首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
DNA sequence variation in a 1410-bp region including the Cu,Zn Sod locus was examined in 41 homozygous lines of Drosophila melanogaster. Fourteen lines were from Barcelona, Spain, 25 were from California populations and the other two were from laboratory stocks. Two common electromorphs, SOD(S) and SOD(F), are segregating in the populations. Our sample of 41 lines included 19 Sod(S) and 22 Sod(F) alleles (henceforward referred to as Slow and Fast alleles). All 19 Slow alleles were identical in sequence. Of the 22 Fast alleles sequenced, nine were identical in sequence and are referred to as the Fast A haplotypes. The Slow allele sequence differed from the Fast A haplotype at a single nucleotide site, the site that accounts for the amino acid difference between SOD(S) and SOD(F). There were nine other haplotypes among the remaining 13 Fast alleles sequenced. The overall level of nucleotide diversity (π) in this sample is not greatly different than that found at other loci in D. melanogaster. It is concluded that the Slow/Fast polymorphism is a recently arisen polymorphism, not an old balanced polymorphism. The large group of nearly identical haplotypes suggests that a recent mutation, at the Sod locus or tightly linked to it, has increased rapidly in frequency to around 50%, both in California and Spain. The application of a new statistical test demonstrates that the occurrence of such large numbers of haplotypes with so little variation among them is very unlikely under the usual equilibrium neutral model. We suggest that the high frequency of some haplotypes is due to natural selection at the Sod locus or at a tightly linked locus.  相似文献   

4.
5.
N. T. Miyashita 《Genetics》1990,125(2):407-419
Restriction map polymorphism in a 13-kb region of the Zw locus in Drosophila melanogaster was investigated for 64 X chromosome lines with seven 6-cutter and ten 4-cutter restriction enzymes. A total of 203 restriction sites were scored, of which 20 were found to be polymorphic. The estimated nucleotide variation for this region for overall data (pi = 0.003 and 0.001, and theta = 0.003 and 0.002, for 4-cutter and 6-cutter studies, respectively) was smaller than that reported for most regions studied in D. melanogaster. It was found that the Slow allozyme has a larger nucleotide variation and haplotype diversity than the Fast allozyme. Results suggest the relatively recent divergence of the Fast allozyme from the Slow allozyme. Glucose 6-phosphate dehydrogenase (G6PD) activity was measured as a phenotype of the Zw locus. A significant difference in G6PD activity between allozymes was detected. The between-line effect was highly significant within the Slow allozyme, but was not significant within the Fast allozyme. Although a direct causative link could not be established, these results suggest an association between the amounts of quantitative and molecular genetic variation at the Zw locus region.  相似文献   

6.
C. C. Laurie  L. F. Stam 《Genetics》1994,138(2):379-385
Several lines of evidence indicate that natural selection controls the frequencies of an allozyme polymorphism at the alcohol dehydrogenase (Adh) locus in Drosophila melanogaster. However, because of associations among sequence polymorphisms in the Adh region, it is not clear whether selection acts directly (or solely) on the allozymic site. This problem has been approached by using in vitro mutagenesis to distinguish among the effects on Adh expression of individual polymorphisms. This study shows that a polymorphism within the first Adh intron ( &1) has a significant effect on the level of ADH protein. Like the allozyme, & shows a geographic cline in frequency, indicating that it may also be a target of natural selection. These results suggest that multisite selection models may be required to understand the evolutionary dynamics of individual loci.  相似文献   

7.
Kawabe A  Yamane K  Miyashita NT 《Genetics》2000,156(3):1339-1347
DNA variation in a 4.7-kb region of the cytosolic phosphoglucose isomerase (PgiC) locus was investigated for 21 ecotypes of Arabidopsis thaliana. The estimated nucleotide diversity was 0.0038, which was one-third of those in previously investigated loci. Since most of the nucleotide variations (93%) were singleton and doubleton, Tajima's test statistic was significantly negative. About 50% of nucleotide polymorphisms in exons were replacement, which caused significance in McDonald and Kreitman's test when compared with Arabis gemmifera and Cardaminopsis petraea. These results indicated that DNA polymorphism at the PgiC locus was not under neutrality. There were two divergent sequence types in the PgiC region, which were associated with allozyme variation. The Fast allozyme was shown to have originated from the Slow allozyme, since two outgroup species had the Slow form. A phylogenetic tree of ecotypes with the Fast allozyme had the shape of a star phylogeny. Mismatch distribution of the Fast allozyme ecotypes resembled that expected under an expanding population model. These results suggest positive selection for the Fast allozyme of the PGIC in A. thaliana.  相似文献   

8.
A study was made of environmental and genetic factors affecting the quantity and disposition of the alcohol dehydrogenase (ADH) protein in Drosophila melanogaster. It was found that the amount of enzyme per fly is greatly influenced by the environmental conditions in which it develops. A critical factor is the concentration of yeast in the medium. A high concentration of yeast can double the quantity of ADH. The yeast appears to act through the provision of protein, and the protein to act through the provision of threonine, which is already known to induce ADH in fungi. Various genetic factors affect the quantity of enzyme. Males have more ADH than females. Files homozygous for the Fast allele have more ADH than those homozygous for the slow allele, and the difference is greater in females than in males. One particular line (ve), homozygous for Slow, has approximately half the normal quantity of enzyme, and the quantity segregates with the electrophoretic allele. Lines differ in the relative amounts of ADH in the gut (including Malpighian tubules) and the fat body. In general it seems that slow lines have relatively more enzyme in the fat body. In a cross between ve and a line homozygous to Fast, the difference in tissue distribution segregated with the electrophoretic allele. It is argued, but not demonstrated, that the differences in quantity and tissue distribution are due to nucleotide substitutions in noncoding regions close to, or within, the structural gene. It seems likely that the observed environmental and genetic differences in the quantity and disposition of ADH will influence the relative selective values of the electrophoretic genotypes.  相似文献   

9.
B. Richter  M. Long  R. C. Lewontin    E. Nitasaka 《Genetics》1997,145(2):311-323
A study of polymorphism and species divergence of the dpp gene of Drosophila has been made. Eighteen lines from a population of D. melanogaster were sequenced for 5200 bp of the Hin region of the gene, coding for the dpp polypeptide. A comparison was made with sequence from D. simulans. Ninety-six silent polymorphisms and three amino acid replacement polymorphisms were found. The overall silent polymorphism (0.0247) is low, but haplotype diversity (0.0066 for effectively silent sites and 0.0054 for all sites) is in the range found for enzyme loci. Amino acid variation is absent in the N-terminal signal peptide, the C-terminal TGF-β peptide and in the N-terminal half of the pro-protein region. At the nucleotide level there is strong conservation in the middle half of the large intron and in the 3' untranslated sequence of the last exon. The 3' untranslated conservation, which is perfect for 110 bp among all the divergent species, is unexplained. There is strong positive linkage disequilibrium among polymorphic sites, with stretches of apparent gene conversion among originally divergent sequences. The population apparently is a migration mixture of divergent clades.  相似文献   

10.
A cDNA encoding human class III (chi ADH5) alcohol dehydrogenase was isolated, sequenced and used to comparatively map this unusual ADH. In their coding sequences, the three major ADH classes were approximately equisimilar, class II and III ADHs sharing the highest sequence identity (67%). A class III-like ADH was mapped to mouse chromosome 3, site of the ADH gene complex, and synteny of ADH5 with four other ADH loci on human chromosome 4 was confirmed. The nearly full-length 1613 nucleotide cDNA contained 433 nucleotides of 3' nontranslated sequence and two possible initiation sites for translation. A protein of 374 amino acid residues could be synthesized using the potential initiation codon at nucleotide 59. However, use of the likely initiation codon at nucleotide 5 would produce a protein of 392 residues with 19 additional N-terminal residues as compared to the known protein sequence. The derived protein sequence also differs at residue 166, where Tyr is found. This difference, due to a single base substitution, could result from cloning artifact, polymorphism, or two expressed class III ADH genes.  相似文献   

11.
Recent studies of mitochondrial DNA (mtDNA) variation in mammals and Drosophila have shown an excess of amino acid variation within species (replacement polymorphism) relative to the number of silent and replacement differences fixed between species. To examine further this pattern of nonneutral mtDNA evolution, we present sequence data for the ND3 and ND5 genes from 59 lines of Drosophila melanogaster and 29 lines of D. simulans. Of interest are the frequency spectra of silent and replacement polymorphisms, and potential variation among genes and taxa in the departures from neutral expectations. The Drosophila ND3 and ND5 data show no significant excess of replacement polymorphism using the McDonald-Kreitman test. These data are in contrast to significant departures from neutrality for the ND3 gene in mammals and other genes in Drosophila mtDNA (cytochrome b and ATPase 6). Pooled across genes, however, both Drosophila and human mtDNA show very significant excesses of amino acid polymorphism. Silent polymorphisms at ND5 show a significantly higher variance in frequency than replacement polymorphisms, and the latter show a significant skew toward low frequencies (Tajima's D = -1.954). These patterns are interpreted in light of the nearly neutral theory where mildly deleterious amino acid haplotypes are observed as ephemeral variants within species but do not contribute to divergence. The patterns of polymorphism and divergence at charge-altering amino acid sites are presented for the Drosophila ND5 gene to examine the evolution of functionally distinct mutations. Excess charge-altering polymorphism is observed at the carboxyl terminal and excess charge-altering divergence is detected at the amino terminal. While the mildly deleterious model fits as a net effect in the evolution of nonrecombining mitochondrial genomes, these data suggest that opposing evolutionary pressures may act on different regions of mitochondrial genes and genomes.   相似文献   

12.
13.
R. S. Wells 《Genetics》1996,143(1):375-384
The Gpdh locus was sequenced in a broad range of Drosophila species. In contrast to the extreme evolutionary constraint seen at the amino acid level, the synonymous sites evolve at rates comparable to those of other genes. Gpdh nucleotide sequences were used to infer a phylogenetic tree, and the relationships among the species of the obscura group were examined in detail. A survey of nucleotide polymorphism within D. pseudoobscura revealed no amino acid variation in this species. Applying a modified McDonald-Kreitman test, the amino acid divergence between species in the obscura group does not appear to be excessive, implying that drift is adequate to explain the patterns of amino acid change at this locus. In addition, the level of polymorphism at the Gpdh locus in D. pseudoobscura is comparable to that found at other loci, as determined by a Hudson-Kreitman-Aguade test. Thus, the pattern of nucleotide variation within and between species at the Gpdh locus is consistent with a neutral model.  相似文献   

14.
A population genetic analysis of the long-wavelength opsin (OPN1LW, "red") color vision gene in a global sample of 236 human nucleotide sequences had previously discovered nine amino acid replacement single nucleotide polymorphisms, which were found at high frequencies in both African and non-African populations and associated with an unusual haplotype diversity. Although this pattern of nucleotide diversity is consistent with balancing selection, it has been argued that a recombination "hot spot" or gene conversion within and between X-linked color vision genes alone may explain these patterns. The current analysis investigates a closely related primate with trichromatism to determine whether color vision gene amino acid polymorphism and signatures of adaptive evolution are characteristic of humans alone. Our population sample of 56 chimpanzee (Pan troglodytes) OPN1LW sequences shows three singleton amino acid polymorphisms and no unusual recombination or linkage disequilibrium patterns across the approximately 5.5-kb region analyzed. Our comparative population genetic approach shows that the patterns of OPN1LW variation in humans and chimpanzees are consistent with positive and purifying selection within the two lineages, respectively. Although the complex role of color vision has been greatly documented in primate evolution in general, it is surprising that trichromatism has followed very different selective trajectories even between humans and our closest relatives.  相似文献   

15.
Matzkin LM 《Molecular ecology》2005,14(7):2223-2231
Drosophila mojavensis and Drosophila arizonae are species of cactophilic flies that share a recent duplication of the alcohol dehydrogenase (Adh) locus. One paralog (Adh-2) is expressed in adult tissues and the other (Adh-1) in larvae and ovaries. Enzyme activity measurements of the ADH-2 amino acid polymorphism in D. mojavensis suggest that the Fast allozyme allele has a higher activity on 2-propanol than 1-propanol. The Fast allele was found at highest frequency in populations that utilize hosts with high proportions of 2-propanol, while the Slow allele is most frequent in populations that utilize hosts with high proportions of 1-propanol. This suggests that selection for ADH-2 allozyme alleles with higher activity on the most abundant alcohols is occurring in each D. mojavensis population. In the other paralog, ADH-1, significant differences between D. mojavensis and D. arizonae are associated with a previously shown pattern of adaptive protein evolution in D. mojavensis. Examination of protein sequences showed that a large number of amino acid fixations between the paralogs have occurred in catalytic residues. These changes are potentially responsible for the significant difference in substrate specificity between the paralogs. Both functional and sequence variation within and between paralogs suggests that Adh has played an important role in the adaptation of D. mojavensis and D. arizonae to their cactophilic life.  相似文献   

16.
应用PCR-RFLPs方法对10个鸡种的B-LⅡβ(β1外显子)基因进行分子遗传多态性研 究,综合4种限制性内切酶的酶切情况,共检测到37种基因组合型,并且在个体间以及品种间 的基因型频率、基因组合型频率都存在较大的差异。同时各酶切位点的Hardy-Weinberg平衡状态在品种上也表现不一致。克隆测序结果表明:β1外显子分子遗传多态性更多地体现在氨 基酸水平,作为抗原结合区,其丰富的多态性与抗原多样性相一致。  相似文献   

17.
We have obtained 15 sequences of Est-6 from a natural population of Drosophila melanogaster to test whether linkage disequilibrium exists between Est-6 and the closely linked Sod, and whether natural selection may be involved. An early experiment with allozymes had shown linkage disequilibrium between these two loci, while none was detected between other gene pairs. The Sod sequences for the same 15 haplotypes were obtained previously. The two genes exhibit similar levels of nucleotide polymorphism, but the patterns are different. In Est-6, there are nine amino acid replacement polymorphisms, one of which accounts for the S-F allozyme polymorphism. In Sod, there is only one replacement polymorphism, which corresponds to the S-F allozyme polymorphism. The transversion/transition ratio is more than five times larger in Sod than in Est-6. At the nucleotide level, the S and F alleles of Est-6 make up two allele families that are quite different from each other, while there is relatively little variation within each of them. There are also two families of alleles in Sod, one consisting of a subset of F alleles, and the other consisting of another subset of F alleles, designed F(A), plus all the S alleles. The Sod F(A) and S alleles are completely or nearly identical in nucleotide sequence, except for the replacement mutation that accounts for the allozyme difference. The two allele families have independent evolutionary histories in the two genes. There are traces of statistically significant linkage disequilibrium between the two genes that, we suggest, may have arisen as a consequence of selection favoring one particular sequence at each locus.  相似文献   

18.
Nucleotide sequence data from the alcohol dehydrogenase (Adh) region of 18 isochromosomal strains of Drosophila pseudoobscura were used to determine whether the lack of amino acid polymorphism in ADH results from a low neutral mutation rate or a recent directional selection event. We estimated the neutral mutation parameter, 4Nmu, in synonymous sites for 17 subregions of Adh. The nucleotide diversity data were tested for departures from an equilibrium neutral model with two statistical tests. The Tajima test and the Hudson, Kreitman and Aguade test each failed to reject a neutral model. These results suggest that the ADH enzyme of D. pseudoobscura lacks amino acid polymorphisms because the neutral mutation rate of nonsynonymous sites is low. The neutral mutation parameter for synonymous sites is heterogeneous between domains of the Adh region. These data indicate that selective constrains on synonymous sites can vary between functional domains.  相似文献   

19.
In vitro characterization of a human calcitonin receptor gene polymorphism   总被引:4,自引:0,他引:4  
Calcitonin is a 32 amino acid peptide hormone that inhibits bone resorption by stimulating calcitonin receptors (CTR) located on the surfaces of osteoclasts. A polymorphism at nucleotide 1340 of the human calcitonin receptor gene (CALCR) lies within the coding region and has the potential to change the amino acid at codon 447 from leucine to proline. In the present study, we scanned the coding region, portions of the 5'-flanking and 3'-flanking sequences, and the intron-exon boundaries of the human CALCR gene for additional polymorphisms, and determined the frequency of the codon 447 polymorphism in several ethnic groups. Because a leucine to proline change has the potential for significant structural alteration, receptor genes encoding either leucine or proline at residue 447 were transiently expressed in COS-7 cells to determine the binding and functional consequences of this polymorphism. Our complete polymorphism scan of the CALCR gene identified 11 polymorphic sites in the gene and confirmed the presence of the previously identified nucleotide T1340C (codon 447) polymorphism. Ten of the 11 polymorphisms were single nucleotide polymorphisms (SNPs). For the codon 447 polymorphism, the prevalence of the TT genotype (leucine) was 59% in Caucasians, 27% in African-Americans, 0% in Asians, and 20% in Hispanics. The presence of this SNP appears to have no statistically significant difference with the receptor's ability to bind calcitonin or signal when activated with the hormone.  相似文献   

20.
Nucleotide variation was studied in a 1.1 kb section of the coding region of an Esterase gene (Est-A) that maps in the center of the segments rearranged by polymorphic inversions in the cactophilic Drosophila buzzatii. We examine 30 homozygous second-chromosome lines differing in gene arrangement and three D. koepferae isofemale lines as outgroups. Our data show that Est-A is a highly polymorphic gene at both synonymous and replacement sites. Significant departures from homogeneity in the distribution of the ratio of silent polymorphism to divergence predicted by the neutral theory reveals a local excess of silent polymorphism. This is consistent with the presence of two apparent narrow peaks of elevated silent polymorphism surrounding nonconservative amino acid substitutions. These polymorphisms as well as others at synonymous and nonsynonymous sites are shared with D. koepferae. We suggest that the presence of shared nucleotide polymorphisms is probably due to interspecific gene flow and/or balancing selection acting on replacement variants and/or to a decreased probability of loss of ancestral polymorphisms caused by linkage to an adaptive inversion polymorphism. Recurrent mutation and persistence of neutral ancestral polymorphisms cannot, however, be ruled out. The analysis of the distribution of nucleotide variation among the three chromosomal arrangements sampled reveals that derived arrangements (J and JZ(3)) are less polymorphic than the ancestral ST, and that the widely distributed ST and J arrangements are genetically differentiated. However, a significant number of polymorphisms are shared between arrangements, suggesting frequent exchange either from gene conversion or from double crossovers in heterokaryotypes. Finally, our present results in combination with data of sequence variation at the breakpoints of inversion J suggest that this old gene arrangement has risen in frequency in relatively recent times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号