首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Summary Development of new selectable markers is needed to increase the efficiency and flexibility of plant transformation, and to overcome drawbacks sometimes associated with use of existing markers. A useful alternative to chemical-based selection systems would be a system using visual screening to obtain transgenic lines. Investigations were carried out to determine if the green fluorescent protein (gfp) gene could be utilized alone as a visual screenable marker to produce stably transformed, fertile oat plants. Twelve experiments were conducted in which gfp-based selection was utilized to obtain routinely stable transgenic lines in oat. A synthetic gfp gene under the control of the maize ubiquitin promoter was delivered into embryogenic oat callus via microprojectile bombardment. Cell clusters (1–3 mm) expressing gfp were visually identified using epifluorescence microscopy and physically isolated approximately 3 wk post-bombardment. Fertile, gfp-expressing T0 plants were regenerated from 78% of the glowing cell sectors placed on regeneration medium. T0 plants from 55% of the events produced gfp-expressing progeny in a 3∶1 Mendelian ratio. Southern blot and PCR analysis confirmed transgene integration and transmission to progeny. Expression of gfp did not reduce plant growth or fertility. Transgene copy number and integration patterns were similar to those in transgenic plants derived from chemical-based selection systems. The mean transformation frequency, based on fertile events obtained per bombarded plate, was 1.8%. Over 180 independent transgenic oat lines were produced, to date, using only visual screening for expression of gfp, demonstrating efficiency and repeatability of the selection system. Mention of a trademark or proprietary product does not constitute a guarantee or warranty by the University of Wisconsin or the US Department of Agriculture and does not imply its approval to the exclusion of other products that may be suitable.  相似文献   

2.
 Genetic transformation using shoot meristematic cultures (SMCs) derived from germinated seedlings is established in commercial varieties of oat cv 'Garry' and barley cv 'Harrington'. Six-month-old SMCs of oat were induced on MPM and bombarded with bar and uidA; 9-month-old SMCs of barley were induced on an improved medium (MPM-MC) containing maltose and high levels of copper and bombarded with bar/nptII and uidA. After 3–4 months on selection, seven independent transgenic lines of oat were obtained, two lines of barley. All transgenic lines produced T0 plants; five lines of oat and one line of barley were self-fertile, and the other barley line produced T1 seed when out-crossed. Both Mendelian and non-Mendelian segregation ratios of transgene expression were observed in T1 and T2 progeny of transgenic oat. Normal as well as low physical transmission of the transgenes was also seen in T1 and T2 progeny of oat. The bar-containing line of barley showed stable transgene expression in all of the T1 and T2 progeny tested. Received: 4 January 1999 / Accepted: 14 January 1999  相似文献   

3.
The expression of green fluorescent protein (GFP) and its inheritance were studied in transgenic oat ( Avena sativa L.) plants transformed with a synthetic green fluorescent protein gene [sgfp(S65T)] driven by a rice actin promoter. In vitro shoot meristematic cultures (SMCs) induced from shoot apices of germinating mature seeds of a commercial oat cultivar, Garry, were used as a transformation target. Proliferating SMCs were bombarded with a mixture of plasmids containing the sgfp(S65T) gene and one of three selectable marker genes, phosphinothricin acetyltransferase (bar), hygromycin phosphotransferase (hpt) and neomycin phosphotransferase (nptII). Cultures were selected with bialaphos, hygromycin B and geneticin (G418), respectively, to identify transgenic tissues. From 289 individual explants bombarded with the sgfp(S65T) gene and one of the three selectable marker genes, 23 independent transgenic events were obtained, giving a 8.0% transformation frequency. All 23 transgenic events were regenerable, and 64% produced fertile plants. Strong GFP expression driven by the rice actin promoter was observed in a variety of tissues of the T(0) plants and their progeny in 13 out of 23 independent transgenic lines. Stable GFP expression was observed in T(2) progeny from five independent GFP-expressing lines tested, and homozygous plants from two lines were obtained. Transgene silencing was observed in T(0) plants and their progeny of some transgenic lines.  相似文献   

4.
 A high frequency of embryogenesis and transformation from all parts of flowers of two lines of Medicago truncatula R-108–1 and Jemalong J5 were obtained. Using this flower system, we obtained transgenic plants expressing promoter-uidA gene fusions as well as the gfp living cell color reporter gene. Moreover, this method allows us to save time and to use a smaller greenhouse surface for the culture of donor plants. Southern hybridization showed that the internal gfp fragment had the expected size and the number of T-DNA copies integrated in the plant genome varied between one and three. These data suggest that the presence of the GFP protein has no toxic effects, since no rearrangement of the gfp reporter gene was detected in the regenerated plants. Received: 25 May 1999 / Revision received: 2 August 1999 / Accepted: 2 August 1999  相似文献   

5.
 A method for producing large numbers of transgenic wheat plants has been developed. With this approach, an average of 9.7% of immature embryo explants were transformed and generated multiple self-fertile, independently transformed plants. No untransformed plants, or escapes, were regenerated. This transformation procedure uses morphogenic calli derived from scutellum tissue of immature embryos of Triticum aestivum cv. Bobwhite co-bombarded with separate plasmids carrying a selectable marker gene (bar) and a gene of interest, respectively. Transformed wheat calli with a vigorous growth phenotype were obtained by extended culture on media containing 5.0 mg/l bialaphos. These calli retained morphogenic potential and were competent for plant regeneration for as long as 11 months. The bar gene and the gene of interest were co-expressed in T0 progeny plants. This wheat transformation protocol may facilitate quantitative production of multiple transgenic plants and significantly reduce the cost and labor otherwise required for screening out untransformed escapes. Received: 15 June 1998 / Revision received: 6 April 1999 / Accepted: 26 April 1999  相似文献   

6.
An efficient transformation and regeneration system was established for the production of transgenic spinach (Spinacia oleracea L.) plants. Cotyledon explants were infected with Agrobacterium tumefaciens strain LBA4404 carrying the selectable marker gene, neomycin phosphotransferase II (nptII), and the reporter gene smgfp, encoding soluble-modified green-fluorescent protein, driven by the cauliflower mosaic virus 35S promoter. The infected explants were cultured on Murashige and Skoog medium, containing 1 mg/l benzyladenine and 0.4 mg/l naphthaleneacetic acid. Shoots were regenerated on selection medium containing 50 mg/l kanamycin. Regenerated kanamycin-resistant shoots were rooted on medium containing 1 mg/l indolebutyric acid and subsequently grown in soil in the greenhouse. Southern blot analysis indicated that the smgfp gene had been integrated into the spinach genome. Northern and Western blots showed that the smgfp gene was expressed in progeny plants. Received: 31 March 1998 / Revision received: 27 September 1998 / Accepted: 10 Ocotber 1998  相似文献   

7.
In order to meet the future requirement of using non-antibiotic resistance genes for the production of transgenic plants, we have adapted the selectable marker system PMI/mannose to be used in Agrobacterium-mediated transformation of flax (Linum usitatissimum L.) cv. Barbara. The Escherichia coli pmi gene encodes a phosphomannose isomerase (E.C. 5.1.3.8) that converts mannose-6-phosphate, an inhibitor of glycolysis, into fructose-6-phosphate (glycolysis intermediate). Its expression in transformed cells allows them to grow on mannose-selective medium. The Agrobacterium tumefaciens strain GV3101 (pGV2260) harbouring the binary vector pNOV2819 that carries the pmi gene under the control of the Cestrum yellow leaf curling virus constitutive promoter was used for transformation experiments. Transgenic flax plants able to root on mannose-containing medium were obtained from hypocotyl-derived calli that had been selected on a combination of 20 g L−1 sucrose and 10 g L−1 mannose. Their transgenic state was confirmed by PCR and Southern blotting. Transgene expression was detected by RT-PCR in leaves, stems and roots of in vitro grown primary transformants. The mean transformation efficiency of 3.6%, that reached 6.4% in one experiment was comparable to that obtained when using the nptII selectable marker on the same cultivar. The ability of T1 seeds to germinate on mannose-containing medium confirmed the Mendelian inheritance of the pmi gene in the progeny of primary transformants. These results indicate that the PMI/mannose selection system can be successfully used for the recovery of flax transgenic plants under safe conditions for human health and the environment.  相似文献   

8.
Jia H  Pang Y  Chen X  Fang R 《Transgenic research》2006,15(3):375-384
Selection markers are often indispensable during the process of plant transformation, but dispensable once transgenic plants have been established. The Cre/lox site-specific recombination system has been employed to eliminate selectable marker genes from transgenic plants. Here we describe the use of a movement function-improved Tobacco Mosaic Virus (TMV) vector, m30B, to express Cre recombinase for elimination of the selectable marker gene nptII from transgenic tobacco plants. The transgenic tobacco plants were produced by Agrobacterium-mediated transformation with a specially designed binary vector pGNG which contained in its T-DNA region a sequence complex of 35S promoter-lox-the gfp coding sequence-rbcS terminator-Nos promoter-nptII-Nos terminator-lox-the gus coding region-Nos terminator. The expression of the recombinant viral vector m30B:Cre in plant cells was achieved by placing the viral vector under the control of the 35S promoter and through agroinoculation. After co-cultivating the pGNG-leaf discs with agro35S-m30B:Cre followed by shoot regeneration without any selection, plants devoid of the lox-flanked sequences including nptII were obtained with an efficiency of about 34% as revealed by histochemical GUS assay of the regenerants. Three of 11 GUS expressing regenerants, derived from two independent transgenic lines containing single copy of the pGNG T-DNA, proved to be free of the lox-flanked sequences by Southern blot analysis. Excision of the lox-flanked sequences in the three plants could be attributed to transient expression of Cre from the viral vector at the early stage of co-cultivation, since the cre sequence could not be detected in the viral RNA molecules accumulated in the plants, nor in their genomic DNA. The parental marker-free genotype was inherited in their selfed progeny, and all of the progeny were virus-free, apparently because TMV is not seed-transmissible. Therefore, expression of Cre from a TMV-based vector could be used to eliminate selectable marker genes from transgenic tobacco plants without sexual crossing and segregation, and this strategy could be extended to other TMV-infected plant species and applicable to other compatible virus–host plant systems.  相似文献   

9.
Transgenic locus composition and T-DNA linkage configuration were assessed in a population of rice plants transformed using the dual-binary vector system pGreen (T-DNA containing the bar and gus genes)/pSoup (T-DNA containing the aphIV and gfp genes). Transgene structure, expression and inheritance were analysed in 62 independently transformed plant lines and in around 4,000 progeny plants. The plant lines exhibited a wide variety of transgenic locus number and composition. The most frequent form of integration was where both T-DNAs integrated at the same locus (56% of loci). When single-type T-DNA integration occurred (44% of loci), pGreen T-DNA was preferentially integrated. In around half of the plant lines (52%), the T-DNAs integrated at two independent loci or more. In these plants, both mixed and single-type T-DNA integration often occurred concurrently at different loci during the transformation process. Non-intact T-DNAs were present in 70–78% of the plant lines causing 14–21% of the loci to contain only the mid to right border part of a T-DNA. In 53–66% of the loci, T-DNA integrated with vector backbone sequences. Comparison of transgene presence and expression in progeny plants showed that segregation of the transgene phenotype was not a reliable indicator of either transgene inheritance or T-DNA linkage, as only 60–80% of the transgenic loci were detected by the expression study. Co-expression (28% of lines) and backbone transfer (53–66% of loci) were generally a greater limitation to the production of marker-free T1 plants expressing the gene of interest than co-transformation (71% of lines) and unlinked integration (44% of loci).  相似文献   

10.
The efficiency of Agrobacterium tumefaciens transformation of the model legume Medicago truncatula cv. Jemalong (genotype 2HA) was evaluated for strains LBA 4404, C58pMP90, C58pGV2260 and AGL1. Binary vectors carrying promoter-gus/gfp reporter gene fusions and the nptII gene as selectable marker were used for plant in vitro transformation/regeneration. The highest transformation efficiency was obtained with the disarmed hypervirulent strain AGL1 (Ti plasmid TiBo542), for which the percentage of explants forming kanamycin (Km)-resistant calli was double that obtained with each of the other three strains. In addition, we were able to reduce the time necessary for plant regeneration using AGL1, with 24% of the explants generating Km-resistant transgenic plantlets within only 4–5 months of culture. Transgene expression in planta was analysed and found to be conserved in the T1 descendents.Communicated by R.J. Rose  相似文献   

11.
Expression of a transgene is rarely analysed in the androgenetic progenies of the transgenic plants. Here, we report differential transgene expression in androgenetic haploid and doubled haploid (DH) tobacco plants as compared to the diploid parental lines, thus demonstrating a gene dosage effect. Using Agrobacterium-mediated transformation, and bacterial reporter genes encoding neomycin phosphotransferase (nptII) and β-glucuronidase (uidA/ GUS), driven respectively by the mas 1′ and mas 2′ promoters, we have generated more than 150 independent transgenic (R0) Nicotiana tabacum plants containing one or more T-DNA copies. Transgene analyses of these R0, their selfed R1 lines and their corresponding haploid progenies showed an obvious position effect (site of T-DNA insertion on chromosome) on uidA expression. However, transgene (GUS) expression levels were not proportional to transgene copy number. More than 150 haploids and doubled haploids, induced by treatment with colchicine, were produced from 20 independent transgenic R0 plants containing single and multiple copies of the uidA gene. We observed that homozygous DH plants expressed GUS at approximately 2.9-fold the level of the corresponding parental haploid plants. This increase in transgene expression may be attributed mainly to the increase (2-fold) in chromosome number. Based on this observation, we suggest a strong link between chromosome number (ploidy dosage effect) and transgene expression. In particular, we demonstrate the effect on its expression level of converting the transgene from the heterozygous (in R0 plants) to the homozygous (DH) state: e.g. an increase of 50% was observed in the homozygous DH as compared to the original heterozygous diploid plants. We propose that ploidy coupled with homozygosity can result in a new type of gene activation, creating differences in gene expression patterns. Received: 27 April 1998 / Accepted: 12 August 1998  相似文献   

12.
A new selectable marker system has been adapted for use in Agrobacterium-mediated transformation of maize. This selection system utilizes the pmi gene encoding for phosphomannose-isomerase that converts mannose-6-phosphate to fructose-6-phosphate. Only transformed cells are capable of utilizing mannose as a carbon source. Agrobacterium-mediated transformation of immature embryos followed by a pre-selection of 10–14 days prior to selection at a level of 1% mannose and 0.5% sucrose led to the recovery of trangenic lines of a frequency of as high as 30% in about 12 weeks. Molecular and genetic analysis showed that selected plants contained the pmi gene and that the gene was transmitted to the progeny in a Mendelian fashion. Received: 24 August 1999 / Revision received: 27 September 1999 / Accepted: 9 November 1999  相似文献   

13.
14.
Perennial ryegrass (Lolium perenne L.) is the most important grass species in areas with a temperate climate. Biolistic transfer of a ubiquitin promoter driven nptII expression cassette into mature or immature tissue derived calli of perennial ryegrass followed by paromomycin selection, resulted in the rapid and efficient production of fertile transgenic ryegrass plants. Transformation efficiencies after paromomycin selection in combination with the nptII selectable marker compared favourably with hygromycin selection in combination with the hph selectable marker. In total 83 independent nptII expressing plants were produced. Transformation frequency was highly affected by genotype, explant, selection regime and the duration of the callus induction period. The optimised transformation protocol for mature embryo derived calli of turf-type or forage-type cultivars resulted in an average transformation efficiency of 5.2% or 6.6% respectively. This converts into 1.7 or 2.2 independent transgenic plants per bombardment. Immature inflorescence- and immature embryo-derived calli were also successfully used as target for the gene transfer, resulting in transformation efficiencies of up to 3.7% or 11.42% respectively. Transgenic plants were transferred to soil 12 or 9 weeks after excision of mature and immature embryos or inflorescences respectively. Transgene integration and expression were confirmed by PCR and ELISA or western blot analysis. Southern blot analysis confirmed the independent nature of the transgenic lines. The majority of lines showed the integration of two to six transgene copies, while 21% of the analysed lines had a single copy insert. A short tissue culture period in comparison to recently published reports seems to be beneficial for the production of normal and fertile transgenic ryegrass plants. Consequently we report for the first time molecular evidence for sexual transgene transmission in fertile transgenic perennial ryegrass.  相似文献   

15.
Zea mays transformants produced by particle bombardment of embryogenic suspension culture cells of the genotype A188 × B73 and selected on kanamycin or bialaphos were characterized with respect to transgene integration, expression, and inheritance. Selection on bialaphos, mediated by thebar orpat genes, was more efficient than selection on kanamycin, mediated by thenptII gene. Most transformants contained multicopy, single locus, transgene insertion events. A transgene expression cassette was more likely to be rearranged if expression of that gene was not selected for during callus growth. Not all plants regenerated from calli representing single transformation events expressed the transgenes, and a non-selectable gene (uidA) was expressed in fewer plants than was the selectable transgene. Mendelian inheritance of transgenes consistent with transgene insertion at a single locus was observed for approximately two thirds of the transformants assessed. Transgene expression was typically, but not always, predictable in progeny plants-transgene silencing, as well as poor transgene transmission to progeny, was observed in some plant lines in which the parent plants had expressed the transgene.  相似文献   

16.
Molecular approaches to sugar beet improvement will benefit from an efficient transformation procedure that does not rely upon exploitation of selectable marker genes such as those which confer antibiotic or herbicide resistance upon the transgenic plants. The expression of the green fluorescent protein (GFP) signal has been investigated during a program of research that was designed to address the need to increase the speed and efficiency of selection of sugar beet transformants. It was envisaged that the GFP reporter could be used initially as a supplement to current selection regimes in order to help eliminate “escapes” and perhaps eventually as a replacement marker in order to avoid the public disquiet associated with antibiotic/herbicide-resistance genes in field-released crops. The sgfp-S65T gene has been modified to have a plant-compatible codon usage, and a serine to threonine mutation at position 65 for enhanced fluorescence under blue light. This gene, under the control of the CaMV 35S promoter, was introduced into sugar beet via Agrobacterium-mediated transformation. Early gene expression in cocultivated sugar beet cultures was signified by green fluorescence several days after cocultivation. Stably transformed calli, which showed green fluorescence at a range of densities, were obtained at frequencies of 3–11% after transferring the inoculated cultures to selection media. Cocultivated shoot explants or embryogenic calli were regularly monitored under the microscope with blue light when they were transferred to media without selective agents. Green fluorescent shoots were obtained at frequencies of 2–5%. It was concluded that the sgfp-S65T gene can be used as a vital marker for noninvasive screening of cells and shoots for transformation, and that it has potential for the development of selectable marker-free transgenic sugar beet.  相似文献   

17.
 Barley (Hordeum vulgare L.) hordeins are alcohol-soluble redundant storage proteins that accumulate in protein bodies of the starchy endosperm during seed development. Strong endosperm-specific β-glucuronidase gene-(uidA; gus) expression driven by B1- and D-hordein promoters was observed in stably transformed barley plants co-transformed with the selectable herbicide resistance gene, bar. PCR analysis using DNA from calli of 22 different lines transformed with B1- or D-hordein promoter-uidA fusions showed the expected 1.8-kb uidA fragment after PCR amplification. DNA-blot analysis of genomic DNA from T0 leaf tissue of 13 lines showed that 12 (11 independent) lines produced uidA fragments and that one line was uidA-negative. T1 progeny from 6 out of 12 independent regenerable transgenic lines tested for uidA expression showed a 3 : 1 segregation pattern. Of the remaining six transgenic lines, one showed a segregation ratio of 15 : 1 for GUS, one expressed bar alone, one lacked transmission of either gene to T1 progeny, and three were sterile. Stable GUS expression driven by the hordein promoters was observed in T5 progeny in one line, T4 progeny in one line, T3 progeny in three lines and T2 or T1 progeny in the remaining two fertile lines tested; homozygous transgenic plants were obtained from three lines. In the homozygous lines the expression of the GUS protein, driven by either the B1- or D-hordein promoters, was highly expressed in endosperm at early to mid-maturation stages. Expression of bar driven by the maize ubiquitin promoter was also stably transmitted to T1 progeny in seven out of eight lines tested. However, in most lines PAT expression driven by the maize ubiquitin promoter was gradually lost in T2 or later generations; one homozygous line was obtained. In contrast, six out of seven lines stably expressed GUS driven by the hordein promoters in T2 or later generations. We conclude that the B1- and D-hordein promoters can be used to engineer, and subsequently study, stable endosperm-specific gene expression in barley and potentially to modify barley seeds through genetic engineering. Received: 28 May 1998 / Accepted: 19 December 1998  相似文献   

18.
The development of rapid and efficient strategies to generate selectable marker-free transgenic plants could help increase the consumer acceptance of genetically modified (GM) plants. To produce marker-free transgenic plants without conditional treatment or the genetic crossing of offspring, we have developed a rapid and convenient DNA excision method mediated by the Cre/loxP recombination system under the control of a −46 minimal CaMV 35S promoter. The results of a transient expression assay showed that −46 minimal promoter::Cre recombinase (−46::Cre) can cause the loxP-specific excision of a selectable marker, thereby connecting the 35S promoter and β-glucuronidase (GUS) reporter gene. Analysis of stable transgenic Arabidopsis plants indicated a positive correlation between loxP-specific DNA excision and GUS expression. PCR and DNA gel-blot analysis further revealed that nine of the 10 tested T1 transgenic lines carried both excised and nonexcised constructs in their genomes. In the subsequent T2 generation plants, over 30% of the individuals for each line were marker-free plants harboring the excised construct only. These results demonstrate that the −46::Cre fusion construct can be efficiently and easily utilized for producing marker-free transgenic plants.  相似文献   

19.
Reverse-genetic studies of chloroplast genes in the green alga Chlamydomonas reinhardtii have been hampered by the paucity of suitable selectable markers for chloroplast transformation. We have constructed a series of vectors for the targeted insertion and expression of foreign genes in the Chlamydomonas chloroplast genome. Using these vectors we have developed a novel selectable marker based on the bacterial gene aphA-6, which encodes an aminoglycoside phosphotransferase. The aphA-6 marker allows direct selection for transformants on medium containing either kanamycin or amikacin. The marker can be used to inactivate or modify specific chloroplast genes, and can be used as a reporter of gene expression. The availability of this marker now makes possible the serial transformation of the chloroplast genome of Chlamydomonas. Received: 26 October 1999 / Accepted: 28 December 1999  相似文献   

20.
 A dual marker plasmid comprising the reporter gene sgfp (green fluorescent protein) and the selectable bar gene (Basta tolerance) was constructed by replacing the uidA (β-glucuronidase, GUS) gene in a uidA-bar construct with sgfp. A particle inflow gun was used to propel tungsten particles coated with this plasmid into immature inflorescence-derived embryogenic callus of switchgrass (Panicum virgatum L.). GFP was observed in leaf tissue and pollen of transgenic plants. Nearly 100 plants tolerant to Basta were obtained from the experiments, and Southern blot hybridization confirmed the presence of both the bar and sgfp genes. Plants regenerated from in vitro cultures of transgenic plants grew on medium with 10 mg l–1 bialaphos. When the pH indicator chlorophenol red was in the medium, the transgenic plantlets changed the medium from red to yellow. Basta tolerance was observed in T1 plants resulting from crosses between transgenic and nontransgenic control plants, indicating inheritance of the bar transgene. Received: 11 May 2000 / Revision received: 21 August 2000 / Accepted: 22 August 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号