首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the production of secondary metabolites yield and productivity are the most important design parameters. The focus is therefore to direct the carbon fluxes towards the product of interest, and this can be obtained through metabolic engineering whereby directed genetic changes are introduced into the production strain. In this process it is, however, important to analyze the metabolic network through measurement of the intracellular metabolites and the flux distributions. Besides playing an important role in the optimization of existing processes, metabolic engineering also offers the possibility to construct strains that produce novel metabolites, either through the recruitment of heterologous enzyme activities or through introduction of specific mutations in catalytic activities.  相似文献   

2.
Conventional metabolic flux analysis uses the information gained from determination of measurable fluxes and a steady-state assumption for intracellular metabolites to calculate the metabolic fluxes in a given metabolic network. The determination of intracellular fluxes depends heavily on the correctness of the assumed stoichiometry including the presence of all reactions with a noticeable impact on the model metabolite balances. Determination of fluxes in complex metabolic networks often requires the inclusion of NADH and NADPH balances, which are subject to controversial debate. Transhydrogenation reactions that transfer reduction equivalents from NADH to NADPH or vice versa can usually not be included in the stoichiometric model, because they result in singularities in the stoichiometric matrix. However, it is the NADPH balance that, to a large extent, determines the calculated flux through the pentose phosphate pathway. Hence, wrong assumptions on the presence or activity of transhydrogenation reactions will result in wrong estimations of the intracellular flux distribution. Using 13C tracer experiments and NMR analysis, flux analysis can be performed on the basis of only well established stoichiometric equations and measurements of the labeling state of intracellular metabolites. Neither NADH/NADPH balancing nor assumptions on energy yields need to be included to determine the intracellular fluxes. Because metabolite balancing methods and the use of 13C labeling measurements are two different approaches to the determination of intracellular fluxes, both methods can be used to verify each other or to discuss the origin and significance of deviations in the results. Flux analysis based entirely on metabolite balancing and flux analysis, including labeling information, have been performed independently for a wild-type strain of Aspergillus oryzae producing alpha-amylase. Two different nitrogen sources, NH4+ and NO3-, have been used to investigate the influence of the NADPH requirements on the intracellular flux distribution. The two different approaches to the calculation of fluxes are compared and deviations in the results are discussed. Copyright 1998 John Wiley & Sons, Inc.  相似文献   

3.
One of the most obvious phenotypes of a cell is its metabolic activity, which is defined by the fluxes in the metabolic network. Although experimental methods to determine intracellular fluxes are well established, only a limited number of fluxes can be resolved. Especially in eukaryotes such as yeast, compartmentalization and the existence of many parallel routes render exact flux analysis impossible using current methods. To gain more insight into the metabolic operation of S. cerevisiae we developed a new computational approach where we characterize the flux solution space by determining elementary flux modes (EFMs) that are subsequently classified as thermodynamically feasible or infeasible on the basis of experimental metabolome data. This allows us to provably rule out the contribution of certain EFMs to the in vivo flux distribution. From the 71 million EFMs in a medium size metabolic network of S. cerevisiae, we classified 54% as thermodynamically feasible. By comparing the thermodynamically feasible and infeasible EFMs, we could identify reaction combinations that span the cytosol and mitochondrion and, as a system, cannot operate under the investigated glucose batch conditions. Besides conclusions on single reactions, we found that thermodynamic constraints prevent the import of redox cofactor equivalents into the mitochondrion due to limits on compartmental cofactor concentrations. Our novel approach of incorporating quantitative metabolite concentrations into the analysis of the space of all stoichiometrically feasible flux distributions allows generating new insights into the system-level operation of the intracellular fluxes without making assumptions on metabolic objectives of the cell.  相似文献   

4.
5.
A series of experiments reported in the literature using fluxomics as an efficient functional genomics tool revealed that the L-lysine production of the Corynebacterium glutamicum strain MH20-22B correlates with the extent of intracellular NADPH supply. Some alternative metabolic engineering strategies to increase intracellular NADPH supply in the C. glutamicum strain DSM5715 were considered and finally the redirection of carbon flux through the pentose phosphate pathway with two NADPH generating enzymatic reactions was favored. Elsewhere, the construction of a phosphoglucose isomerase (Pgi) null mutant of the C. glutamicum strain DSM5715 has been described by utilizing genetic engineering as well as some aspects of its metabolic phenotype. Most interestingly, it was shown that not only could the L-lysine formation be increased by 1.7-fold but the by-product concentration for the null mutant strain was also able to be drastically reduced. In this publication we discuss this metabolic phenotype in detail and present additional data on by-product formation as well as yield considerations. Results from isotope based metabolic flux analysis in combination with considerations on NADPH metabolism clearly exclude the existence of Pgi isoenzymes in C. glutamicum strain DSM5715. The genome region containing the pgi gene was analyzed. It cannot be excluded that polar effects might have been caused by the disruption of the pgi gene and might have contributed to the observed metabolic phenotype of C. glutamicum Pgi mutants. We illustrate growth characteristics of a Pgi mutant of an industrial L-lysine production strain. A reduced growth rate and a biphasic growth behavior was observed. The importance of NADPH reoxidation for well balanced growth in Pgi mutants is discussed. Another phosphoglucose isomerase mutant of C. glutamicum has been described in literature with which an increase in L-lysine yield from 42 to 52% was observed. This finding highlights the general potential of metabolic flux redirection towards the pentose phosphate pathway, which could be used for metabolic engineering of the biotechnological synthesis of (1) aromatic amino acids and (2) chemicals whose synthesis depends on intracellular NADPH supply.  相似文献   

6.
Metabolomics – the comprehensive analysis of metabolites – was recently used to classify yeast mutants with no overt phenotype using raw data as metabolic fingerprints or footprints. In this study, we demonstrate the estimation of a complicated phenotype, longevity, and semi‐rational screening for relevant mutants using metabolic profiles as strain‐specific fingerprints. The fingerprints used in our experiments are profiled data consisting of individually identified and quantified metabolites rather than raw spectrum data. We chose yeast replicative lifespan as a model phenotype. Several yeast mutants that affect lifespan were selected for analysis, and they were subjected to metabolic profiling using mass spectrometry. Fingerprinting based on the profiles revealed a correlation between lifespan and metabolic profile. Amino acids and nucleotide derivatives were the main contributors to this correlation. Furthermore, we established a multivariate model to predict lifespan from a metabolic profile. The model facilitated the identification of putative longevity mutants. This work represents a novel approach to evaluate and screen complicated and quantitative phenotype by means of metabolomics.  相似文献   

7.
Two new concepts, "Limitation Potential" and "Constraint Limitation Sensitivity" are introduced that use definitions derived from metabolic flux analysis (MFA) and metabolic network analysis (MNA). They are applied to interpret a measured flux distribution in the context of all possible flux distributions and thus combine MFA with MNA. The proposed measures are used to quantify and compare the influence of intracellular fluxes on the production yield. The methods are purely based on the stoichiometry of the network and constraints that are given from irreversible fluxes. In contrast to metabolic control analysis (MCA), within this approach no information about the kinetic mechanisms are needed. A limitation potential (LP) is defined as the reduction of the reachable (theoretical) maximum by a measured flux. Measured fluxes that strongly narrow the reachable maximum are assumed to be limiting as the network has no ability to counterbalance the restriction due to the observed flux. In a second step, the sensitivity of the reduced maximum is regarded. This measure provides information about the necessitated changes to reach higher yields. The methods are applied to interpret the capabilities of a network based on measured fluxes for a L-phenylalanine producer. The strain was examined by a series of experiments and three flux maps of the production phase are analyzed. It can be shown that the reachable yield is drastically reduced by the measured efflux into the TCA cycle, while the oxidative pentose-phosphate pathway only plays a secondary role on the reachable maximum.  相似文献   

8.
The field of metabolic engineering is primarily concerned with improving the biological production of value-added chemicals, fuels and pharmaceuticals through the design, construction and optimization of metabolic pathways, redirection of intracellular fluxes, and refinement of cellular properties relevant for industrial bioprocess implementation. Metabolic network models and metabolic fluxes are central concepts in metabolic engineering, as was emphasized in the first paper published in this journal, “Metabolic fluxes and metabolic engineering” (Metabolic Engineering, 1: 1–11, 1999). In the past two decades, a wide range of computational, analytical and experimental approaches have been developed to interrogate the capabilities of biological systems through analysis of metabolic network models using techniques such as flux balance analysis (FBA), and quantify metabolic fluxes using constrained-based modeling approaches such as metabolic flux analysis (MFA) and more advanced experimental techniques based on the use of stable-isotope tracers, i.e. 13C-metabolic flux analysis (13C-MFA). In this review, we describe the basic principles of metabolic flux analysis, discuss current best practices in flux quantification, highlight potential pitfalls and alternative approaches in the application of these tools, and give a broad overview of pragmatic applications of flux analysis in metabolic engineering practice.  相似文献   

9.
Rational engineering of metabolism is important for bio-production using microorganisms. Metabolic design based on in silico simulations and experimental validation of the metabolic state in the engineered strain helps in accomplishing systematic metabolic engineering. Flux balance analysis (FBA) is a method for the prediction of metabolic phenotype, and many applications have been developed using FBA to design metabolic networks. Elementary mode analysis (EMA) and ensemble modeling techniques are also useful tools for in silico strain design. The metabolome and flux distribution of the metabolic pathways enable us to evaluate the metabolic state and provide useful clues to improve target productivity. Here, we reviewed several computational applications for metabolic engineering by using genome-scale metabolic models of microorganisms. We also discussed the recent progress made in the field of metabolomics and 13C-metabolic flux analysis techniques, and reviewed these applications pertaining to bio-production development. Because these in silico or experimental approaches have their respective advantages and disadvantages, the combined usage of these methods is complementary and effective for metabolic engineering.  相似文献   

10.
11.
12.
花强  杨琛 《生物工程学报》2009,25(9):1303-1311
细胞内代谢反应流量在系统理解细胞代谢特性和指导代谢工程改造等方面都起着重要的作用。由于代谢流量难以直接测量得到,在很多情况下通过跟踪稳定同位素在代谢网络中的转移并进行相应的模型计算能有效地定量代谢流量。代谢流量比率分析法能够高度体现系统的生物化学真实性、辨别细胞代谢网络的拓扑结构,并且能够相对简单快速地定量反应速率等,因此受到代谢工程研究者越来越多的重视。以下着重介绍并讨论了利用代谢物同位体分布信息分析关键代谢节点合成途径的流量比率、基于流量比率的代谢流量解析、以及应用于代谢工程等的相关原理、实验测量、数据分析、使用条件等,以期充分发挥代谢流量比率分析法的优势,并将其拓展推广至更多细胞体系的代谢特性阐明和代谢工程改造中去。  相似文献   

13.
Mass spectrometry in combination with tracer experiments based on 13C substrates can serve as a powerful tool for the modeling and analysis of intracellular fluxes and the investigation of biochemical networks. The theoretical background for the application of mass spectrometry to metabolic flux analysis is discussed. Mass spectrometry methods are especially useful to determine mass distribution of metabolites. Additional information gained from fragmentation of metabolites, e.g., by electron impact ionization, allows further localization of labeling positions, up to complete resolution of isotopomer pools. To effectively handle mass distributions in simulation experiments, a matrix based general methodology is formulated. The natural isotope distribution of carbon, oxygen, hydrogen and nitrogen in the target metabolites is considered by introduction of correction matrices. It is shown by simulation results for the central carbon metabolism that neglecting natural isotope distributions causes significant errors in intracellular flux distributions. By varying relative fluxes into pentosephosphate pathway and pyruvate carboxylation reaction, marked changes in the mass distributions of metabolites result, which are illustrated for pyruvate, oxaloacetate, and alpha-ketoglutarate. In addition mass distributions of metabolites are significantly influenced over a broad range by the degree of reversibility of transaldolase and transketolase reactions in the pentosephosphate pathway. The mass distribution of metabolites is very sensitive towards intracellular flux patterns and can be measured with high accuracy by routine mass spectrometry methods. Copyright 1999 John Wiley & Sons, Inc.  相似文献   

14.
15.
利用代谢工程技术提高工业微生物对胁迫的抗性   总被引:1,自引:0,他引:1  
付瑞燕  李寅 《生物工程学报》2010,26(9):1209-1217
代谢工程是工业微生物菌种改造的平台技术,不仅可用于改变微生物细胞内的代谢流向,也可以用于改善工业微生物的生理功能。在工业生产过程中,微生物细胞会面临多种胁迫作用,这些胁迫诱导的基因调节作用,都有可能影响细胞的许多重要生理功能,从而影响生物转化过程的效率。从工业应用的观点出发,选择生产性能良好、对发酵过程中的主要胁迫因素有较强耐受性的菌株至关重要。以下评述了借鉴传统代谢工程技术和反向代谢工程技术来提高工业微生物对胁迫抗性的若干研究策略,提出了该领域目前存在的问题,以及利用代谢工程技术改善微生物胁迫抗性——即微生物生理功能工程的发展方向。  相似文献   

16.
Nuclear magnetic resonance (NMR) can be used to measure metabolite levels and metabolic fluxes, to probe the intracellular environment, and to follow transport and energetics nondestructively. NMR methods are therefore powerful aids to understanding plant metabolism and physiology. Both spectroscopy and imaging can help overcome the unique challenges that plants present to the metabolic engineer by detecting, identifying, quantifying, and localizing novel metabolites in vivo and in extracts; revealing the composition and physical state of cell wall and other polymers; allowing the identification of active pathways; providing quantitative measures of metabolic flux; and testing hypotheses about the effects of engineered traits on plant physiological function. The aim of this review is to highlight recent studies in which NMR has contributed to metabolic engineering of plants and to illustrate the unique characteristics of NMR measurements that give it the potential to make greater contributions in the future.  相似文献   

17.
A method for the quantification of intracellular metabolic flux distributions from steady-state mass balance constraints and from the constraints posed by the measured 13C labeling state of biomass components is presented. Two-dimensional NMR spectroscopy is used to analyze the labeling state of cell protein hydrolysate and cell wall components. No separation of the biomass hydrolysate is required to measure the degree of 13C-13C coupling and the fractional 13C enrichment in various carbon atom positions. A mixture of [1-13C]glucose and uniformly labeled [13C6]glucose is applied to make fractional 13C enrichment data and measurements of the degree of 13C-13C coupling informative with respect to the intracellular flux distribution. Simulation models that calculate the complete isotopomer distribution in biomass components on the basis of isotopomer mapping matrices are used for the estimation of intracellular fluxes by least-squares minimization. The statistical quality of the estimated intracellular flux distributions is assessed by Monte Carlo methods. Principal component analysis is performed on the outcome of the Monte Carlo procedure to identify groups of fluxes that contribute major parts to the total variance in the multiple flux estimations. The methods described are applied to a steady-state culture of a glucoamylase-producing recombinant Aspergillus niger strain.  相似文献   

18.
The filamentous fungus Aspergillus niger is an efficient host for the recombinant production of the glycosylated enzyme fructofuranosidase, a biocatalyst of commercial interest for the synthesis of pre-biotic sugars. In batch culture on a minimal glucose medium, the recombinant strain A. niger SKAn1015, expressing the fructofuranosidase encoding suc1 gene secreted 45U/mL of the target enzyme, whereas the parent wild type SKANip8 did not exhibit production. The production of the recombinant enzyme induced a significant change of in vivo fluxes in central carbon metabolism, as assessed by (13)C metabolic flux ratio analysis. Most notably, the flux redistribution enabled an elevated supply of NADPH via activation of the cytosolic pentose phosphate pathway (PPP) and mitochondrial malic enzyme, whereas the flux through energy generating TCA cycle was reduced. In addition, the overall possible flux space of fructofuranosidase producing A. niger was investigated in silico by elementary flux mode analysis. This provided theoretical flux distributions for multiple scenarios with differing production capacities. Subsequently, the measured flux changes linked to improved production performance were projected into the in silico flux space. This provided a quantitative evaluation of the achieved optimization and a priority ranked target list for further strain engineering. Interestingly, the metabolism was shifted largely towards the optimum flux pattern by sole expression of the recombinant enzyme, which seems an inherent attractive property of A. niger. Selected fluxes, however, changed contrary to the predicted optimum and thus revealed novel targets-including reactions linked to NADPH metabolism and gluconate formation.  相似文献   

19.
酿酒酵母已被广泛用作生产精细化学品的典型细胞工厂.但在生产过程中,各种环境胁迫以及异常的细胞代谢严重制约了生产成本降低和收益提高.解决此类瓶颈问题的一种有效方法是利用转录因子工程,通过重塑关键基因的转录水平来提高菌株的耐受性和生产效率.从运用转录因子工程提高耐受性、产量和基于人工转录因子设计在优化代谢通量、定量分析中的...  相似文献   

20.
In recent years, a growing number of metabolic engineering strain design techniques have employed constraint-based modeling to determine metabolic and regulatory network changes which are needed to improve chemical production. These methods use systems-level analysis of metabolism to help guide experimental efforts by identifying deletions, additions, downregulations, and upregulations of metabolic genes that will increase biological production of a desired metabolic product. In this work, we propose a new strain design method with continuous modifications (CosMos) that provides strategies for deletions, downregulations, and upregulations of fluxes that will lead to the production of the desired products. The method is conceptually simple and easy to implement, and can provide additional strategies over current approaches. We found that the method was able to find strain design strategies that required fewer modifications and had larger predicted yields than strategies from previous methods in example and genome-scale networks. Using CosMos, we identified modification strategies for producing a variety of metabolic products, compared strategies derived from Escherichia coli and Saccharomyces cerevisiae metabolic models, and examined how imperfect implementation may affect experimental outcomes. This study gives a powerful and flexible technique for strain engineering and examines some of the unexpected outcomes that may arise when strategies are implemented experimentally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号