首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the previous study, we have found that the endo-beta-xylosidase from Patinopecten had the attachment activities of glycosaminoglycan (GAG) chains to peptide. As artificial carrier substrates for this reaction, synthesis of various GAG chains having the linkage region tetrasaccharide, GlcA beta 1-3Gal beta 1-3Gal beta 1-4Xyl, between GAG chain and core protein of proteoglycan was investigated. Hyaluronic acid (HA), chondroitin (Ch), chondroitin 4-sulfate (Ch4S), chondroitin 6-sulfate (Ch6S), and desulfated dermatan sulfate (desulfated DS) as donors and the 4-metylumbelliferone (MU)-labeled hexasaccharide having the linkage region tetrasaccharide at its reducing terminals (MU-hexasaccharide) as an acceptor were subjected to a transglycosylation reaction of testicular hyaluronidase. The products were analyzed by high-performance liquid chromatography and enzyme digestion, and the results indicated that HA, Ch, Ch4S, Ch6S, and desulfated DS chains elongated by the addition of disaccharide units to the nonreducing terminal of MU-hexasaccharide. It was possible to custom-synthesize various GAG chains having the linkage region tetrasaccharide as carrier substrates for enzymatic attachment of GAG chains to peptide.  相似文献   

2.
Sequestration of Plasmodium falciparum-infected red blood cells (IRBCs) in the human placenta is mediated by chondroitin 4-sulfate (C4S). A cytoadherence assay using chondroitin sulfate proteoglycans (CSPGs) is widely used for studying C4S-IRBC interactions. Bovine tracheal chondroitin sulfate A (CSA) preparation lacking a major portion of core protein has been frequently used for the assay. Here the CSPG purified from bovine trachea and CSA were assessed for IRBC binding and the CS chains studied in detail for structure-activity relationship. The IRBCs bound at significantly higher density to the CSPG than CSA. The CS chains of CSPG/CSA are heterogeneous with varying levels of 4- and 6-sulfates, which are distributed such that approximately 80% of the 4-sulfated disaccharides are present as single and blocks of two or three separated by one to three 6-sulfated disaccharides. The remainder of the 4-sulfated disaccharides is present in blocks composed of 4-12 units, separated by 6-sulfated disaccharides. In the IRBC adherence inhibition analysis, CSA fragments with 88%-92% 4-sulfate were significantly less inhibitory than the intact CSA, indicating that the regions consisting of shorter 4-sulfated blocks efficiently bind IRBCs despite the presence of relatively high levels of 6-sulfate. This is because the 6-sulfated disaccharides have unsubstituted C-4 hydroxyls that are crucial for IRBC binding. The presence of high levels of 6-sulfate, however, significantly interfere with the IRBC binding activity of CSA, which otherwise would more efficiently bind IRBCs. Thus our study revealed the distribution pattern of 4- and 6-sulfate in bovine tracheal CSA and structural basis for IRBC binding.  相似文献   

3.
The effect of transforming growth factor-beta (TGF-beta, 1 ng/ml) on proteoglycan synthesis by rabbit articular chondrocytes in culture was studied in the presence of fetal bovine serum. Exposure of confluent cells for 24 h to the factor resulted in a marked increase of 35S-labeled sulfate incorporation in the newly synthesized proteoglycans (PG), as estimated by glycosaminoglycan (GAG) radioactivity (+58%). The onset was observed 6 h after addition of the factor but was significant after 12 h. TGF-beta also enhanced the uptake of [35S]sulfate by chondrocytes, but had no effect on the release of PG by these cells. The effect of TGF-beta on the distribution of PG between the medium and the cell layer was shown to be dependent on the serum concentration in the medium: the relative proportion of cell-layer associated GAG of TGF-beta-treated cells decreased with increasing concentration of fetal bovine serum. The proportion of aggregated PG, the hydrodynamic size of PG monomers and GAG chains were not modified by TGF-beta, but the relative distribution of disaccharides 6- and 4-sulfate in GAG chains was altered by the factor: the proportion of chondroitin 6-sulfate (C6S) was decreased while that of chondroitin 4-sulfate (C4S) was augmented in presence of TGF-beta, leading to a decrease of the ratio C6S/C4S (-11 to -22%, P less than 0.01). The present study indicates that TGF-beta promotes the synthesis of a modified extracellular matrix in cultured articular chondrocytes. This mechanism could be relevant to some aspects of cartilage repair in osteoarticular diseases.  相似文献   

4.
Cartilage chondroitin sulfate isolated directly from rat rib or from in vitro culture of rat rib constitutes a population of glycosaminoglycans which is heterogeneous with respect to size, degree of sulfation and content of N-acetylgalactosamine 4-sulfate. Fractions elute from Dowex-1 in order of increasing molecular size and degree of sulfation up to a certain limit. Unsulfated disaccharides and disulfated disaccharides are present in both the undersulfated chondroitin sulfate fractions and in the average or more representative chondroitin sulfate. A small content of disaccharide 6-sulfate is present in all fractions and appears to be an integral part of the chondroitin 4-sulfate molecules. Rat gastric chondrosulfatase hydrolyzes sulfate preferentially from the larger chondroitin 4-sulfate molecules, and the sulfate is removed primarily from the disaccharide 4-sulfate units.  相似文献   

5.
The structures of the bovine corneal chondroitin sulfate (CS) chains and the nature of core proteins to which these chains are attached have not been studied in detail. In this study, we show that structurally diverse CS chains are present in bovine cornea and that they are mainly linked to decorin core protein. DEAE-Sephacel chromatography fractionated the corneal chondroitin sulfate proteoglycans (CSPGs) into three distinct fractions, CSPG-I, CSPG-II, and CSPG-III. These CSPGs markedly differ in their CS and dermatan sulfate (DS) contents, and in particular the CS structure-the overall sulfate content and 4- to 6-sulfate ratio. In general, the CS chains of the corneal CSPGs have low to moderate levels (15-64%) of sulfated disaccharides and 0-30% DS content. Structural analysis indicated that the DS disaccharide units in the CS chains are segregated as large blocks. We have also assessed the suitability of the corneal CSPGs as an alternative to placental CSPG or the widely used bovine tracheal chondroitin sulfate A (CSA) for studying the structural interactions involved in the adherence of Plasmodium falciparum-infected red blood cells (IRBCs) to chondroitin 4-sulfate. The data demonstrate that the corneal CSPGs efficiently bind IRBCs, and that the binding strength is either comparable or significantly higher than the placental CSPG. In contrast, the IRBC binding strength of bovine tracheal CSA is markedly lower than the human placental and bovine corneal CSPGs. Thus, our data demonstrate that the bovine corneal CSPG but not tracheal CSA is suitable for studying structural interactions involved in IRBC-C4S binding.  相似文献   

6.
A method was developed for the reconstruction of glycosaminoglycan (GAG) oligosaccharides using the transglycosylation reaction of an endo-beta-N-acetylhexosaminidase, testicular hyaluronidase, under optimal conditions. Repetition of the transglycosylation using suitable combinations of various GAGs as acceptors and donors made it possible to custom-synthesize GAG oligosaccharides. Thus we prepared a library of chimeric GAG oligosaccharides with hybrid structures composed of disaccharide units such as GlcA-GlcNAc (from hyaluronic acid), GlcA-GalNAc (from chondroitin), GlcA-GalNAc4S (from chondroitin 4-sulfate), GlcA-GalNAc6S (from chondroitin 6-sulfate), IdoA-GalNAc (from desulfated dermatan sulfate), and GlcA-GalNAc4,6-diS (from chondroitin sulfate E). The specificity of the hyaluronidase from Streptococcus dysgalactiae (hyaluronidase SD) was then investigated using these chimeric GAG oligosaccharides as model substrates. The results indicate that the specificity of hyaluronidase SD is determined by the following restrictions at the nonreducing terminal side of the cleavage site: (i) at least one disaccharide unit (GlcA-GlcNAc) is necessary for the enzymatic action of hyaluronidase SD; (ii) cleavage is inhibited by sulfation of the N-acetylgalactosamine; (iii) hyaluronidase SD releases GlcA-GalNAc and IdoA-GalNAc units as well as GlcA-GlcNAc. At the reducing terminal side of the cleavage site, the sulfated residues on the N-acetylgalactosamines in the disaccharide units were found to have no influence on the cleavage. Additionally, we found that hyaluronidase SD can specifically and endolytically cleave the internal unsulfated regions of chondroitin sulfate chains. This demonstration indicates that custom-synthesized GAG oligosaccharides will open a new avenue in GAG glycotechnology.  相似文献   

7.
Hydrazinolysis of glycosaminoglycans to bring about N-deacetylation followed by nitrous acid treatment to effect deaminative cleavage at alternating hexosamine residues has been used to make possible identification and quantitation of disaccharide sequences and position of O-sulfate substitution in nanogram amounts of these polymers. After radiolabeling by NaB3H4 reduction the hydrazine-nitrous acid products were fractionated on Dowex 1 and further resolved by thin-layer chromatography into disaccharides terminating in either sulfated or unsulfated anhydromannitol or anhydrotalitol. Fragmentation of hyaluronic acid, keratan sulfate, chondroitin 4-sulfate, chondroitin 6-sulfate, dermatan sulfate, and heparin yielded a total of 14 disaccharides comprising the major sequences (greater than 1 mol%) occurring in mammalian glycosaminoglycans. Disaccharides representing the predominant variants of the chondroitin sulfates [GlcUA beta 1----3anhydrotalitol(4-SO4) and GlcUA beta 1----3anhydrotalitol(6-SO4)] as well as of dermatan sulfate chains [IdUA alpha 1----3anhydrotalitol(4-SO4) and GlcUA beta 1----3anhydrotalitol(4-SO4)] chains could readily be quantitated by this approach. In the case of heparin a comparison of the disaccharides produced by direct nitrous acid and hydrazine-nitrous acid treatments moreover provided an assessment of the distribution of N-sulfate groups. The characterization of the various disaccharides by Smith periodic acid degradation and glycosidase digestions was facilitated by the preparation and thin-layer chromatographic resolution of the complete series of monosulfated derivatives of anhydromannitol and anhydrotalitol; the sulfate esters were shown to be stable to both the hydrazine and nitrous acid treatments. The high sensitivity of the hydrazine-nitrous acid fragmentation procedure should prove useful in the structural elucidation of cell surface and basement membrane proteoglycans as well as other sulfated glycoconjugates which are present in small amounts.  相似文献   

8.
Glycosaminoglycans of the embryonic chicken vitreous were characterized and then were used as markers to establish which tissues synthesize the vitreous humor during development. The glycosaminoglycans are predominantly chondroitin sulfates by several criteria. They are resistant to streptomyces hyaluronidase, an enzyme which degrades only hyaluronate, and are digested by testicular hyaluronidase and chondroitinase AC, enzymes which degrade hyaluronate plus chondroitin 4- and 6-sulfates. On electrophoresis on cellulose acetate in 0.15 M phosphate buffer, pH 6.7, the vitreous glycosaminoglycans migrate slightly slower than authentic chondroitin sulfate, but, in 0.1 N HCl, they migrate very close to chondroitin sulfate standards. Finally, the disaccharides produced by digestion of these radioactively labeled glycosaminoglycans with chondroitinases AC and ABC were identified as Δdi-4S and Δdi-6S, as expected for chondroitin 4- and 6-sulfate. By using incorporation of radioactive precursors into chondroitin sulfates in vitro, we than determined which tissues synthesize the vitreous humor in the developing eye. Late in development, on Day 12–13, the isolated vitreous is very active in chondroitin sulfate synthesis, while the neural retina, the lens, and the pecten are less active and produce a high proportion of enzyme-resistant GAG. The eye tissues isolated from embryos labeled in ovo retain similar amounts and types of glycosaminoglycans, indicating that cells within the vitreous synthesize the vitreous humor glycosaminoglycans at this time. Earlier in development, from Days 6 to 8, the isolated vitreous incorporates very low levels of radioactivity into GAG, but the neural retina incorporates high levels of radioactivity into chondroitin sulfate. When the embryos are labeled in ovo and the same tissues are isolated following incorporation, the vitreous retains more radioactive chondroitin sulfate than does the neural retina. Thus, the vitreous humour glycosaminoglycan is initially synthesized by the neural retina and is secreted into the vitreous space.  相似文献   

9.
Abstract. The nature, amounts, and distribution of glycos-aminoglycans (GAG) before and during odontoblast terminal differentiation were studied. GAG have been isolated from intact mouse tooth germs and from dissociated dental epithelia and dental papillae after labeling with [3H] glucos-amine or 35SO42− as precursor. The kinds and relative amounts of 3H-labeled GAG were analyzed by chromatography on a DEAE-cellulose column and cellulose thin-layer sheets. The amounts of individual GAG relative to total GAG were determined from the elution profiles, whereas their nature was identified by the selective removal of chromatographic peaks after enzymatic or chemical degradation. We found hyaluronate and probably a minute quantity of heparan sulfate in the dental epithelium, while hyaluronate, heparan sulfate, and chondroitin sulfate were the main types of GAG in the dental papilla. The chondroitin sulfate recovered was further fractionated by cellulose thin-layer chromatography into two isomers, namely chondroitin-4-sulfate (the major component) and chondroitin-6-sulfate. Changes in the elution profile from DEAE-cellulose chromatography of tooth GAG extracted from different developmental stages suggest that modifications of GAG occur during odontogenesis. Alcian blue staining localized large amounts of hyaluronate and sulfated GAG along the epithelio-mesenchymal junction. Tissue specificity and changing patterns of GAG were demonstrated during odontogenesis.  相似文献   

10.
Infection with Plasmodium falciparum during pregnancy results in the adherence of infected red blood cells (IRBCs) in placenta, causing pregnancy-associated malaria with severe health complications in mothers and fetuses. The chondroitin 4-sulfate (C4S) chains of very low sulfated chondroitin sulfate proteoglycans (CSPGs) in placenta mediate the IRBC adherence. While it is known that partially sulfated but not fully sulfated C4S effectively binds IRBCs, structural interactions involved remain unclear and are incompletely understood. In this study, structurally defined C4S oligosaccharides of varying sulfate contents and sizes were evaluated for their ability to inhibit the binding of IRBCs from different P. falciparum strains to CSPG purified from placenta. The results clearly show that, with all parasite strains studied, dodecasaccharide is the minimal chain length required for the efficient adherence of IRBCs to CSPG and two 4-sulfated disaccharides within this minimal structural motif are sufficient for maximal binding. Together, these data demonstrate for the first time that the C4S structural requirement for IRBC adherence is parasite strain-independent. We also show that the carboxyl group on nonreducing end glucuronic acid in dodecasaccharide motif is important for IRBC binding. Thus, in oligosaccharides containing terminal 4,5-unsaturated glucuronic acid, the nonreducing end disaccharide moiety does not interact with IRBCs due to the altered spatial orientation of carboxyl group. In such C4S oligosaccharides, 14-mer but not 12-mer constitutes the minimal motif for inhibition of IRBC binding to placental CSPG. These data have important implications for the development and evaluation of therapeutics and vaccine for placental malaria.  相似文献   

11.
The commonly used food additive carrageenan, including lambda (λ), kappa (κ) and iota (ι) forms, is composed of galactose disaccharides linked in alpha-1,3 and beta-1,4 glycosidic bonds with up to three sulfate groups per disaccharide residue. Carrageenan closely resembles the endogenous galactose or N-acetylgalactosamine-containing glycosaminoglycans (GAGs), chondroitin sulfate (CS), dermatan sulfate (DS), and keratan sulfate. However, these GAGs have beta-1,3 and beta-1,4 glycosidic bonds, in contrast to the unusual alpha-1,3 glycosidic bond in carrageenan. Since sulfatase activity is inhibited by sulfate, and carrageenan is so highly sulfated, we tested the effect of carrageenan exposure on sulfatase activity in human intestinal and mammary epithelial cell lines and found that carrageenan exposure significantly reduced the activity of sulfatases, including N-acetylgalactosamine-4-sulfatase, galactose-6-sulfatase, iduronate sulfatase, steroid sulfatase, arylsulfatase A, SULF-1,2, and heparan sulfamidase. Consistent with the inhibition of sulfatase activity, following exposure to carrageenan, GAG content increased significantly and showed marked differences in disaccharide composition. Specific changes in CS disaccharides included increases in di-sulfated disaccharide components of CSD (2S6S) and CS-E (4S6S), with declines in CS-A (4S) and CS-C (6S). Specific changes in heparin-heparan sulfate disaccharides included increases in 6S disaccharides, as well as increases in NS and 2S6S disaccharides. Study results suggest that carrageenan inhibition of sulfatase activity leads to re-distribution of the cellular GAG composition with increase in di-sulfated CS and with potential consequences for cell structure and function.  相似文献   

12.
Human basophils were obtained from three donors with myelogenous leukemia. Proteoglycans were labeled by using [35S]sulfate as precursor and were extracted in 1 M NaCl with protease inhibitors to preserve their native structure. [35S]proteoglycans filtered on Sepharose 4B with an average m.w. similar to that of a rat heparin proteoglycan that has an estimated m.w. of 750,000. The [35S]glycosaminoglycan side chains filtered with an average m.w. slightly smaller than a 60,000-m.w. glycosaminoglycan marker. The [35S]glycosaminoglycans were resistant to heparinase and susceptible to degradation by chondroitin AC lyase and chondroitin ABC lyase. The intact [35S]glycosaminoglycans chromatographed on DEAE Sepharose as a single peak eluting just before an internal heparin marker. These findings indicate that the [35S]glycosaminoglycans were made up only of chondroitin sulfates. No heparin was identified. The chondroitin sulfate disaccharides that resulted from the action of chondroitin ABC lyase on the basophil glycosaminoglycans consisted of 92% delta Di-4S, 6% delta Di-6S, and 2% disulfated disaccharides. The [35S]chondroitin sulfate proteoglycans were susceptible to cleavage with proteases and could be shown to be released intact from basophils during degranulation initiated by the calcium ionophore A23187. The basophil proteoglycans and glycosaminoglycans were capable of binding histamine in water, but not in phosphate-buffered saline, and had no anticoagulant activity.  相似文献   

13.
Selective hydrolysis of chondroitin sulfates by hyaluronidase   总被引:4,自引:0,他引:4  
Chondroitin 4-sulfate and chondroitin 6-sulfate were incubated with testicular hyaluronidase in the presence of excess beta-glucuronidase. The beta-glucuronidase caused rapid removal of the nonreducing terminal beta-D-glucuronosyl residues from the oligosaccharides formed by the action of the hyaluronidase, destroying the oligosaccharide acceptors required for the transglycosylation activity of hyaluronidase and releasing free D-glucuronic acid at a rate that was equal to the rate of the hyaluronidase-catalyzed hydrolysis. When hyaluronidase was assayed at 37 degrees C in the presence of 0.05 M NaCl, 0.05 M Na2SO4, and 0.1 M sodium acetate at pH 5, chondroitin 4-sulfate was hydrolyzed at 1.5 times the rate found for chondroitin 6-sulfate. When hyaluronidase was assayed at 45 degrees C in 0.06 M sodium acetate at pH 6, chondroitin 4-sulfate was hydrolyzed at 8 times the rate observed for chondroitin 6-sulfate. Under the pH5 conditions, the chondroitin 4-sulfate was converted to a mixture of tri- and pentasaccharides, while the chondroitin 6-sulfate was converted primarily to a mixture of penta- and heptasaccharides, with only a small amount of trisaccharide. Under the pH 6 conditions, the chondroitin 4-sulfate was converted to a mixture of penta- and heptasaccharides, with only a small amount of trisaccharide, but the products from chondroitin 6-sulfate were a mixture of oligosaccharides ranging in degree of polymerization from 7 to 25 monosaccharides per oligosaccharide. End-group analyses of the products formed at pH 6 showed that both substrates were cleaved preferentially at the glycosidic bonds of the 4-sulfated disaccharides.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Chondroitin sulfates were fragmented using the enzymes chondroitin sulfate ABC endolyase and chondroitin ACII lyase; both disaccharide and tetrasaccharide fragments were isolated after reduction to the corresponding 2-deoxy-2-N-acetylamino-D-galactitol (GalNAc-ol) form. These have the structures: Delta UA(beta 1--3)GalNAc4S-ol, Delta UA(beta 1--3)GalNAc6S-ol, Delta UA2S(beta 1--3)GalNAc6S-ol, Delta UA(beta 1--3)GalNAc4S(beta 1--4)L-IdoA(alpha 1--3)GalNAc4S-ol, Delta UA(beta 1--3)GalNAc4S(beta 1--4)GlcA(beta 1--3)GalNAc4S-ol, Delta UA(beta 1--3)GalNAc6S(beta 1--4)GlcA(beta 1--3)GalNAc4S-ol, Delta UA(beta 1--3)GalNAc6S(beta 1--4)GlcA(beta 1--3)GalNAc6S-ol, Delta UA2S(beta 1--3)GalNAc6S(beta 1--4)GlcA(beta 1--3)GalNAc4S-ol and Delta UA2S(beta 1--3)GalNAc6S(beta 1--4)GlcA(beta 1--3)GalNAc6S-ol, where Delta UA represents a 4,5-unsaturated hexuronic acid (4-deoxy-alpha-Lthreo-hex-4-enepyranosyluronic acid) and 6S/4S/2S represent O-ester sulfate groups at C6/C4/C2 sites. Complete (1)H-NMR and (13)C-NMR data are derived for these species, which may help to alleviate some of the significant difficulties resulting from signal complexity that are currently hindering the characterization and assignment of major and minor structural components within chondroitin sulfate and dermatan sulfate polymers.  相似文献   

15.
A previously published method for the analysis of glycosaminoglycan disaccharides by high pH anion exchange chromatography (Midura,R.J., Salustri,A., Calabro,A., Yanagishita,M. and Hascall,V.C. (1994), Glycobiology,4, 333-342) has been modified and calibrated for chondroitin and dermatan sulfate oligosaccharides up to hexasaccharide in size and hyaluronan oligosaccharides up to hexadecasaccharide. For hyaluronan oligosaccharides chain length controls elution position; however, for chondroitin and dermatan sulfate oligosaccharides elution times primarily depend upon the level of sulfation, although chain length and hence charge density plays a role. The sulfation position of GalNAc residues within an oligosaccharide is also important in determining its elution position. Compared to 4-sulfation a reducing terminal 6-sulfate retards elution; however, when present on an internal GalNAc residue it is the 4-sulfate containing oligosaccharide which elutes later. These effects allow discrimination between oligosaccharides differing only in the position of GalNAc sulfation. Using this simple methodology, a Dionex CarboPac PA-1 column with NaOH/NaCl eluents and detection by absorbance at 232 nm, a quantitative analytical fingerprint of a chondroitin/dermatan sulfate chain may be obtained, allowing a determination of the abundance of chondroitin sulfate, dermatan sulfate, and hyaluronan along with an analysis of structural features with a linear response to approximately 0.1 nmol. The method may readily be calibrated using either commercial disaccharides or the di- and tetrasaccharide products of a limit digest of commercial chondroitin sulfate by chondroitin ABC endolyase. Commercially available and freshly prepared shark, whale, bovine, and human cartilage chondroitin sulfates have been examined by this methodology and we have confirmed that freshly isolated shark cartilage CS contains significant amounts of the biologically important GlcA2Sbeta(1-3)GalNAc6S structure.  相似文献   

16.
We have devised a sensitive method for the isolation and structural analysis of glycosaminoglycans from two genetically tractable model organisms, the fruit fly, Drosophila melanogaster, and the nematode, Caenorhabditis elegans. We detected chondroitin/chondroitin sulfate- and heparan sulfate-derived disaccharides in both organisms. Chondroitinase digestion of glycosaminoglycans from adult Drosophila produced both nonsulfated and 4-O-sulfated unsaturated disaccharides, whereas only unsulfated forms were detected in C. elegans. Heparin lyases released disaccharides bearing N-, 2-O-, and 6-O-sulfated species, including mono-, di-, and trisulfated forms. We observed tissue- and stage-specific differences in both chondroitin sulfate and heparan sulfate composition in Drosophila. We have also applied these methods toward the analysis of tout-velu, an EXT-related gene in Drosophila that controls the tissue distribution of the growth factor Hedgehog. The proteins encoded by the vertebrate tumor suppressor genes EXT1 and 2, show heparan sulfate co-polymerase activity, and it has been proposed that tout-velu affects Hedgehog activity via its role in heparan sulfate biosynthesis. Analysis of total glycosaminoglycans from tout-velu mutant larvae show marked reductions in heparan sulfate but not chondroitin sulfate, consistent with its proposed function as a heparan sulfate co-polymerase.  相似文献   

17.
Cartilage regeneration in the adult rabbit ear was examined with respect to glycosaminoglycan (GAG) synthesis at various stages of the regeneration process. Increased hyaluronic acid and chondroitin sulfate synthesis was first seen 31 days after wounding, when a metachromatic cartilage matrix could be distinguished from blastemal cells. Analysis of cartilage and the overlying skin separately showed that 90% of the labeled chondroitin sulfate was found in the cartilage being regenerated. DEAE-cellulose chromatography of GAG preparations from 35-day regenerating cartilages showed hyaluronic acid and chondroitin sulfate peaks eluting in the same position as those isolated from normal cartilages. The identity of the hyaluronic acid and chondroitin sulfate peaks was confirmed by their susceptibility to Streptomyces hyaluronidase and chondroitinase ABC, respectively. Although the degree of sulfation in normal and regenerated cartilages was similar, the ratio of chondroitin 6-sulfate to chondroitin 4-sulfate was increased in regenerated cartilages. GAG preparations from unlabeled cartilages were digested with chondroitinase ABC and the disaccharide digestive products were identified and quantitiated. Normal cartilage had a ΔDi-6SΔDi-4S ratio of 0.27; the same ratio for the regenerated cartilage was 1.58.  相似文献   

18.
A study of the urinary excretion of isomeric chondroitin sulfates in normal individuals by high-performance liquid chromatographic (HPLC) determinations of the unsaturated disaccharides produced by digestion with chondroitinases is described. The composition of the HPLC mobile phase was systematically varied in order to select the optimal conditions for separation.The data show that chondroitin 4-sulfate is the major component of the chondroitin sulfate isomers in normal urine, and that chondroitin 6-sulfate is a lesser component. It is also evident that dermatan sulfate is present in small quantities in normal urine.  相似文献   

19.
Proteoglycans from three cloned, granulated lymphocyte cell lines with natural killer (NK) function (NKB61A2, HY-3, H-1) and one mast cell line (PT-18) were labeled with [35S]sulfate. [35S]proteoglycans were extracted in 1 M NaCl with protease inhibitors to preserve their native structure and were separated from unincorporated [35S]sulfate by Sephadex G-25 chromatography. [35S]proteoglycans from all four cell lines were chromatographed over Sepharose 4B and were found to have a similar range of m.w. The [35S]glycosaminoglycans from each cell line were then separated from parent proteoglycans by treatment with 0.5 M NaOH. The [35S]glycosaminoglycans from the three lymphocyte cell lines exhibited a similar m.w. as assessed by Sepharose 4B gel filtration, whereas the [35S]glycosaminoglycans from the mast cell line chromatographed as a smaller m.w. molecule. [35S )glycosaminoglycan charge characteristics were evaluated with DEAE C1-6B ion exchange chromatography. The consistency of the elution patterns was determined by using [35S]glycosaminoglycans obtained from radiolabelings of each cell line separated by 6 mo in culture. Each NK lymphocyte cell line reproducibly produced two distinct [35S]glycosaminoglycan chains that eluted in two regions well before the commercial heparin marker. The proportions of each chain were dependent upon the specific cell line. The mast cell line produced a single [35S]glycosaminoglycan chain, which eluted overlapping the internal commercial heparin marker, consistent with its higher charge characteristics. [35S]glycosaminoglycans from all cell lines were identified as chondroitin sulfates with the use of specific polysaccharidases. The NK lymphocyte glycosaminoglycans contained chondroitin 4-sulfate disaccharides. The mast cell glycosaminoglycans contained oversulfated disaccharides and chondroitin 4-sulfate disaccharides. Thus, each granulated NK lymphocyte cell line produced chondroitin sulfate glycosaminoglycans that were characteristic of that cell line and of different composition and less charge than those produced by cultured mast cells. These findings demonstrate that glycosaminoglycan profiles are useful biochemical markers in the characterization of diverse granulated cell lines including NK lymphocytes and mast cells.  相似文献   

20.
Anhydrous sodium sulfate (Na2SO4) was analyzed at varying concentrations by infrared (ir) spectroscopy. A standard curve was obtained from a linear plot of sulfate (SO2-(4] concentration vs the weight of the ir band area of S = O stretching. Standard chondroitin 4-sulfate, chondroitin 6-sulfate, heparan sulfate, heparin, keratan sulfates, and various dermatan sulfates isolated from human and rat skins were also studied by ir spectroscopy. The spectrum of every glycosaminoglycan (GAG) displayed an ir band around 1230 cm-1 which originated from S = O stretching of sulfate esters. Therefore, the weight of the latter band was employed to quantify sulfate, by using the standard curve indicated above. Sulfate was also estimated quantitatively by the gelatin/BaCl2 method of K.S. Dodgson and R.G. Price (Biochem. J. 1962, 84, 106-110). The sulfate composition determined by ir spectroscopy ranged from 8.5 to 22.1% (w/w), and agreed closely with the values obtained chemically. In the ir spectroscopy method, sulfate was determined using the polymer forms of the GAGs. After analysis, these heteropolysaccharides were recovered unaffected in a yield greater than 95%. The data show that the infrared spectroscopy technique, in addition to being sensitive and reliable, is much more economical than the chemical procedures currently employed to quantify GAG sulfate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号