silicon abrasive paper and then treated with sandblasting. For each restorative material, 40 sandblasted specimens were equally divided into two groups: ultrasonic cleaning (USC) group and non-ultrasonic cleaning (NUSC) group. After resin luting material was polymerized on bonding surface, shear test was performed to evaluate effect of ultrasonic cleaning of bonding surfaces pretreated with sandblasting on bond strength.

Results

For both zirconia ceramic and cobalt-chromium alloy, NUSC group showed significantly higher shear bond strength than USC group.

Conclusions

Ultrasonic cleaning of dental restorations after sandblasting should be avoided to retain improved bonding between these materials.  相似文献   

17.
A new polymeric coating for protein microarrays   总被引:3,自引:0,他引:3  
Despite the increasing interest in arraying proteins in a high-density format, several technical issues still impede the development of protein microarray technology. One of the major problems is the availability of substrates that are able to bind native proteins with high density. In this study, we investigated the suitability of a novel surface as a support for protein microarrays. A polymeric glass coating is obtained by physical adsorption of a N,N-dimethylacrylamide (DMA), N,N-acryloyloxysuccinimide (NAS), and [3-(methacryloyl-oxy)propyl]trimethoxysilyl (MAPS) copolymer. The coating procedure provides a fast and inexpensive method of producing hydrophilic functional surfaces. The slide performance was investigated in a protein-protein interaction experiment and in the assessment of rheumatoid factor (RF) in human serum samples. The results demonstrate that the ligands immobilized on the polymeric surface maintain an active conformation and are easily accessible, providing a detection limit of 54amol/spot. Moreover, in the RF assay, after hybridization with the sera, the slides have a low background, leading to a detection limit of 900amol/spot.  相似文献   

18.
We have developed DNA microarrays containing stem–loop DNA probes with short single-stranded overhangs immobilized on a Packard HydroGel chip, a 3-dimensional porous gel substrate. Microarrays were fabricated by immobilizing self-complementary single-stranded oligonucleotides, which adopt a partially duplex structure upon denaturing and re-annealing. Hybridization of single-stranded DNA targets to such arrays is enhanced by contiguous stacking interactions with stem–loop probes and is highly sequence specific. Subsequent enzymatic ligation of the targets to the probes followed by stringent washing further enhances the mismatched base discrimination. We demonstrate here that these microarrays provide excellent specificity with signal-to-background ratios of from 10- to 300-fold. In a comparative study, we demonstrated that HydroGel arrays display 10–30 times higher hybridization signals than some solid surface DNA microarrays. Using Sanger sequencing reactions, we have also developed a method for preparing nested 3′-deletion sets from a target and evaluated the use of stem–loop DNA arrays for detecting p53 mutations in the deletion set. The stem–loop DNA array format is simple, robust and flexible in design, thus it is potentially useful in various DNA diagnostic tests.  相似文献   

19.
The green mussel Perna viridis LINNE can be kept in simulated seawater for more than 6 months in good condition. The mussel forms many threads by secreting an adhesive protein from the foot, and attaches with more than 50 byssal threads, which makes most mussels clump together. In order to investigate the preparation of the antifouling surfaces toward green mussels, the attachment of mussels was tested using glass surfaces modified with silane coupling agents, together with non-treated material surfaces such as glass and silicone. The correlation between the attachment percentage and the mean number of the secreted byssus was highly significant, indicating that the mussel selects a favorable surface prior to the secretion of byssus. The relationships between the mussel attachment and the surface chemical parameters (surface free energy (sfe) and its dispersion and polar components) were examined based on a working hypothesis, which we have previously reported. The result of statistical regression test indicated that a certain correlation was found between the dispersion component and the mussel attachment, while the polar component did not correlate to the mussel attachment. The present surface chemical approach provided an additional clue for the preparation of ecologically clean antifouling materials that takes into account the combination of the wettability of both the marine adhesive proteins (MAP) and the modified surfaces.  相似文献   

20.
To improve the sensitivity of fluorescence detection in DNA microarrays, the use of silicon nanostructures based on chemical vapor deposition (CVD) processes adopted for the growth of rough polycrystalline silicon was investigated. These substrates present advantages of two main properties which could lead to an enhancement of the fluorescence detection, i.e. (i) the increase of the available surface area in order to achieve a high loading capacity of biomolecules and (ii) the optimization of the stack of silicon nanostructures support. Indeed, the structures were elaborated on an initial thermal oxide layer and then covered with a silicon oxide layer, obtained by oxidation and allowing the functionalization for the subsequent grafting of DNA probes. Moreover, these oxide layers play a part in the fluorescence detection. The influence of the silicon oxide layer thickness above and below the silicon grains in close relation with the density of nanostructures on the emitted fluorescence was emphasized. This paper presents an experimental characterization of the fluorescence intensity and the optimization of the different layers that composed the substrate used for DNA microarrays. The performances of the microarrays were investigated by means of hybridization experiments using complementary fluorescent labeled-oligonucleotides targets. Our results indicate that an optimized substrate can be designed and that the use of oxidized silicon nanostructures for support of biochip could be a strategy for improving the sensitivity of fluorescence detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号