首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The beta 2-adrenergic receptor (beta 2AR) gene was isolated from a mouse genomic library, sequenced and shown to share 93% identity with the hamster beta 2AR cDNA at the amino acid level. This mouse beta 2AR genomic clone was transfected into the Y1 mouse adrenal cortex tumor cell line. Northern blot and S1 nuclease analysis showed that the beta 2AR-transfected cells expressed an mRNA of the appropriate size to encode the receptor. Membrane receptor number and affinities for various beta-adrenergic agonists demonstrated that the transfected clone encoded a beta 2AR protein product. Incubation of the transfected Y1 cells, which do not normally possess beta 2AR, with the beta 2AR agonist, isoproterenol, resulted in an increase in the rate of steroid secretion by these cells as well as a rapid change in cell morphology. This response was fully blocked by the beta 2AR antagonist, propranolol. Prolonged incubation of the cells with isoproterenol resulted in agonist insensitivity and an 80% reduction in membrane receptor number.  相似文献   

2.
The genes coding for three pharmacologically distinct subtypes of human beta-adrenergic receptors (beta 1 AR, beta 2 AR and beta 3 AR) were transfected for expression in Chinese hamster ovary (CHO) cells. Stable cell lines expressing each receptor were analyzed by ligand binding, adenylate cyclase activation and photoaffinity labeling, and compared to beta AR subtypes observed in previously described tissues, primary cultures and transfected cell lines. Each of the three receptor subtypes displayed saturable [125I]iodocyanopindolol-binding activity. They showed the characteristic rank order of potencies for five agonists, determined by measuring the accumulation of intracellular cAMP. These recombinant cell lines express a homogeneous population of receptors and display the known pharmacological properties of beta 1 AR and beta 2 AR, in human tissues. It is therefore likely that the pattern of ligand binding and adenylate cyclase activation, mediated by the new beta 3 AR in CHO cells, also reflects the yet-undetermined pharmacological profile in humans.  相似文献   

3.
The beta-adrenergic receptor (beta AR) kinase is a recently discovered enzyme which specifically phosphorylates the agonist-occupied form of the beta-adrenergic receptor. We have utilized the agonist-dependent nature of this phosphorylation reaction to characterize the ability of partial agonists to interact with the receptor. Partial agonists were tested for their ability to: 1) stimulate adenylate cyclase activity in a three-component reconstituted system, and 2) promote phosphorylation of beta AR by beta AR kinase. There is an excellent correlation between the ability of partial agonists to stimulate adenylate cyclase activity and promote receptor phosphorylation by beta AR kinase (y = 1.02x-0.01, r = 0.996, p less than 0.001). Peptide maps of receptor phosphorylated by beta AR kinase in the presence of full or partial agonists are virtually identical with the partial agonist pattern reduced in intensity. Moreover, kinetic studies of beta AR phosphorylation by beta AR kinase suggest that partial agonists alter the Vmax of the reaction with little, if any, effect on the Km. These results suggest that at steady state partial agonists transform a smaller portion of the receptor pool into the conformationally altered or activated form which serves as the substrate for beta AR kinase, although they do not completely rule out the possibility that a partial conformational change is occurring.  相似文献   

4.
Polyclonal antibodies directed against (i) rodent lung beta 2-adrenergic receptor, (ii) a synthetic fragment of an extracellular domain of the receptor, and (iii) human placenta G-protein beta-subunits, were used to localize these antigens in situ in intact and permeabilized human epidermoid carcinoma A431 cells. Antibodies directed against beta 2-adrenergic receptors showed a punctate immunofluorescence staining throughout the cell surface of fixed intact cells. Punctate staining was also observed in clones of Chinese hamster ovary cells transfected with an expression vector harbouring the gene for the hamster beta 2-adrenergic receptor. The immunofluorescence observed with anti-receptor antibodies paralleled the level of receptor expression. In contrast, the beta-subunits common to G-proteins were not stained in fixed intact cells, presumably reflecting their intracellular localization. In detergent-permeabilized fixed cells, strong punctate staining of G beta-subunits was observed throughout the cytoplasm. This is the first indirect immunofluorescence localization of beta-adrenergic receptors and G-proteins. Punctate immunofluorescence staining suggests that both antigens are distributed in clusters.  相似文献   

5.
We have studied cyclic AMP-mediated regulation of the beta 2-adrenergic receptor (beta 2AR). The effects of cAMP were assessed in Chinese hamster fibroblast (CHW) cells expressing either the wild type human beta 2AR receptor (CH-beta 2) or mutated forms of the receptor lacking the consensus sequences for phosphorylation by the cAMP-dependent protein kinase. Treatment of the CH-beta 2 cells with the cAMP analogue dibutyryl cAMP (Bt2cAMP) induces a time-dependent "down-regulation" of the number of beta 2AR. This down-regulation of the receptors is accompanied by a decline in the steady state level of beta 2AR mRNA. Moreover, the treatment with Bt2cAMP induces an increase in the phosphorylation level of the membrane-associated beta 2AR. Both the reduction in beta 2AR mRNA and the enhanced phosphorylation of the receptor are rapid and precede the loss of receptor. The down-regulation of beta 2AR induced by Bt2cAMP is concentration-dependent and mimicked by the other biologically active cyclic nucleotide analogue, 8-Br-cAMP, by forskolin, and by the phosphodiesterase inhibitor, isobutylmethylxanthine. In the CHW cell lines expressing receptors lacking the putative protein kinase A phosphorylation sites, the Bt2cAMP-induced phosphorylation of beta 2AR is completely abolished. In these cells the down-regulation of beta 2AR receptor number produced by cAMP is significantly slowed, whereas the reduction in beta 2AR mRNA level is equivalent to that observed in CH-beta 2 cells. These data indicate that there are at least two pathways by which cAMP may decrease the number of beta 2ARs in cells: one involves phosphorylation of the receptor by the cAMP-dependent protein kinase and the other leads to a reduction in steady state beta 2AR mRNA levels.  相似文献   

6.
The structural basis for agonist-mediated sequestration and desensitization of the beta-adrenergic receptor (beta AR) was examined by oligonucleotide-directed mutagenesis of the hamster beta AR gene and expression of the mutant genes in mouse L cells. Treatment of these cells with the agonist isoproterenol corresponded to a desensitization of beta AR activity. A mutant receptor that bound agonist but did not couple to adenylate cyclase showed a dramatically reduced sequestration response to agonist stimulation. In contrast, beta AR mutants in which the C-terminus was truncated and/or in which two regions that have been proposed as phosphorylation substrates for cAMP-dependent protein kinase were removed showed normal sequestration responses. These results demonstrate that agonist-mediated sequestration of the beta AR can occur in the absence of the C-terminus of the protein and reveal a strong correlation between effective coupling to Gs and sequestration.  相似文献   

7.
Exposure of beta 2-adrenergic receptors to agonists causes a rapid desensitization of the receptor-stimulated adenylyl cyclase, associated with an increased phosphorylation of the receptor. Agonist-promoted phosphorylation of the beta 2-adrenergic receptor (beta 2AR) by protein kinase A and the beta-adrenergic receptor kinase (beta ARK) is believed to promote a functional uncoupling of the receptor from the guanyl nucleotide regulatory protein Gs. More recently, palmitoylation of Cys341 of the receptor has also been proposed to play an important role in the coupling of the beta 2-adrenergic receptor to Gs. Here we report that substitution of the palmitoylated cysteine by a glycine (Gly341 beta 2 AR) using site directed mutagenesis leads to a receptor being highly phosphorylated and largely uncoupled from Gs. In Chinese hamster fibroblasts (CHW), stably transfected with the human receptor cDNAs, the basal phosphorylation level of Gly341 beta 2AR was found to be approximately 4 times that of the wild type receptor. This elevated phosphorylation level was accompanied by a depressed ability of the receptor to stimulate the adenylyl cyclase and to form a guanyl nucleotide-sensitive high affinity state for agonists. Moreover, exposure of this unpalmitoylated receptor to an agonist did not promote any further phosphorylation or uncoupling. A modest desensitization of the receptor-stimulated adenylyl cyclase response was observed but resulted from the agonist-induced sequestration of the unpalmitoylated receptor and could be blocked by concanavalin A. This contrasts with the agonist-promoted phosphorylation and uncoupling of the wild type receptor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Down-regulation is a classic response of most G protein-coupled receptors to prolonged agonist stimulation. We recently showed that when expressed in baby hamster kidney cells, the human beta1-but not the beta2-adrenergic receptor (AR) is totally resistant to agonist-mediated down-regulation, whereas both have similar rates of basal degradation (Liang, W., Austin, S., Hoang, Q., and Fishman, P. H. (2003) J. Biol. Chem. 278, 39773-39781). To identify the underlying mechanism(s) for this resistance, we investigated the role of proteasomes, lysosomes, and ubiquitination in the degradation of beta1AR expressed in baby hamster kidney and human embryonic kidney 293 cells. Both lysosomal and proteasomal inhibitors reduced beta1AR degradation in agonist-stimulated cells but were less effective on basal degradation. To determine whether beta1AR trafficked to lysosomes we used confocal fluorescence microscopy. We observed some colocalization of beta1AR and lysosomal markers in agonist-treated cells but much less than that of beta2AR even in cells co-transfected with arrestin-2, which increases beta1AR internalization. Ubiquitination of beta2AR readily occurred in agonist-stimulated cells, whereas ubiquitination of beta1AR was not detectable even under conditions optimal for that of beta2AR. Moreover, in cells expressing betaAR chimeras in which the C termini have been switched, the chimeric beta1AR with beta2AR C-tail underwent ubiquitination and down-regulation, but the chimeric beta2AR with beta1AR C-tail did not. Our results demonstrate for the first time that beta1AR and beta2AR differ in the ability to be ubiquitinated. Because ubiquitin serves as a signal for sorting membrane receptors to lysosomes, the lack of agonist-mediated ubiquitination of beta1AR may prevent its extensive trafficking to lysosomes and, thus, account for its resistance to down-regulation.  相似文献   

9.
Prolonged agonist stimulation results in down-regulation of most G protein-coupled receptors. When we exposed baby hamster kidney cells stably expressing the human beta1-adrenergic receptor (beta 1AR) to agonist over a 24-h period, we instead observed an increase of approximately 30% in both beta 1AR binding activity and immune-detected receptors. In contrast, beta 2AR expressed in these cells exhibited a decrease of > or =50%. We determined that the basal turnover rates of the two subtypes were similar (t(1/2) approximately 7 h) and that agonist stimulation increased beta 2AR but not beta 1AR turnover. Blocking receptor trafficking to lysosomes with bafilomycin A1 had no effect on basal turnover of either subtype but blocked agonist-stimulated beta 2AR turnover. As beta 1AR mRNA levels increased in agonist-stimulated cells, beta 1AR up-regulation appeared to result from increased synthesis with no change in degradation. To explore the basis for the subtype differences, we expressed chimeras in which the C termini had been exchanged. Each chimera responded to persistent agonist stimulation based on the source of its C-tail; beta 1AR with a beta 2AR C-tail underwent down-regulation, and beta 2AR with a beta 1AR C-tail underwent up-regulation. The C-tails had a corresponding effect on agonist-stimulated receptor phosphorylation and internalization with the order being beta 2AR > beta 1AR with beta 2AR C-tail > beta 2AR with a beta 1AR C-tail > beta 1AR. As internalization may be a prerequisite for down-regulation, we addressed this possibility by co-expressing each subtype with arrestin-2. Although beta 1AR internalization was increased to that of beta 2AR, down-regulation still did not occur. Instead, beta 1AR accumulated inside the cells. We conclude that in unstimulated cells, both subtypes appear to be turned over by the same mechanism. Upon agonist stimulation, both subtypes are internalized, and beta 2AR but not beta 1AR undergoes lysosomal degradation, the fate of each subtype being regulated by determinants in its C-tail.  相似文献   

10.
The beta-adrenergic receptor kinase is a cytosolic enzyme that specifically phosphorylates the agonist-occupied form of the beta-adrenergic receptor (beta AR). Beta AR kinase appears to be translocated from the cytosol to the plasma membrane when kin- S49 lymphoma cells are incubated with either beta-adrenergic agonists or prostaglandin E1, both of which act through receptors which stimulate adenylate cyclase. We report here that brief (approximately 20 min) exposure of wild type S49 lymphoma cells to somatostatin (which inhibits adenylate cyclase) promotes the translocation of beta AR kinase to an extent comparable to that observed in the presence of the beta agonist isoproterenol or prostaglandin E1. Beta AR kinase activity can be measured using either beta AR or rhodopsin, the retinal receptor for light, as a substrate. The translocation process triggered by somatostatin is rapid, reversible, and is associated with somatostatin receptor desensitization. The latter is apparent as an attenuation of the inhibition by somatostatin of forskolin-stimulated adenylate cyclase activity in membranes of S49 cells preincubated in the presence of the peptide. These results strongly suggest that beta AR kinase is able to phosphorylate and desensitize both stimulatory and inhibitory adenylate cyclase-coupled receptors, thus emerging as a general kinase that regulates the function of different receptors in an agonist-specific fashion.  相似文献   

11.
Beta2-Adrenergic agonists stimulate alveolar epithelial sodium (Na(+)) transport and lung fluid clearance. Alveolar type II (AT2) cells have been reported to express beta2-adrenergic receptors (beta2AR). Given the large surface area covered by alveolar type I (AT1) cells and their potential role in alveolar fluid removal, we were interested in learning if AT1 cells express beta2AR as well. Because beta2AR is potentially susceptible to desensitization by G-protein-coupled receptor kinase 2 (GRK2), we also undertook localization of GRK2. beta2AR and GRK2 expression was evaluated in whole lung, isolated alveolar epithelial cells (AECs), and AECs in primary culture, and was localized to specific AEC phenotypes by immunofluorescence techniques. beta2AR is highly expressed in AT1 cells. beta2AR mRNA increases with time in culture as AT2 cells transdifferentiate towards the AT1 cell phenotype. Immunoreactive GRK2 is seen in both AT1 and AT2 cells in similar amounts. These data suggest that both AT1 and AT2 cells may contribute to the increased alveolar Na(+) and water clearance observed after exposure to beta2 adrenergic agents. Both cell types also express GRK2, suggesting that both may undergo desensitization of beta2AR with subsequent decline in the stimulatory effects of beta2-adrenergic agonists over time.  相似文献   

12.
We have previously determined that beta-adrenergic and somatostatin receptors stimulate and inhibit, respectively, Na-H exchange independent of changes in cAMP accumulation (Barber, D.L., McGuire, M.E., and Ganz, M.B. (1989) J. Biol. Chem. 264, 21038-21042). The present study extends our work on the beta-adrenergic receptor (beta AR) by investigating receptor activation of Na-H exchange in multiple cell types that either endogenously express the beta AR or that have been transfected with cDNA of the hamster lung beta 2AR or the turkey erythrocyte beta AR. Exchanger activity was determined by monitoring intracellular pH in cell populations loaded with the pH-sensitive dye BCECF (2,7-biscarboxyethyl-5(6)-carboxyfluorescein). In addition to the action of the beta AR, activation of prostaglandin E1 and parathyroid hormone receptors induced an intracellular alkalinization by stimulating a Na(+)-dependent amiloride-sensitive Na-H exchange. In contrast, activation of D2-dopaminergic receptors induced an intracellular acidification by inhibiting Na-H exchange. beta-Adrenergic, prostaglandin E1, and parathyroid hormone receptors activated Na-H exchange independent of changes in intracellular cAMP accumulation and independent of a cholera toxin-sensitive stimulatory GTP regulatory protein. D2-dopaminergic receptors inhibited exchanger activity independent of a pertussis toxin-sensitive inhibitory GTP regulatory protein. We suggest that these receptors are functionally coupled to adenylate cyclase and Na-H exchange through divergent signaling mechanisms.  相似文献   

13.
On the basis of the homology between the amino acid sequences of the beta-adrenergic receptor (beta AR) and the opsin proteins we have proposed that the ligand binding domain lies within the seven transmembrane hydrophobic regions of the protein, which are connected by hydrophilic regions alternatively exposed extracellularly and intracellularly. We have systematically examined the importance of each of these regions by making a sequential series of deletions in the gene for the hamster beta AR which encompass most of the protein coding region. The ability of the corresponding mutant receptors to be expressed, localized to the cell membrane, and bind beta-adrenergic ligands has been analyzed, using transient expression in COS-7 cells. The hydrophobic regions and the hydrophilic segments immediately adjacent to the membrane cannot be removed without affecting the processing and membrane localization of the beta AR. However, most of the hydrophilic regions appear to be dispensable for ligand binding. In addition, we observed that substitution of the conserved cysteine residues at positions 106 and 184 dramatically altered the ligand binding characteristics of the beta AR, suggesting the occurrence of a disulfide bond between these two residues in the native protein. These data are discussed in terms of the tertiary structure of the beta AR.  相似文献   

14.
15.
Pharmacological analysis of ligand binding to the beta-adrenergic receptor (beta AR) has revealed the existence of two distinct receptor subtypes (beta 1 and beta 2) which are the products of different genes. The predicted amino acid sequences of the beta 1 and beta 2 receptors differ by 48%. To identify the regions of the proteins responsible for determining receptor subtype, chimeras were constructed from domains of the human beta 1 and hamster beta 2 receptors. Analysis of the ligand-binding characteristics of these hybrid receptors revealed that residues in the middle portion of the beta AR sequence, particularly around transmembrane regions 4 and 5, contribute to the subtype specific binding of agonists. Smaller molecular replacements of regions of the hamster beta 2 AR with the analogous regions from the avian beta 1 AR, however, failed to identify any single residue substitution capable of altering the subtype specificity of the receptor. These data indicate that, whereas sequences around transmembrane regions 4 and 5 may contribute to conformations which influence the ligand-binding properties of the receptor, the subtype-specific differences in amine-substituted agonist binding cannot be attributed to a single molecular interaction between the ligand and any amino acid residue which is divergent between the beta 1 and beta 2 receptors.  相似文献   

16.
Sustained activation of most G protein-coupled receptors causes a time-dependent reduction of receptor density in intact cells. This phenomenon, known as down-regulation, is believed to depend on a ligand-promoted change of receptor sorting from the default endosome-plasma membrane recycling pathway to the endosome-lysosome degradation pathway. This model is based on previous studies of epidermal growth factor (EGF) receptor degradation and implies that receptors need to be endocytosed to be down-regulated. In stable clones of L cells expressing beta(2)-adrenergic receptors (beta(2)ARs), sustained agonist treatment caused a time-dependant decrease in both beta(2)AR binding sites and immuno-detectable receptor. Blocking beta(2)AR endocytosis with chemical treatments or by expressing a dominant negative mutant of dynamin could not prevent this phenomenon. Specific blockers of the two main intracellular degradation pathways, lysosomal and proteasome-associated, were ineffective in preventing beta(2)AR down-regulation. Further evidence for an endocytosis-independent pathway of beta(2)AR down-regulation was provided by studies in A431 cells, a cell line expressing both endogenous beta(2)AR and EGF receptors. In these cells, inhibition of endocytosis and inactivation of the lysosomal degradation pathway did not block beta(2)AR down-regulation, whereas EGF degradation was inhibited. These data indicate that, contrary to what is currently postulated, receptor endocytosis is not a necessary prerequisite for beta(2)AR down-regulation and that the inactivation of beta(2)ARs, leading to a reduction in binding sites, may occur at the plasma membrane.  相似文献   

17.
The ability of insulin to promote phosphorylation of the human beta 2-adrenergic receptor (beta 2AR) was assessed in Chinese hamster fibroblasts transfected with beta 2AR cDNA. Phosphotyrosine residues were detected in purified beta 2AR using a polyclonal anti-phosphotyrosine antibody and by phosphoamino acid analysis following metabolic labelling with inorganic 32P. Treatment of the cells with insulin induced a 2.4-fold increase in the phosphotyrosine content of the receptor. The insulin-promoted phosphorylation of the beta 2AR was accompanied by an increase in the beta-adrenergic-stimulated adenyl cyclase activity. Substitution of a phenylalanine residue for tyrosine-141 completely prevented both the increased tyrosine phosphorylation and the enhanced responsiveness of the beta 2AR promoted by insulin treatment. Mutation of three other tyrosines located in the cytoplasmic domain of the receptor, tyrosine-366, tyrosine-350 and tyrosine-354, did not abolish the insulin-promoted tyrosine phosphorylation. Taken together, these results suggest that insulin promotes phosphorylation of the beta 2AR on tyrosine-141 and that such phosphorylation leads to a supersensitization of the receptor.  相似文献   

18.
Agonist-promoted down-regulation of beta-adrenergic receptor mRNA was investigated in S49 mouse lymphoma variants with mutations in elements of hormone-sensitive adenylate cyclase. In wild-type cells steady-state levels of beta-adrenergic receptor mRNA were established by DNA-excess solution hybridization to be 1.72 +/- 0.08 (n = 8) amol/microgram total cellular RNA. Receptor mRNA levels declined 35-45% in response to stimulation by the beta-adrenergic agonist (-)isoproterenol or forskolin as described previously in DDT1 MF-2 cells (Hadcock, J. R., and Malbon, C. C. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 5021-5025). Agonist-promoted cAMP accumulation and down-regulation of receptor mRNA were analyzed in three variants with mutations in Gs alpha (H21a, unc, cyc-) and a single variant lacking cAMP-dependent protein kinase activity (kin-). H21a (Gs alpha coupled to receptor, but not to adenylate cyclase), unc (Gs alpha uncoupled from receptor), and cyc- (lacking Gs alpha) variants accumulated cAMP and down-regulated beta AR mRNA in response to forskolin. In unc and cyc- cells isoproterenol failed to stimulate cAMP; accumulation and down-regulation of receptor mRNA was not observed. H21a cells, in contrast, displayed agonist-promoted regulation of beta-adrenergic receptor mRNA but only basal levels of cAMP accumulation in response to isoproterenol. The kin- cells displayed cAMP accumulation in response to forskolin as well as to isoproterenol but no down-regulation of receptor mRNA or receptor expression. Taken together these data demonstrate several features of agonist-promoted down-regulation of mRNA: (i) cAMP-dependent protein kinase activity is required for down-regulation of mRNA (kin-), although elevated cAMP accumulation is not (H21a); (ii) functional receptor-Gs coupling is required (H21a), and clones lacking Gs alpha (cyc-) or receptor Gs coupling (unc) lack the capacity to down-regulate mRNA in response to agonist; and (iii) in the presence of basal levels of cAMP and cAMP-dependent protein kinase activity, functional receptor-Gs coupling (H21a) to some other effector other than adenylate cyclase may be propagating the signal.  相似文献   

19.
Continuous exposure of cells to neurotransmitter or hormone agonists often results in a rapid desensitization of the cellular response. For example, pretreatment of Chinese hamster fibroblasts (CHW cells) expressing beta 2-adrenergic receptors (beta 2AR) with low (nanomolar) concentrations of isoproterenol, a beta-adrenergic agonist, causes decreases in the sensitivity of the cellular adenylyl cyclase response to the agonist, without changing the maximal responsiveness. In contrast, exposure of CHW cells to high (micromolar) concentrations of isoproterenol results in decreases in both sensitivity and the maximal responsiveness to agonist. To explore the role(s) of receptor phosphorylation in these processes, we expressed in CHW cells three mutant beta 2AR genes encoding receptors lacking putative phosphorylation sites for the cAMP-dependent protein kinase A and/or the cAMP-independent beta 2AR kinase. Using these mutants we found that exposure of cells to low concentrations of agonist appears to preferentially induce phosphorylation at protein kinase A sites. This phosphorylation correlates with the decreased sensitivity to agonist stimulation of the adenylyl cyclase response. At higher agonist concentrations phosphorylation on both the beta 2AR kinase and protein kinase A sites occurs, and only then is the maximal cyclase responsiveness elicited by agonist reduced. We conclude that low or high concentrations of agonist elicit phosphorylation of beta 2AR on distinct domains, with different implications for the functional coupling of the receptors with effector molecules.  相似文献   

20.
In the present study, we demonstrate for the first time that beta-adrenergic agonists stimulate bone-resorbing activity in human osteoclast-like multinucleated cells (MNCs). Osteoclast-like MNCs constitutively expressed mRNA for alpha1B-, alpha2B- and beta2-adrenergic receptor (AR) in addition to characteristic markers of mature osteoclast, such as calcitonin receptor (CT-R), tartrate-resistant acid phosphatase (TRAP), alphaV-chain of integrin (Int alphaV), carbonic anhydrase II (CA-II) and cathepsin K (Cathe K). Epinephrine (1 microM; alpha,beta-adrenergic agonist) up-regulated expression of Int alphaV, CA-II and Cathe K in the osteoclast-like MNCs. Osteoclastic resorbing activity was markedly increased by isoprenaline (1 microM; beta-adrenergic agonist), moderately by epinephrine, but poorly by phenylephrine (1 microM; alpha1-adrenergic agonist). The actin ring, which was suggested to be correlated with bone-resorbing activity, was clearly observed in osteoclast-like MNCs treated with isoprenaline and epinephrine, but faintly in those treated with phenylephrine. These findings suggest that beta-adrenergic agonists directly stimulate bone-resorbing activity in matured osteoclasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号