首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
蜜蜂病毒学研究进展   总被引:6,自引:2,他引:4  
张炫  陈彦平  和绍禹 《昆虫知识》2012,49(5):1095-1116
蜜蜂是自然界最重要的授粉昆虫,对维护自然生态系统的生物多样性和保持农业生态系统的增产效应发挥着巨大的作用。作为世界第一养蜂大国,中国养蜂业健康发展的意义不仅在于获取大量高品质的蜂产品,更重要的是发挥蜜蜂授粉的农业增产效应,保证我国的粮食安全。和其他动物一样,蜜蜂健康也受到多种病害的威胁,近年来蜜蜂病毒病在世界范围内的广泛流行与传播,是导致世界蜂群持续下降的一个重要原因。蜜蜂病毒长期广泛的以无明显发病症状的低浓度隐性感染方式存在于蜜蜂蜂群中,但多数蜜蜂病毒在特定环境条件下可被激活,在寄主体细胞内快速复制,表现出强烈的致病性,引发致死性蜜蜂病毒病的流行与爆发。蜜蜂病毒病知识的缺乏,以及复杂的蜜蜂病毒鉴定技术使得蜜蜂病毒病难以及时确诊和防治,因此每年在养蜂生产上造成的巨大损失已严重阻碍了我国养蜂业的健康发展。本文将综述这一领域的研究成果和学科发展趋势,为在我国开展蜜蜂病毒学研究提供参考,并介绍国外的一些蜜蜂病毒病诊断方法与防治经验服务于我国养蜂生产实践。  相似文献   

2.
蜜蜂具有很高的生态价值和经济价值,对农业生产帮助巨大。然而,狄斯瓦螨Varroa destructor寄生给西方蜜蜂Apis mellifera蜂群造成重大损失,对蜜蜂健康构成严重威胁,因此,狄斯瓦螨的防治变得尤为紧要。虽然化学防治是防治狄斯瓦螨常用且有效措施,但仍存在许多缺点,如造成蜂产品污染、导致蜂螨产生抗药性等。另一方面,培育抗螨蜂种被证明是可持续的狄斯瓦螨防治方法。瓦螨敏感卫生行为(Varroa sensitive hygiene, VSH)是蜜蜂重要的抗螨性状之一。本文从狄斯瓦螨的生活周期、对蜜蜂的危害、蜜蜂抗螨行为、瓦螨敏感卫生行为调控和遗传育种等方面进行综述,为狄斯瓦螨防治和抗螨蜂种选育提供参考。  相似文献   

3.
生态条件的多样性变化对蜜蜂生存的影响   总被引:1,自引:0,他引:1  
侯春生  张学锋 《生态学报》2011,31(17):5061-5070
蜜蜂在整个生态系统中起着重要的传花授粉作用,是生态链中不可或缺的物种。随着现代农业的发展,蜜蜂赖以生存的环境遭到破坏,继而引发蜜蜂数量大幅减少,影响了蜂种的生存与可持续发展。总结了近年来生态条件的变化,归纳了影响蜜蜂生存的主要因素,分析了蜜蜂生存艰难的原因,提出了蜜蜂生存的关键问题,并展望了未来维持蜜蜂强群的主要研究方向。  相似文献   

4.
Managed honey bee colony losses are attributed to a number of interacting stressors, but many lines of evidence point to malnutrition as a primary factor. Commercial beekeepers have become increasingly reliant on artificial pollen substitute diets to nourish colonies during periods of forage scarcity and to bolster colony size before pollination services. These artificial diets may be deficient in essential macronutrients (proteins, lipids, prebiotic fibers), micronutrients (vitamins, minerals), and antioxidants. Therefore, improving the efficacy of pollen substitutes can be considered vital to modern beekeeping. Microalgae are prolific sources of plant-based nutrition with many species exhibiting biochemical profiles that are comparable to natural pollen. This emerging feed source has been employed in a variety of organisms, including limited applications in honey bees. Herein, I introduce the nutritional value and functional properties of microalgae, extrapolating to central aspects of honey bee physiology and health. To conclude, I discuss the potential of microalgae-based feeds to sustainably provision managed colonies on an agricultural scale.  相似文献   

5.
Iridovirus and microsporidian linked to honey bee colony decline   总被引:1,自引:0,他引:1  

Background

In 2010 Colony Collapse Disorder (CCD), again devastated honey bee colonies in the USA, indicating that the problem is neither diminishing nor has it been resolved. Many CCD investigations, using sensitive genome-based methods, have found small RNA bee viruses and the microsporidia, Nosema apis and N. ceranae in healthy and collapsing colonies alike with no single pathogen firmly linked to honey bee losses.

Methodology/Principal Findings

We used Mass spectrometry-based proteomics (MSP) to identify and quantify thousands of proteins from healthy and collapsing bee colonies. MSP revealed two unreported RNA viruses in North American honey bees, Varroa destructor-1 virus and Kakugo virus, and identified an invertebrate iridescent virus (IIV) (Iridoviridae) associated with CCD colonies. Prevalence of IIV significantly discriminated among strong, failing, and collapsed colonies. In addition, bees in failing colonies contained not only IIV, but also Nosema. Co-occurrence of these microbes consistently marked CCD in (1) bees from commercial apiaries sampled across the U.S. in 2006–2007, (2) bees sequentially sampled as the disorder progressed in an observation hive colony in 2008, and (3) bees from a recurrence of CCD in Florida in 2009. The pathogen pairing was not observed in samples from colonies with no history of CCD, namely bees from Australia and a large, non-migratory beekeeping business in Montana. Laboratory cage trials with a strain of IIV type 6 and Nosema ceranae confirmed that co-infection with these two pathogens was more lethal to bees than either pathogen alone.

Conclusions/Significance

These findings implicate co-infection by IIV and Nosema with honey bee colony decline, giving credence to older research pointing to IIV, interacting with Nosema and mites, as probable cause of bee losses in the USA, Europe, and Asia. We next need to characterize the IIV and Nosema that we detected and develop management practices to reduce honey bee losses.  相似文献   

6.
Feral honey bee populations have been reported to be in decline due to the spread of Varroa destructor, an ectoparasitic mite that when left uncontrolled leads to virus build-up and colony death. While pests and diseases are known causes of large-scale managed honey bee colony losses, no studies to date have considered the wider pathogen burden in feral colonies, primarily due to the difficulty in locating and sampling colonies, which often nest in inaccessible locations such as church spires and tree tops. In addition, little is known about the provenance of feral colonies and whether they represent a reservoir of Varroa tolerant material that could be used in apiculture. Samples of forager bees were collected from paired feral and managed honey bee colonies and screened for the presence of ten honey bee pathogens and pests using qPCR. Prevalence and quantity was similar between the two groups for the majority of pathogens, however feral honey bees contained a significantly higher level of deformed wing virus than managed honey bee colonies. An assessment of the honey bee race was completed for each colony using three measures of wing venation. There were no apparent differences in wing morphometry between feral and managed colonies, suggesting feral colonies could simply be escapees from the managed population. Interestingly, managed honey bee colonies not treated for Varroa showed similar, potentially lethal levels of deformed wing virus to that of feral colonies. The potential for such findings to explain the large fall in the feral population and the wider context of the importance of feral colonies as potential pathogen reservoirs is discussed.  相似文献   

7.
The honey bee is a major insect used for pollination of many commercial crops worldwide. Although the use of honey bees for pollination can disrupt the habitat, the effects on their physiology have never been determined. Recently, honey bee colonies have often collapsed when introduced in greenhouses for pollination in Japan. Thus, suppressing colony collapses and maintaining the number of worker bees in the colonies is essential for successful long-term pollination in greenhouses and recycling of honey bee colonies. To understand the physiological states of honey bees used for long-term pollination in greenhouses, we characterized their gene expression profiles by microarray. We found that the greenhouse environment changes the gene expression profiles and induces immune-suppression and oxidative stress in honey bees. In fact, the increase of the number of Nosema microsporidia and protein carbonyl content was observed in honey bees during pollination in greenhouses. Thus, honey bee colonies are likely to collapse during pollination in greenhouses when heavily infested with pathogens. Degradation of honey bee habitat by changing the outside environment of the colony, during pollination services for example, imposes negative impacts on honey bees. Thus, worldwide use of honey bees for crop pollination in general could be one of reasons for the decline of managed honey bee colonies.  相似文献   

8.
Honey bee is vital for pollination and ecological services, boosting crops productivity in terms of quality and quantity and production of colony products: wax, royal jelly, bee venom, honey, pollen and propolis. Honey bees are most important plant pollinators and almost one third of diet depends on bee’s pollination, worth billions of dollars. Hence the role that honey bees have in environment and their economic importance in food production, their health is of dominant significance. Honey bees can be infected by various pathogens like: viruses, bacteria, fungi, or infested by parasitic mites. At least more than 20 viruses have been identified to infect honey bees worldwide, generally from Dicistroviridae as well as Iflaviridae families, like ABPV (Acute Bee Paralysis Virus), BQCV (Black Queen Cell Virus), KBV (Kashmir Bee Virus), SBV (Sacbrood Virus), CBPV (Chronic bee paralysis virus), SBPV (Slow Bee Paralysis Virus) along with IAPV (Israeli acute paralysis virus), and DWV (Deformed Wing Virus) are prominent and cause infections harmful for honey bee colonies health. This issue about honey bee viruses demonstrates remarkably how diverse this field is, and considerable work has to be done to get a comprehensive interpretation of the bee virology.  相似文献   

9.
The importance of honey bees to the world economy far surpasses their contribution in terms of honey production; they are responsible for up to 30% of the world's food production through pollination of crops. Since fall 2006, honey bees in the U.S. have faced a serious population decline, due in part to a phenomenon called Colony Collapse Disorder (CCD), which is a disease syndrome that is likely caused by several factors. Data from an initial study in which investigators compared pathogens in honey bees affected by CCD suggested a putative role for Israeli Acute Paralysis Virus, IAPV. This is a single stranded RNA virus with no DNA stage placed taxonomically within the family Dicistroviridae. Although subsequent studies have failed to find IAPV in all CCD diagnosed colonies, IAPV has been shown to cause honey bee mortality. RNA interference technology (RNAi) has been used successfully to silence endogenous insect (including honey bee) genes both by injection and feeding. Moreover, RNAi was shown to prevent bees from succumbing to infection from IAPV under laboratory conditions. In the current study IAPV specific homologous dsRNA was used in the field, under natural beekeeping conditions in order to prevent mortality and improve the overall health of bees infected with IAPV. This controlled study included a total of 160 honey bee hives in two discrete climates, seasons and geographical locations (Florida and Pennsylvania). To our knowledge, this is the first successful large-scale real world use of RNAi for disease control.  相似文献   

10.
Recent losses of honey bee colonies have led to increased interest in the microbial communities that are associated with these important pollinators. A critical function that bacteria perform for their honey bee hosts, but one that is poorly understood, is the transformation of worker-collected pollen into bee bread, a nutritious food product that can be stored for long periods in colonies. We used 16S rRNA pyrosequencing to comprehensively characterize in genetically diverse and genetically uniform colonies the active bacterial communities that are found on honey bees, in their digestive tracts, and in bee bread. This method provided insights that have not been revealed by past studies into the content and benefits of honey bee-associated microbial communities. Colony microbiotas differed substantially between sampling environments and were dominated by several anaerobic bacterial genera never before associated with honey bees, but renowned for their use by humans to ferment food. Colonies with genetically diverse populations of workers, a result of the highly promiscuous mating behavior of queens, benefited from greater microbial diversity, reduced pathogen loads, and increased abundance of putatively helpful bacteria, particularly species from the potentially probiotic genus Bifidobacterium. Across all colonies, Bifidobacterium activity was negatively correlated with the activity of genera that include pathogenic microbes; this relationship suggests a possible target for understanding whether microbes provide protective benefits to honey bees. Within-colony diversity shapes microbiotas associated with honey bees in ways that may have important repercussions for colony function and health. Our findings illuminate the importance of honey bee-bacteria symbioses and examine their intersection with nutrition, pathogen load, and genetic diversity, factors that are considered key to understanding honey bee decline.  相似文献   

11.
The effect of using acaricides to control varroa mites has long been a concern to the beekeeping industry due to unintended negative impacts on honey bee health. Irregular ontogenesis, suppression of immune defenses, and impairment of normal behavior have been linked to pesticide use. External stressors, including parasites and the pathogens they vector, can confound studies on the effects of pesticides on the metabolism of honey bees. This is the case of Varroa destructor, a mite that negatively affects honey bee health on many levels, from direct parasitism, which diminishes honey bee productivity, to vectoring and/or activating other pathogens, including many viruses. Here we present a gene expression profile comprising genes acting on diverse metabolic levels (detoxification, immunity, and development) in a honey bee population that lacks the influence of varroa mites. We present data for hives treated with five different acaricides; Apiguard (thymol), Apistan (tau-fluvalinate), Checkmite (coumaphos), Miteaway (formic acid) and ApiVar (amitraz). The results indicate that thymol, coumaphos and formic acid are able to alter some metabolic responses. These include detoxification gene expression pathways, components of the immune system responsible for cellular response and the c-Jun amino-terminal kinase (JNK) pathway, and developmental genes. These could potentially interfere with the health of individual honey bees and entire colonies.  相似文献   

12.
In agriculture, honey bees play a critical role as commercial pollinators of crop monocultures which depend on insect pollination. Hence, the demise of honey bee colonies in Europe, USA, and Asia caused much concern and initiated many studies and research programmes aiming at elucidating the factors negatively affecting honey bee health and survival. Most of these studies look at individual factors related to colony losses. In contrast, we here present our data on the interaction of pathogens and parasites in honey bee colonies. We performed a longitudinal cohort study over 6 years by closely monitoring 220 honey bee colonies kept in 22 apiaries (ten randomly selected colonies per apiary). Observed winter colony losses varied between 4.8% and 22.4%; lost colonies were replaced to ensure a constant number of monitored colonies over the study period. Data on mite infestation levels, infection with viruses, Nosema apis and Nosema ceranae, and recorded outbreaks of chalkbrood were continuously collected. We now provide statistical evidence (i) that Varroa destructor infestation in summer is related to DWV infections in autumn, (ii) that V. destructor infestation in autumn is related to N. apis infection in the following spring, and most importantly (iii) that chalkbrood outbreaks in summer are related to N. ceranae infection in the preceding spring and to V. destructor infestation in the same season. These highly significant links between emerging parasites/pathogens and established pathogens need further experimental proof but they already illustrate the complexity of the host–pathogen-interactions in honey bee colonies.  相似文献   

13.
Interactions between pathogens might contribute to honey bee colony losses. Here we investigated if there is an association between the microsporidian Nosema ceranae and the deformed wing virus (DWV) in different body sections of individual honey bee workers (Apis mellifera ligustica) under exclusion of the vector Varroa destructor. Our data provide correlational evidence for antagonistic interactions between the two pathogens in the midgut of the bees.  相似文献   

14.
The European honey bee exploits floral resources efficiently and may therefore compete with solitary wild bees. Hence, conservationists and bee keepers are debating about the consequences of beekeeping for the conservation of wild bees in nature reserves. We observed flower-visiting bees on flowers of Calluna vulgaris in sites differing in the distance to the next honey-bee hive and in sites with hives present and absent in the Lüneburger Heath, Germany. Additionally, we counted wild bee ground nests in sites that differ in their distance to the next hive and wild bee stem nests and stem-nesting bee species in sites with hives present and absent. We did not observe fewer honey bees or higher wild bee flower visits in sites with different distances to the next hive (up to 1,229 m). However, wild bees visited fewer flowers and honey bee visits increased in sites containing honey-bee hives and in sites containing honey-bee hives we found fewer stem-nesting bee species. The reproductive success, measured as number of nests, was not affected by distance to honey-bee hives or their presence but by availability and characteristics of nesting resources. Our results suggest that beekeeping in the Lüneburg Heath can affect the conservation of stem-nesting bee species richness but not the overall reproduction either of stem-nesting or of ground-nesting bees. Future experiments need control sites with larger distances than 500 m to hives. Until more information is available, conservation efforts should forgo to enhance honey bee stocking rates but enhance the availability of nesting resources.  相似文献   

15.
在长期的共同进化中,肠道菌群与其宿主形成了紧密的联系,为宿主提供了许多有益的作用。作为一种社会性昆虫,蜜蜂的生活习性为其肠道菌群提供了良好而稳定的传播途径,因此,蜜蜂与其肠道菌群形成了一种紧密的互惠互利共生关系。近年来,随着对蜜蜂肠道菌群了解的不断加深,对蜜蜂肠道菌群功能的研究也不断深入,大量研究表明蜜蜂的肠道菌群在宿主食物的消化代谢、宿主免疫的激活和抵抗致病菌、调节宿主生理等方面都有着重要的作用,同时破坏肠道菌群的稳定对蜜蜂的健康有着明显的负面影响。本文对近年来西方蜜蜂肠道菌群功能研究进行了总结,旨在为进一步深入探索蜜蜂肠道菌群与其宿主的相互作用及在养蜂生产上应用肠道菌群防控疾病提供参考。  相似文献   

16.
There has been growing concern over declines in populations of honey bees and other pollinators which are a vital part to our food security. It is imperative to identify factors responsible for accelerated declines in bee populations and develop solutions for reversing bee losses. While exact causes of colony losses remain elusive, risk factors thought to play key roles are ectoparasitic mites Varroa destructor and neonicotinoid pesticides. The present study aims to investigate effects of a neonicotinoid pesticide Imidacloprid and Varroa mites individually on survivorship, growth, physiology, virus dynamics and immunity of honey bee workers. Our study provides clear evidence that the exposure to sublethal doses of Imidacloprid could exert a significantly negative effect on health and survival of honey bees. We observed a significant reduction in the titer of vitellogenin (Vg), an egg yolk precursor that regulates the honey bees development and behavior and often are linked to energy homeostasis, in bees exposed to Imidacloprid. This result indicates that sublethal exposure to neonicotinoid could lead to increased energy usage in honey bees as detoxification is a energy‐consuming metabolic process and suggests that Vg could be a useful biomarker for measuring levels of energy stress and sublethal effects of pesticides on honey bees. Measurement of the quantitative effects of different levels of Varroa mite infestation on the replication dynamic of Deformed wing virus (DWV), an RNA virus associated with Varroa infestation, and expression level of immune genes yields unique insights into how honey bees respond to stressors under laboratory conditions.  相似文献   

17.
The ectoparasitic mite Varroa destructor (Anderson & Trueman) is the most destructive pest of the honey bee, Apis mellifera L., in Europe and the United States. In temperate zones, the main losses of colonies from the mites occur during colony overwintering. To obtain a deeper knowledge of this phenomenon, we studied the mites' impact on the vitellogenin titer, the total protein stores in the hemolymph, the hemocyte characteristics, and the ecdysteroid titer of adult honey bees. These physiological characteristics are indicators of long-time survival and endocrine function, and we show that they change if bees have been infested by mites during the pupal stage. Compared with noninfested workers, adult bees infested as pupae do not fully develop physiological features typical of long-lived wintering bees. Management procedures designed to kill V. destructor in late autumn may thus fail to prevent losses of colonies because many of the adult bees are no longer able to survive until spring. Beekeepers in temperate climates should therefore combine late autumn management strategies with treatment protocols that keep the mite population at low levels before and during the period when the winter bees emerge.  相似文献   

18.
Over the last decade, unusually high losses of colonies have been reported by beekeepers across the USA. Multiple factors such as Varroa destructor, bee viruses, Nosema ceranae, weather, beekeeping practices, nutrition, and pesticides have been shown to contribute to colony losses. Here we describe a large-scale controlled trial, in which different bee pathogens, bee population, and weather conditions across winter were monitored at three locations across the USA. In order to minimize influence of various known contributing factors and their interaction, the hives in the study were not treated with antibiotics or miticides. Additionally, the hives were kept at one location and were not exposed to potential stress factors associated with migration. Our results show that a linear association between load of viruses (DWV or IAPV) in Varroa and bees is present at high Varroa infestation levels (>3 mites per 100 bees). The collection of comprehensive data allowed us to draw a predictive model of colony losses and to show that Varroa destructor, along with bee viruses, mainly DWV replication, contributes to approximately 70% of colony losses. This correlation further supports the claim that insufficient control of the virus-vectoring Varroa mite would result in increased hive loss. The predictive model also indicates that a single factor may not be sufficient to trigger colony losses, whereas a combination of stressors appears to impact hive health.  相似文献   

19.
Abstract. 1. The allocation of honey bee foragers among food patches is a result of decisions made by individual bees that are based on internal and external cues.
2. Decision-making processes are often based on internal thresholds. For example, if the quality of the food source is assessed by a forager as exceeding its internal threshold, the bee will continue foraging on that food source.
3. It is often assumed that all individuals have the same threshold and therefore use the same thresholds in decision-making, but because the honey bee queen mates with 12–30 males, the workers within a colony are genetically heterogeneous. Thus, the thresholds used by individual bees may be genetically variable within a colony.
4. Models of colony-level foraging behaviour of honey bees suggest that the rate of abandoning food sources is a critical parameter affecting foraging success. Moreover, these models show that variance among subfamilies in their abandonment rates may increase the colony's foraging efficiency.
5. Experimental data showing the relationship between the probability of abandoning a food source and its profitability are lacking, as is information on any variation in abandonment rates among subfamilies.
6. Abandonment rates were determined experimentally for four honey bee families for seven different sucrose concentrations. The results showed that abandonment rates appear to be invariant among (sub)families. The importance of forager fidelity to declining food sources is discussed with respect to foraging efficiency in a changing environment.  相似文献   

20.
Across the globe, honey bee populations have been declining at an unprecedented rate. Managed honey bees are highly social, frequent a multitude of environmental niches, and continually share food, conditions that promote the transmission of parasites and pathogens. Additionally, commercial honey bees used in agriculture are stressed by crowding and frequent transport, and exposed to a plethora of agricultural chemicals and their associated byproducts. When considering this problem, the hive of the honey bee may be best characterized as an extended organism that not only houses developing young and nutrient rich food stores, but also serves as a niche for symbiotic microbial communities that aid in nutrition and defend against pathogens. The niche requirements and maintenance of beneficial honey bee symbionts are largely unknown, as are the ways in which such communities contribute to honey bee nutrition, immunity, and overall health. In this review, we argue that the honey bee should be viewed as a model system to examine the effect of microbial communities on host nutrition and pathogen defense. A systems view focused on the interaction of the honey bee with its associated microbial community is needed to understand the growing agricultural challenges faced by this economically important organism. The road to sustainable honey bee pollination may eventually require the detoxification of agricultural systems, and in the short term, the integrated management of honey bee microbial systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号