首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
45 S RNP (ribonucleoprotein) particles from calf thymus or L5178y mouse lymphoma cells contain the poly(A)-modulated and oligo(U)-binding endoribonuclease VII [Bachmann, Zahn & Müller (1983) J. Biol. Chem. 258, 7033-7040]. From these particles a 4.5 S RNA was isolated that possesses an oligo(U) sequence. By using monospecific and non-cross-reacting antibodies directed against the La or Ro antigen, both proteins were identified in the endoribonuclease VII-RNP complex after phosphorylation in vitro. In a second approach, endoribonuclease VII activity was identified in immunoaffinity-purified Ro RNPs after preparative isoelectric focusing. Therefore we conclude that the 4.5 S RNA belongs to the Ro RNAs. The results indicate a possible function of endoribonuclease VII in activating stored mRNAs.  相似文献   

2.
A procedure is described for the purification of the individual major small nuclear ribonucleoproteins (snRNPs) U1, U2, U5 and U4/U6 from HeLa cells. The salient feature of the method is the combined usage of antibodies against 2,2,7-trimethylguanosine (m3G) and 6-methyladenosine (m6A) for differential immune affinity chromatography of the snRNPs. While anti-m3G affinity columns allow the separation of snRNPs U1, U2 and U5 from U4/U6 RNPs, anti-m6A antibodies selectively react with snRNPs U2 and U4/U6. Our technique further incorporates immune affinity chromatography of snRNPs with antibodies against snRNP proteins in addition to ion exchange chromatography. The procedure avoids the usage of denaturing agents, so as to maintain the native structure of the particles. This is mainly provided for by the possibility of eluting the anti-m3G and anti-m6A bound snRNPs with excess of the respective nucleosides. We have so far identified 12 polypeptides as constituents of the major snRNPs U1 to U6. Seven proteins of approximate mol. wts 29 kd (B'), 28 kd (B), 16 kd (D), 15.5 kd (D'), 12 kd (E), 11 kd (F) and 9 kd (G) were present in each of the individual snRNPs U1, U2, U5 and U4/U6. In addition to the common proteins, U1 RNPs contain three unique polypeptides of mol. wts 70 kd, 34 kd (A) and 22 kd (C). U2 RNPs are characterized by the presence of a 33-kd and a 28.5-kd protein, denoted A' and B". We could not detect any unique polypeptide confined to the purified snRNPs U5 or U4/U6.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
12 S ribonucleoprotein (RNP) particles were separated from a 45 S RNP complex (Bachmann, M., Zahn, R. K. and Müller, W. E. G. (1983) J. Biol. Chem. 258, 7033-7040) isolated from calf thymus and L5178y cells. The particles were determined to be associated with an acidic endoribonuclease (pI 4.1; pH optimum 6.2). the enzyme requires Mg2+ and is sensitively inhibited by higher NaCl concentrations. The nuclease specifically degrades poly(U) and poly(C) in an endonucleolytic manner; the end-products are 3'-UMP (85%) and 2',3'-cyclic UMP (12%). Poly(A) strongly inhibits the pI 4.1 endoribonuclease activity. The Michaelis constant (for poly(U)) was determined as 82 microM and the maximal reaction velocity was 0.54 mumol/microgram per h. The endoribonuclease is distinguished from the known pyrimidine-specific ribonucleases (pancreatic ribonuclease and endoribonuclease VII) by further criteria, e.g., resistance to thiol reagents, inhibition by EDTA, Mg2+ requirement, pI and pH optimum. Using the techniques of counterimmunoelectrophoresis and immunoaffinity column chromatography it was shown that the pI 4.1 endoribonuclease-associated 12 S RNP particles display antigenicity to anti-Sm and anti-(U1)-RNP antibodies. An RNA component, isolated from the 12 S-45 S hypercomplex, was identified as U1-snRNA.  相似文献   

4.
12 S ribonucleoprotein (RNP) particles were separated from a 45 S RNP complex (Bachmann, M., Zahn, R.K. and Müller, W.E.G. (1983) J. Biol. Chem. 258, 7033–7040) isolated from calf thymus and L5178y cells. The particles were determined to be associated with an acidic endoribonuclease (pI 4.1; pH optimum 6.2). the enzyme requires Mg2+ and is sensitively inhibited by higher NaCl concentrations. The nuclease specifically degrades poly(U) and poly(C) in an endonucleolytic manner; the end-products are 3′-UMP (85%) and 2′,3′-cyclic UMP (12%). Poly(A) strongly inhibits the pI 4.1 endoribonuclease activity. The Michaelis constant (for poly(U)) was determined as 82 μM and the maximal reaction velocity was 0.54 μmol/μg per h. The endoribonuclease is distinguished from the known pyrimidine-specific ribonucleases (pancreatic ribonuclease and endoribonuclease VII) by further criteria, e.g., resistance to thiol reagents, inhibition by EDTA, Mg2+ requirement, pI and pH optimum. Using the techniques of counterimmunoelectrophoresis and immunoaffinity column chromatography it was shown that the pI 4.1 endoribonuclease-associated 12 S RNP particles display antigenicity to anti-Sm and anti-(U1)-RNP antibodies. An RNA component, isolated from the 12 S-45 S hypercomplex, was identified as U1-snRNA.  相似文献   

5.
Antibodies specific for N6-methyladenosine (m6A) were elicited in rabbits and used to study the accessibility in intact snRNPs of the m6A residues present in the snRNAs U2, U4 and U6. The antibody quantitatively precipitates snRNPs U2 and U4/U6 from total nucleoplasmic snRNPs U1-U6 isolated from HeLa cells, which demonstrates that the m6A residues of the respective snRNAs are not protected by snRNP proteins in the snRNP particles. While the anti-m6A IgG does not react at all with U5 RNPs lacking m6A, a significant amount of U1 RNPs was co-precipitated despite the fact that U1 RNA does not contain m6A either. Since anti-m6A IgG does not react with purified U1 RNPs and co-precipitation of U1 RNPs is dependent on the presence of U2 RNPs but not of U4/U6 RNPs, these data indicate an interaction between snRNPs U1 and U2 in vitro. The anti-m6A precipitation pattern described above was also observed with snRNPs isolation from mouse Ehrlich ascites tumor cells, indicating similar three-dimensional arrangements of snRNAs in homologous snRNP particles from different organisms.  相似文献   

6.
Small RNAs in sea urchins were examined in order to characterize developmental changes in their level, subcellular localization, synthesis, and association with proteins and other RNAs. Small RNAs such as the U snRNAs, 5S and 5.8S rRNAs, and 7S RNAs were identified by their mobility on highly cross-linked acrylamide gels. In addition, 7SL and U1 RNAs were identified by northern blot hybridization to cloned human and sea urchin probes, respectively. The level, subcellular localization, and association with proteins or RNA do not change for most small RNAs from fertilization to blastula, even though this is the time when the stored maternal pool of many small RNAs is being supplemented and replaced by embryonically synthesized RNAs. New embryonic synthesis of small RNAs was first detected at the 8-12 hr blastula stage. Although the predicted subsets of the total small RNA pool can be found in the appropriate subcellular compartments, newly synthesized small RNAs have a predominantly cytoplasmic localization: All of the newly synthesized small RNAs were found to be constituents of small RNPs. The RNPs containing newly synthesized small RNAs had sedimentation rates indistinguishable from their maternal counterparts. Thus, on the basis of sedimentation rate, no gross differences could be detected between maternal and embryonic small RNP pools. These small RNPs include a cytoplasmic RNP containing newly synthesized U1 snRNA and the sea urchin signal recognition particle (SRP) containing the 7SL, RNA. We have also identified a small RNP bearing the 5S rRNA which is present in both eggs and embryos. The presence of multiple, abundant, small RNAs and RNPs that are maintained at constant levels in particular subcellular fractions throughout development suggests that small RNAs may be involved in many more cellular activities than have so far been described.  相似文献   

7.
Autoantibodies to ribonucleoprotein particles containing U2 small nuclear RNA.   总被引:29,自引:3,他引:26  
Autoantibodies exclusively precipitating U1 and U2 small nuclear ribonucleoprotein (snRNP) particles [anti-(U1,U2)RNP] were detected in sera from four patients with autoimmune disorders. When tested by immunoblotting, these sera recognized up to four different protein antigens in purified mixtures of U1-U6 RNP particles. With purified antibody fractions eluted from individual antigen bands on nitrocellulose blots, each anti-(U1,U2)RNP serum precipitated U2 RNP by virtue of the recognition of a U2 RNP-specific B" antigen (mol. wt. 28 500). Antibodies to the U2 RNP-specific A' protein (mol. wt. 31 000) were found in only one serum. The B" antigen differs slightly in mol. wt. from the U1-U6 RNA-associated B/B' antigens and can be separated from this doublet by two-dimensional gel electrophoresis, due to its more acidic pI. In immunoprecipitation assays, the purified anti-B" antibody specificity also reacts with U1 RNPs which is due to cross-reactivity of the antibody with the U1 RNA-specific A protein, as demonstrated by immunoblotting using proteins from isolated U1 RNPs as antigenic material. Thus the A antigen not only bears unique antigenic sites for anti-A antibodies contained in anti-(U1)RNP sera, it also shares epitopes with the U2 RNP-specific B" antigen.  相似文献   

8.
9.
10.
Partial purification and properties of a pre-mRNA splicing activity   总被引:8,自引:0,他引:8  
Precursor RNA substrates for splicing reaction were synthesized in vitro from a plasmid DNA in which the early region 2 gene of adenovirus 2 was fused to an efficient bacteriophage promoter (Salmonella phage 6). Pre-mRNA splicing activity from nuclear extracts of MOPC-315 mouse myeloma cells was partially purified 108-fold by three chromatographic steps. The in vitro splicing reaction catalyzed by the partially purified fractions was efficient (60-80% substrate conversion) and accurate at the nucleotide level. The reaction occurred with crude or purified fractions without any detectable lag and nucleotides (ATP or GTP) were absolutely required. Monoclonal anti-Sm antibodies that quantitatively immunoprecipitate U1 small nuclear ribonucleoprotein particles totally inhibited the splicing activity of the purified fractions, indicating that U1 small nuclear RNPs had co-purified with the activity and were absolutely required for the splicing reaction.  相似文献   

11.
We investigated the perichromosomal architecture established during mitosis. Entry into mitosis brings about a dramatic reorganization of both nuclear and cytoplasmic structures in preparation for cell division. While the nuclear envelope breaks down, nuclear proteins are redistributed during chromosome condensation. Some of these proteins are found around the chromosomes, but little is known concerning their nature and function. Ten autoimmune sera were used to study the microenvironment of chromosomes and, in particular, the chromosome periphery. They were selected for their anti-nucleolar specificity and were found to recognize three nucleolar proteins that coat the chromosomes during mitosis. The distribution of these antigens was followed through the cell cycle by confocal laser scanning microscopy. The antigens dispersed very early during prophase and simultaneously with the chromosome condensation suggesting a correlation between these two processes. The antigens have apparent molecular weights of 53, 66, and 103 kDa on SDS-PAGE migration. Elution of the antibodies and immunopurification showed that they are RNA-associated proteins. The coimmunoprecipitating RNA moiety involved in these RNPs appeared to be U3, but the antigens are not related to the fibrillarin family. Therefore, small nucleolar RNPs follow the same distribution during mitosis as that described for small nuclear RNPs. Possible functions for these antigens are discussed.  相似文献   

12.
13.
14.
R A Padgett  S M Mount  J A Steitz  P A Sharp 《Cell》1983,35(1):101-107
A mouse monoclonal antibody and human autoimmune sera directed against various classes of small ribonucleoprotein particles have been tested for inhibition of mRNA splicing in a soluble in vitro system. The splicing of the first and second leader exons of adenovirus late RNA was inhibited only by those sera that reacted with U1 RNP. Both U1 RNP-specific human autoimmune serum and sera directed against the Sm class of small nuclear RNPs, including a mouse monoclonal antibody, specifically inhibited splicing. Antisera specific for U2 RNP had no effect on splicing nor did antisera specific for the La or Ro class of small RNPs. These results suggest that U1 RNP is essential for the splicing of mRNA precursors.  相似文献   

15.
An endoribonuclease has been purified nearly to homogeneity from rat liver microsomes, and its mode of action and general properties were studied. The enzyme had an apparent molecular weight of 58 000, as estimated by both gel filtration and SDS-polyacrylamide gel electrophoresis and produced oligonucleotides from poly(A), poly(U) and poly(C). No mononucleotide was obtained by the enzymatic hydrolysis of the above substrates. The enzyme made endonucleolytic cleavages which generated 5'-phosphate-terminated oligonucleotides. It was suggested that the existence of at least (Ado5'P)2 residues at both sides of the cleavage bond was necessary for the action of the endoribonuclease. Divalent cations (Mg2+ or Mn2+) were required for the enzymatic activity, while K+ inhibited the enzyme. Spermine stimulated the enzymatic activity in the presence of 1 mM Mg2+.  相似文献   

16.
Messenger RNA maturation in trypanosomes involves an RNA trans-splicing reaction in which a 39 nucleotide 5'-spliced leader (SL), derived from an independently transcribed 139 nucleotide SL RNA, is joined to pre-mRNAs. Trans-splicing intermediates are structurally consistent with a mechanism of SL addition which is similar to that of cis-splicing of nuclear pre-mRNAs; homologous components (e.g. the U small nuclear RNAs) exist in both cis- and trans-splicing systems, suggesting that these also participate in the two types of splicing reactions. In this study, ribonucleoprotein (RNP) complexes containing the trypanosome SL and U2 RNAs were purified and characterized. Although present at low levels in cellular extracts, the SL and U2 RNPs are the two most abundant of the several non-ribosomal small RNP complexes in these cells. The purification scheme utilizes ion-exchange chromatography, equilibrium density centrifugation, and gel filtration chromatography and reveals that the SL RNP shares biophysical properties with U RNPs of trypanosomes and other eukaryotes; its sedimentation coefficient in sucrose gradients is approximately 10 S, and it is resistant to dissociation during Cs2SO4 equilibrium density centrifugation. Complete separation of the SL and U2 RNPs was achieved by non-denaturing polyacrylamide gel electrophoresis. Proteins purifying with the SL and U2 RNPs were identified by 125I-labeling of tyrosine residues. Four SL RNP proteins with approximate molecular masses of 36, 32, 30, and 27 kDa and one U2 RNP protein of 31 kDa were identified, suggesting that different polypeptides are associated with these two RNAs. These particles are not immunoprecipitated by anti-Sm sera which recognizes U snRNP proteins of other eukaryotes including humans plants and yeast.  相似文献   

17.
Polyadenylation and splicing of heterogeneous nuclear RNA, two crucial steps in mRNA processing, are apparently enzymatically mediated processes. This contribution summarizes the properties and the presumed functions of the known poly(A) catabolic enzymes (endoribonuclease IV and V, 2',3'- exoribonuclease ) as well as those of the pyrimidine-specific endoribonucleases associated with snRNP -hnRNP complexes (endoribonuclease VII, acidic pI 4.1 endoribonuclease and poly(U)-specific U1 snRNP -nuclease).  相似文献   

18.
19.
Most nuclear pre-mRNAs in nematodes are processed by both cis- and trans-splicing. In trans-splicing, the 5' terminal exon, the spliced leader sequence (SL), is derived from a trans-splicing specific Sm snRNP, the SL RNP. Because U snRNPs are required cofactors for trans-splicing, and because this processing reaction proceeds via a two-step reaction pathway identical to that of cis-splicing, it has long been assumed that trans-splicing is catalyzed in a complex analogous to the cis-spliceosome. However, similarities or differences between cis- and trans-spliceosomes have not been established. In particular, the role of U5 snRNP in trans-splicing has been unclear. Here, we have used affinity selection to analyze the U snRNA constituents of nematode cis- and trans-spliceosomes. We find that U5 snRNP is an integral component of the trans-spliceosome and, using site-specific crosslinking, we show that U5 snRNP establishes specific Interactions with the SL RNA exon. We also identify two novel Sm snRNPs that are enriched in both cis- and trans-spliceosomes. Finally, we provide evidence that a SL RNP-containing multi-snRNP (SL, U4, U5, and U6 RNPs) may be a functional precursor in trans-spliceosome assembly.  相似文献   

20.
Rubella virus (RV) infections in adult women can be associated with acute and chronic arthritic symptoms. In many autoimmune individuals, antibodies are found targeting endogenous proteins, called autoantigens, contained in ribonucleoprotein complexes (RNPs). In order to understand the molecular mechanisms involved in the RV-associated pathology, we investigated the nature of cellular factors binding RV RNA and whether such RNPs were recognized by antibodies in infected individuals. Previously, we noted that cellular proteins associated with the RV 5'(+) stem-loop (SL) RNA are recognized by serum with Ro reactivity. To better understand the nature of the autoantigens binding RV cis-acting elements, serum samples from individuals with various autoimmune diseases were tested for their ability to immunoprecipitate RNPs containing labeled RV RNAs. A subset of serum samples recognizing autoantigen La, or Ro and La, immunoprecipitated both the RV 5'(+)SL and 3'(+)SL RNA-protein complexes. Autoantigens binding the RV 5'(+)SL and 3'(+)SL RNAs differed in molecular mass, specificities for respective RNA binding substrates, and sensitivity to alkaline phosphatase treatment. The La autoantigen was found to interact with the RV 5'(+)SL RNA as determined by immunological techniques and binding reactions with mixtures containing recombinant La protein. To test whether there is a correlation between La binding to an RV RNA element and the appearance of an anti-La response, we measured anti-La titers in RV-infected individuals. Significant anti-La activity was detected in approximately one-third of RV-infected individuals 2 years postinfection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号