首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
During corticogenesis, the regulation of neuronal migration is crucial for the functional organization of the neocortex. Glutamatergic neurons are major excitatory components of the mammalian neocortex. In order to elucidate the specific molecular mechanisms underlying their development, we used single-cell microarray analysis to screen for mouse genes that are highly expressed in developing glutamatergic neurons. We identified dpy-19-like 1 (Dpy19l1), a homolog of C. elegans dpy-19, which encodes a putative multi-transmembrane protein shown to regulate directed migration of Q neuroblasts in C. elegans. At embryonic stages Dpy19l1 is highly expressed in glutamatergic neurons in the mouse cerebral cortex, whereas in the subpallium, where GABAergic neurons are generated, expression was below detectable levels. Downregulation of Dpy19l1 mediated by shRNA resulted in defective radial migration of glutamatergic neurons in vivo, which was restored by the expression of shRNA-insensitive Dpy19l1. Many Dpy19l1-knockdown cells were aberrantly arrested in the intermediate zone and the deep layer and, additionally, some extended single long processes towards the pial surface. Furthermore, we observed defective radial migration of bipolar cells in Dpy19l1-knockdown brains. Despite these migration defects, these cells correctly expressed Cux1, which is a marker for upper layer neurons, suggesting that Dpy19l1 knockdown results in migration defects but does not affect cell type specification. These results indicate that Dpy19l1 is required for the proper radial migration of glutamatergic neurons, and suggest an evolutionarily conserved role for the Dpy19 family in neuronal migration.  相似文献   

2.
Mutations in the Pax6 gene disrupt telencephalic development, resulting in a thin cortical plate, expansion of proliferative layers, and the absence of the olfactory bulb. The primary defect in the neuronal cell population of the developing cerebral cortex was analysed by using mouse chimeras containing a mixture of wild-type and Pax6-deficient cells. The chimeric analysis shows that Pax6 influences cellular activity throughout corticogenesis. At early stages, Pax6-deficient and wildtype cells segregate into exclusive patches, indicating an inability of different cell genotypes to interact. At later stages, cells are sorted further based on telencephalic domains. Pax6-deficient cells are specifically reduced in the mediocaudal domain of the dorsal telencephalon, indicating a role in regionalization. In addition, Pax6 regulates the process of radial migration of neuronal precursors. Loss of Pax6 particularly affects movement of neuronal precursors at the subventricular zone/intermediate zone boundary at a transitional migratory phase essential for entry into the intermediate zone. We suggest that the primary role of Pax6 is the continual regulation of cell surface properties responsible for both cellular identity and radial migration, defects of which cause regional cell sorting and abnormalities of migration in chimeras.  相似文献   

3.
Neuronal migration is a fundamental component of brain development whose failure is associated with various neurological and psychiatric disorders. Reelin is essential for the stereotypical inside-out sequential lamination of the neocortex, but the molecular mechanisms of its action still remain unclear. Here we show that regulation of Notch activity plays an important part in Reelin-signal-dependent neuronal migration. We found that Reelin-deficient mice have reduced levels of the cleaved form of Notch intracellular domain (Notch ICD) and that loss of Notch signaling in migrating neurons results in migration and morphology defects. Further, overexpression of Notch ICD mitigates the laminar and morphological abnormalities of migrating neurons in Reeler. Finally, our in vitro biochemical studies show that Reelin signaling inhibits Notch ICD degradation via Dab1. Together, our results indicate that neuronal migration in the developing cerebral cortex requires a Reelin-Notch interaction.  相似文献   

4.
5.
Modes of neuronal migration in the developing cerebral cortex   总被引:2,自引:0,他引:2  
The conventional scheme of cortical formation shows that postmitotic neurons migrate away from the germinal ventricular zone to their positions in the developing cortex, guided by the processes of radial glial cells. However, recent studies indicate that different neuronal types adopt distinct modes of migration in the developing cortex. Here, we review evidence for two modes of radial movement: somal translocation, which is adopted by the early-generated neurons; and glia-guided locomotion, which is used predominantly by pyramidal cells. Cortical interneurons, which originate in the ventral telencephalon, use a third mode of migration. They migrate tangentially into the cortex, then seek the ventricular zone before moving radially to take up their positions in the cortical anlage.  相似文献   

6.
The ultrastructure of synapses from the molecular layer of parietal cortex was examined in two groups of unanesthetized rats. Rats of the first group were killed by stunning across the back of the neck, and those of the second group by the introduction of fixative through a preimplanted carotid artery cannula. Comparison of synapses from the two groups revealed that the distribution of synaptic types was the same. A larger percentage of synapses of the cannulated group has vesicle attachment sites than did those of the stunned group. The area and perimeter of the presynaptic terminals were significantly larger in synapses from the cannulated group, although the equivalent length of the postsynaptic thickening was less. The mean value for synaptic curvature was greater in the cannulated group, although over 80% of synapses in both groups had positive curvatures. No significant differences were found between the groups for the relationships between presynaptic terminal area and synaptic vesicle number, and between postsynaptic thickening length and synaptic curvature. Membrane recycling is suggested as a mechanism of accounting for the differences. The preponderance of postively-curved synapses in unanesthetized material may indicate a preponderance of functioning synapses.  相似文献   

7.
8.
Cellular migration patterns in the developing mouse cerebral cortex   总被引:6,自引:0,他引:6  
The migration patterns of embryonic mouse cortical cells were investigated using a replication-incompetent retrovirus vector (BAG). The lateral ventricles of embryonic day 12 mouse embryos were infected with BAG and brains were harvested 2, 3, 4 and 6 days after infection. The location and morphology of all infected cortical cells were recorded from serial sections of entire brains, which were then reconstructed in three dimensions. Examination of the distribution of labelled cells revealed that there were migration patterns characteristic of each medial-lateral domain of the cortex. In the medial and dorsal areas, migration was often radial, although tangential spread increased with survival time, in large part due to ramification of cells in the intermediate zone. In the dorsolateral and lateral areas of the cortex, radial migration was generally not observed. Rather, variable extents of tangential migration occurred, and often resulted in wide separation of cells in the cortical plate. Almost all of the cellular dispersion occurred in the intermediate zone, although a modest degree of dispersion also occurred within the cortical plate itself. Most dispersion occurred in the mediolateral plane, with relatively little dispersion along the anteroposterior axis. Though characteristic migration patterns could be defined, wide variability in the extents of radial migration and tangential separation of cells was seen. The patterns of migration paralleled the distribution of radial glial fibers in all areas, and are most likely a reflection of the role of this network in supporting the migration of cortical neurons. The extent and variability of cellular dispersion supports a lineage-independent mechanism of cortical column ontogenesis.  相似文献   

9.
10.
11.
Fixed cerebral vesicles of mouse foetuses were fractured and examined with the scanning electron microscope. This method provides a study of the three dimensional developmental features of the pseudostratified columnar epithelium up to the formation of the early cortex plate. Matrix cells are a cell population of homogeneous shape, however, mitotic cells are easily identified by their spherical form. The external surface of the brain is formed by the closely packed end feet of these cells covered by a basal membrane. The formation of the cortical plate is the result of a continuous cell migration in columnar arrangement towards the pia. Glioependymal cells extend along the whole brain wall and most likely provide guidance for the migrating cell cords. The formation of the so-called migratory zone is a consequence of the growth of the basal and the horizontal prolongations of emigrating cells. The significance of the cell to cell contacts for the neuronal migration processes is discussed.  相似文献   

12.
The mammalian cerebral cortex consists of six layers that are generated via coordinated neuronal migration during the embryonic period. Recent studies identified specific phases of radial migration of cortical neurons. After the final division, neurons transform from a multipolar to a bipolar shape within the subventricular zone-intermediate zone (SVZ-IZ) and then migrate along radial glial fibres. Mice lacking Cdk5 exhibit abnormal corticogenesis owing to neuronal migration defects. When we introduced GFP into migrating neurons at E14.5 by in utero electroporation, we observed migrating neurons in wild-type but not in Cdk5(-/-) embryos after 3-4 days. Introduction of the dominant-negative form of Cdk5 into the wild-type migrating neurons confirmed specific impairment of the multipolar-to-bipolar transition within the SVZ-IZ in a cell-autonomous manner. Cortex-specific Cdk5 conditional knockout mice showed inverted layering of the cerebral cortex and the layer V and callosal neurons, but not layer VI neurons, had severely impaired dendritic morphology. The amount of the dendritic protein Map2 was decreased in the cerebral cortex of Cdk5-deficient mice, and the axonal trajectory of cortical neurons within the cortex was also abnormal. These results indicate that Cdk5 is required for proper multipolar-to-bipolar transition, and a deficiency of Cdk5 results in abnormal morphology of pyramidal neurons. In addition, proper radial neuronal migration generates an inside-out pattern of cerebral cortex formation and normal axonal trajectories of cortical pyramidal neurons.  相似文献   

13.
ObjectivesThe effects of general anaesthetics on fetal brain development remain elusive. Radial glial progenitors (RGPs) generate the majority of neurons in developing brains. Here, we evaluated the acute alterations in RGPs after maternal sevoflurane exposure.MethodsPregnant mice were exposed to 2.5% sevoflurane for 6 hours on gestational day 14.5. Interkinetic nuclear migration (INM) of RGPs in the ventricular zone (VZ) of the fetal brain was evaluated by thymidine analogues labelling. Cell fate of RGP progeny was determined by immunostaining using various neural markers. The Morris water maze (MWM) was used to assess the neurocognitive behaviours of the offspring. RNA sequencing (RNA‐Seq) was performed for the potential mechanism, and the potential mechanism validated by quantitative real‐time PCR (qPCR), Western blot and rescue experiments. Furthermore, INM was examined in human embryonic stem cell (hESC)‐derived 3D cerebral organoids.ResultsMaternal sevoflurane exposure induced temporary abnormities in INM, and disturbed the cell cycle progression of RGPs in both rodents and cerebral organoids without cell fate alternation. RNA‐Seq analysis, qPCR and Western blot showed that the Notch signalling pathway was a potential downstream target. Reactivation of Notch by Jag1 and NICD overexpression rescued the defects in INM. Young adult offspring showed no obvious cognitive impairments in MWM.ConclusionsMaternal sevoflurane exposure during neurogenic period temporarily induced abnormal INM of RGPs by targeting the Notch signalling pathway without inducing long‐term effects on RGP progeny cell fate or offspring cognitive behaviours. More importantly, the defects of INM in hESC‐derived cerebral organoids provide a novel insight into the effects of general anaesthesia on human brain development.  相似文献   

14.
Apicobasal polarity plays an important role in regulating asymmetric cell divisions by neural progenitor cells (NPCs) in invertebrates, but the role of polarity in mammalian NPCs is poorly understood. Here, we characterize the function of the PDZ domain protein MALS-3 in the developing cerebral cortex. We find that MALS-3 is localized to the apical domain of NPCs. Mice lacking all three MALS genes fail to localize the polarity proteins PATJ and PALS1 apically in NPCs, whereas the formation and maintenance of adherens junctions appears normal. In the absence of MALS proteins, early NPCs progressed more slowly through the cell cycle, and their daughter cells were more likely to exit the cell cycle and differentiate into neurons. Interestingly, these effects were transient; NPCs recovered normal cell cycle properties during late neurogenesis. Experiments in which MALS-3 was targeted to the entire membrane resulted in a breakdown of apicobasal polarity, loss of adherens junctions, and a slowing of the cell cycle. Our results suggest that MALS-3 plays a role in maintaining apicobasal polarity and is required for normal neurogenesis in the developing cortex.  相似文献   

15.
16.
γ-Aminobutyric acid 1 (GAT-1) is the most copiously expressed GABA transporter; we studied its role in phasic and tonic inhibition in the neocortex using GAT-1 knockout (KO) mice. Immunoblotting and immunocytochemical studies showed that GAT-2 and GAT-3 levels in KOs were unchanged and that GAT-3 was not redistributed in KOs. Moreover, the expression of GAD65/67 was increased, whereas that of GABA or VGAT was unchanged. Microdialysis studies showed that in KOs spontaneous extracellular release of GABA and glutamate was comparable in WT and KO mice, whereas KCl-evoked output of GABA, but not of glutamate, was significantly increased in KOs. Recordings from layer II/III pyramids revealed a significant increase in GABAAR-mediated tonic conductance in KO mice. The frequency, amplitude and kinetics of spontaneous inhibitory post-synaptic currents (IPSCs) were unchanged, whereas the decay time of evoked IPSCs was significantly prolonged in KO mice. In KO mice, high frequency stimulation of GABAergic terminals induced large GABAAR-mediated inward currents associated with a reduction in amplitude and decay time of IPSCs evoked immediately after the train. The recovery process was slower in KO than in WT mice. These studies show that in the cerebral cortex of GAT-1 KO mice GAT-3 is not redistributed and GADs are adaptively changed and indicate that GAT-1 has a prominent role in both tonic and phasic GABAAR-mediated inhibition, in particular during sustained neuronal activity.  相似文献   

17.
18.
Projection neurons in the developing cerebral cortex of rodents are basically born near the ventricle and migrate radially to beneath the marginal zone, whereas their cortical interneurons are generated in the ventral telencephalon and migrate tangentially to the cortex. The origins and migratory profiles of each interneuron subtype have been studied extensively in the last decade, and an enormous effort has been made to clarify the cellular and molecular mechanisms that regulate interneuron migration. More recently, the interaction between projection neurons and migrating interneurons, including how they are incorporated into their proper layers, has begun to be analyzed. In this review, I outline the most recent findings in regard to these issues and discuss the mechanisms underlying the development of cortical cytoarchitecture.  相似文献   

19.
《Neuron》2023,111(8):1241-1263.e16
  1. Download : Download high-res image (246KB)
  2. Download : Download full-size image
  相似文献   

20.
Most GABAergic interneurons originate from the basal forebrain and migrate tangentially into the cortex. The migratory pathways and mode of interneuron migration within the developing cerebral cortex, however, previously was largely unknown. Time-lapse imaging and in vivo labelling with glutamate decarboxylase (GAD)67-green fluorescence protein (GFP) knock-in embryonic mice with expression of GFP in gamma-aminobutyric acid (GABA)ergic neurons indicated that multidirectional tangential (MDT) migration of interneurons takes place in both the marginal zone (MZ) and the ventricular zone (VZ) of the cortex. Quantitative analysis of migrating interneurons showed that rostrocaudally migrating neurons outnumber those migrating mediolaterally in both of these zones. In vivo labelling with a lipophilic dye showed that the MDT migration in the MZ occurs throughout the cortex over distances of up to 3 mm during a period of a few days. These results indicate that MZ cortical interneurons undergo a second phase of tangential migration in all directions and over long distances, after reaching the cortex by dorsomedial tangential migration. The MDT migration in the MZ may disperse and intermix interneurons within the cortex, resulting in a balanced distribution of interneuron subtypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号