首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Knowledge of dispersal-related gene flow is important for addressing many basic and applied questions in ecology and evolution. We used landscape genetics to understand the recovery of a recently expanded population of fishers (Martes pennanti) in Ontario, Canada. An important focus of landscape genetics is modelling the effects of landscape features on gene flow. Most often resistance surfaces in landscape genetic studies are built a priori based upon nongenetic field data or expert opinion. The resistance surface that best fits genetic data is then selected and interpreted. Given inherent biases in using expert opinion or movement data to model gene flow, we sought an alternative approach. We used estimates of conditional genetic distance derived from a network of genetic connectivity to parameterize landscape resistance and build a final resistance surface based upon information-theoretic model selection and multi-model averaging. We sampled 657 fishers from 31 landscapes, genotyped them at 16 microsatellite loci, and modelled the effects of snow depth, road density, river density, and coniferous forest on gene flow. Our final model suggested that road density, river density, and snow depth impeded gene flow during the fisher population expansion demonstrating that both human impacts and seasonal habitat variation affect gene flow for fishers. Our approach to building landscape genetic resistance surfaces mitigates many of the problems and caveats associated with using either nongenetic field data or expert opinion to derive resistance surfaces.  相似文献   

2.
Habitat selection fundamentally drives the distribution of organisms across landscapes; density-dependent habitat selection (DDHS) is considered a central component of ecological theories explaining habitat use and population regulation. A preponderance of DDHS theories is based on ideal distributions, such that organisms select habitat according to either the ideal free, despotic, or pre-emptive distributions. Models that can be used to simultaneously test competing DDHS theories are desirable to help improve our understanding of habitat selection. We developed hierarchical, piecewise linear models that allow for simultaneous testing of DDHS theories and accommodate densities from multiple habitats and regional populations, environmental covariates, and random effects. We demonstrate the use of these models with data on mule deer (Odocoileus hemionus) abundance and net energy costs in different snow depths within winter ranges of five regional populations in western Idaho, USA. Regional population density explained 40 % of the variation in population growth, and we found that deer were ideal free in winter ranges. Deer occupied habitats with lowest net energy costs at higher densities and at a higher rate than compared to habitats with intermediate and high energy costs. The proportion of a regional population in low energy cost habitat the previous year accounted for a significant amount of variation in population growth (17 %), demonstrating the importance of winter habitat selection in regulating deer populations. These linear models are most appropriate for empirical data collected from centralized habitat patches within the local range of a species where individuals are either year-round residents or migratory (but have already arrived from migration).  相似文献   

3.
Dispersal is a fundamental attribute of species in nature and shapes population dynamics, evolutionary trajectories and genetic variation across spatial and temporal scales. It is increasingly clear that landscape features have large impacts on dispersal patterns. Thus, understanding how individuals and species move through landscapes is essential for predicting impacts of landscape alterations. Information on dispersal patterns, however, is lacking for many taxa, particularly reptiles. Eastern foxsnakes (Mintoinus gloydi) are marsh and prairie specialists that avoid agricultural fields, but they have persisted across a fragmented region in southwestern Ontario and northern Ohio. Here, we combined habitat suitability modelling with population genetic analyses to infer how foxsnakes disperse through a habitat mosaic of natural and altered landscape features. Boundary regions between the eight genetic clusters, identified through assignment tests, were comprised of low suitability habitat (e.g. agricultural fields). Island populations were grouped into a single genetic cluster, and comparatively low F(ST) values between island and mainland populations suggest open water presents less of a barrier than nonsuitable terrestrial habitat. Isolation by resistance and least-cost path analysis produced similar results with matrices of pairwise individual genetic distance significantly more correlated to matrices of resistance values derived from habitat suitability than models with an undifferentiated landscape. Spatial autocorrelation results matched better with assignment results when incorporating resistance values rather than straight-line distances. All analyses used in our study produced similar results suggesting that habitat degradation limits dispersal for foxsnakes, which has had a strong effect on the genetic population structure across this region.  相似文献   

4.
Monitoring population performance in the years following species reintroductions is key to assessing population restoration success and evaluating assumptions made in planning species restoration programs. From 2008–2010 we translocated 90 fishers (Pekania pennanti) from British Columbia, Canada, to Washington's Olympic Peninsula, USA, providing the opportunity to evaluate modeling assumptions used to identify the most suitable reintroduction areas in Washington and enhance understanding of fisher habitat associations in the late-successional forest ecosystems in the coastal Pacific Northwest. From 2013–2016, we deployed 788 motion-sensing cameras and hair (DNA)-snaring devices distributed among 263 24-km2 primary sampling units across the Olympic Peninsula. Our objectives were to determine whether occupancy patterns of the reestablishing population supported assumptions of the initial habitat assessment models, whether the population had expanded or shifted in distribution since the initial reintroductions, compare physical habitat attributes among land-management designations, and determine whether the founding fishers had successfully reproduced. We predicted that site occupancy by fishers would be associated with landscapes characterized by high proportional coverage of dense forest canopies and medium-sized and large trees, a diversity of stand structural classes, and area near the administrative boundary separating wilderness from more intensively managed forest lands. We detected fishers across designated wilderness, federal lands outside of wilderness, and other land designations in proportion to land availability on the Peninsula. We found negligible support for predictions that occupancy by fishers was associated with percent forest cover, tree-size class, or structural class diversity. Rather, occupancy was strongly associated with lands near the wilderness boundary on both sides. We speculate that the boundary between wilderness and more intensively managed forest lands provided fishers with the most suitable prey in proximity to contiguous expanses of low- to mid-elevation late-successional forests that provided optimal resting, denning, and security values. Occupancy patterns shifted toward the west and south along a precipitation gradient during the study, indicating that population distribution had not yet stabilized 5–8 years following translocation. Genetic results indicated that ≥2 generations of fishers have been produced on the Peninsula. Annual occupancy rates across the Peninsula (0.08–0.24) were lower than in other previously studied and established fisher populations, indicating that not all habitat was fully occupied or that initial estimates of the extent of habitat was overestimated. The strong selection fishers exhibited for wilderness edge and weak selection against extensive forested wilderness areas suggested that habitat managers should strive for maintaining a suitable interspersion of required forest structures and biotic habitat components, such as prey resource availability. © 2019 The Wildlife Society.  相似文献   

5.
The insulative value of early and deep winter snow is thought to enhance winter reproduction and survival by arctic lemmings (Lemmus and Dicrostonyx spp). This leads to the general hypothesis that landscapes with persistently low lemming population densities, or low amplitude population fluctuations, have a low proportion of the land base with deep snow. We experimentally tested a component of this hypothesis, that snow depth influences habitat choice, at three Canadian Arctic sites: Bylot Island, Nunavut; Herschel Island, Yukon; Komakuk Beach, Yukon. We used snow fencing to enhance snow depth on 9-ha tundra habitats, and measured the intensity of winter use of these and control areas by counting rodent winter nests in spring. At all three sites, the density of winter nests increased in treated areas compared to control areas after the treatment, and remained higher on treated areas during the treatment. The treatment was relaxed at one site, and winter nest density returned to pre-treatment levels. The rodents’ proportional use of treated areas compared to adjacent control areas increased and remained higher during the treatment. At two of three sites, lemmings and voles showed significant attraction to the areas of deepest snow accumulation closest to the fences. The strength of the treatment effect appeared to depend on how quickly the ground level temperature regime became stable in autumn, coincident with snow depths near the hiemal threshold. Our results provide strong support for the hypothesis that snow depth is a primary determinant of winter habitat choice by tundra lemmings and voles.  相似文献   

6.
Monitoring rare and elusive carnivores is inherently challenging because they often occur at low densities and require more resources to effectively assess status and trend. The fisher (Pekania pennanti) is an elusive mesocarnivore endemic to North America; in its western populations it is classified as a species of greatest conservation need. During winter of 2018–2019, we deployed remotely triggered cameras in randomly selected, spatially balanced 7.5-km × 7.5-km grid cells across a broad study area in western Montana, Idaho, and eastern Washington, USA. As part of this large-scale, multi-state monitoring effort, we conducted an occupancy assessment of the Northern Rocky Mountain fisher population at a range-wide scale. We used non-spatial occupancy models to determine the current extent of fisher occurrence in the Northern Rocky Mountains and to provide baseline occupancy estimates across a broad study area and a refined sampling frame for future monitoring. We used a spatial occupancy model to determine patterns in fisher occurrence across their Northern Rocky Mountain range while explicitly correcting for spatially induced overdispersion. Additionally, we assessed factors that influenced fisher occurrence through covariate occupancy modeling that considered predicted fisher habitat, site-level environmental characteristics, and the influence of available harvest records (incidental and regulated). We detected fishers in 32 out of 318 (10%) of our surveyed cells, and estimated that overall, 160 (14%; 95% CI = 115–218) of 1,143 grid cells were occupied by fishers. Fisher occupancy was positively associated with our stratum that contained cells with a greater proportion of predicted fisher habitat and with proximity to nearest 2000–2015 harvest location. Fisher occupancy was weakly and positively associated with increased canopy cover. Our spatial model identified 2 areas with higher predicted occupancy: a large area across the Idaho Nez Perce-Clearwater National Forest, and a smaller area in the Cabinet Mountain Range crossing the northern border of Idaho and Montana. We used spatial occupancy results from our original sampling frame to create a biologically derived refined sampling frame for future monitoring. Within the bounds of our refined sampling frame, we estimated that 155 (22%; 95% CI = 110–209) of 700 grid cells were occupied by fishers. By incorporating our increasing understanding of fisher habitat with contemporary analytical techniques, we defined current range-wide occupancy of the Northern Rocky Mountain fisher population, identified core areas of fisher occurrence for future conservation efforts, and used our model results to create a refined sampling frame for future fisher monitoring in the Northern Rocky Mountains.  相似文献   

7.
Habitat quality and quantity are key factors in evaluating the potential for success of a wildlife translocation. However, because of the difficulty or cost of evaluating these factors, habitat assessments may not include valuable information on important habitat attributes including the abundance and distribution of prey, predators, and competitors. Fishers (Pekania pennanti) are one of the most commonly reintroduced carnivores in North America, and they are a species of conservation concern in their western range. We examined the relative importance of landscape features and species interactions in determining habitat use of a reintroduced population of fishers in the southern Cascade Mountains, Washington, USA. We used detections of prey and predators at 134 remote camera stations, remotely sensed forest structure data, and telemetry locations of fishers in a resource selection function to assess the relative importance of prey, predators, and forest structure in fisher habitat selection. Fishers selected habitats based on forest conditions and activity levels of snowshoe hares (Lepus americanus), whereas bobcat (Lynx rufus) and coyote (Canis latrans) activity levels did not directly affect habitat selection. The probability of fisher use increased in older stands, close to recently disturbed stands, and in areas with intermediate levels of hare activity. Bobcat and hare activity levels were positively correlated, and fishers avoided areas with the greatest hare activity, suggesting that fishers may experience a food-safety tradeoff in the study area. Temporal activity patterns in photo detections indicate that fishers may mediate this danger by avoiding bobcats temporally. Our findings suggest that fishers in Washington prefer habitat mosaics of old and recently disturbed stands where they have greater access to resting structures and hares. Management that maintains mosaics of young and old forest across large landscapes is likely to support fisher recovery. Future reintroduction efforts would benefit from an assessment of prey and predator abundance in proposed reintroduction areas before project initiation. © 2019 The Wildlife Society.  相似文献   

8.
The current spatial distribution of genetic lineages across a region should reflect the complex interplay of both historical and contemporary processes. Postglacial expansion and recolonization in the distant past, in combination with more recent events with anthropogenic effects such as habitat fragmentation and overexploitation, can help shape the pattern of genetic structure observed in contemporary populations. In this study, we characterize the spatial distribution of mtDNA lineages for fisher (Martes pennanti) in north‐eastern North America. The history of fishers in this region is well understood and thus provides an opportunity to interpret patterns of genetic structure in the light of known historical (e.g. recolonization from glacial refugia) and contemporary events (e.g. reintroductions, fragmentation and natural recolonization). Our results indicate that fishers likely recolonized north‐eastern North America from a single Pleistocene refugium. Three genetically distinct remnant populations persisted through the population declines of the 1800s and served as sources for multiple reintroductions and natural recolonizations that have restored the fisher throughout north‐eastern North America. However, the spatial genetic structure of genetic lineages across the region still reflects the three remnant populations.  相似文献   

9.
Since the mid-twentieth century, fisher populations (Pekania pennanti) increased in several eastern jurisdictions of North America, particularly in the northern part of the species’ range. Changes in fisher distribution have led to increased overlap with the southern portion of the range of American marten (Martes americana), whose populations may be locally declining. This overlap occurs particularly in habitats undergoing natural and anthropogenic modification. The objective of our study was to determine the respective effects of habitat changes and climatic conditions on fisher and marten populations in Quebec, Canada, based on trapper knowledge. We analyzed annual fisher and marten harvest (number of pelts sold/100 km2) between the 1984–1985 and 2014–2015 trapping seasons using linear mixed models. Fisher harvest increased with the increased abundance of mixed forests >12 m tall, resulting from decades of forest harvesting. Fisher harvest decreased with increasing spring rains, which can affect survival when rearing young. Marten harvest decreased with increasing winter rains, which lower thermoregulation capacity and hamper movements by creating an ice crust on the snowpack, reducing access to subnivean areas. Decline in marten harvest during the 30-year study period coincided with an increase in fisher harvest, suggesting possible interspecific competition. Results highlight that managers should strive to maintain mixedwood stands taller than 12 m to maintain high quality habitat for fishers. Our study confirms the importance of working with trappers to assess furbearing population trends in response to habitat changes and climatic conditions. © 2019 The Wildlife Society.  相似文献   

10.
Decline and long-term depression of mean densities of the grey-sided vole (Myodes rufocanus) and the field vole (Microtus agrestis) have occurred in managed forest landscapes of Sweden since the 1970s. Generally poor over-winter survival during a period with mild winters suggested a common climatic driver, but other explanations exist. Here we explore the response of the grey-sided vole, preferring forested habitats, and the field vole, preferring open habitats, to clear-cutting of old forest in Sweden. The cumulated impact from long-term clear-cutting explained local disappearances of the grey-sided vole. Maintained connectivity of old forest to stone fields was important for local population survival, since no such populations disappeared. For the grey-sided vole, it is probable that climate is not the dominating driver due to different timing of the decline in our study area. Instead, habitat loss is concluded as being a potential cause of the decline in mean density and depression of grey-sided vole densities. The long-lasting depression of field vole densities, despite favourable landscape changes, suggests action of another strong driver. A recent field vole recovery, essentially back to pre-decline densities and distribution, coincided with favourable winter/snow conditions, suggesting a climatic driver in this case.  相似文献   

11.
Abstract: Fishers (Martes pennanti) were extirpated from much of southern Ontario, Canada, prior to the 1950s. We hypothesised that the recent recolonization of this area originated from an expansion of the population in Algonquin Provincial Park, which historically served as a refuge for fishers. To test this hypothesis, we created a sampling lattice to encompass Algonquin and the surrounding area, and we collected contemporaneous DNA samples. We sampled fishers from each of 35 sites and genotyped them at 16 microsatellite loci. Using a Bayesian assignment approach, with no a priori geographic information, we inferred 5 discrete genetic populations and used genetic population assignment as a means to cluster sites together. We concluded that the Algonquin Park fisher population has not been a substantial source for recolonization and expansion, which has instead occurred from a number of remnant populations within Ontario, Quebec, and most recently from the Adirondacks in New York, USA. The genetic structure among sampling sites across the entire area revealed a pattern of isolation-by-distance (IBD). However, an examination of the distribution of genetic structure (FST/1- FST) at different distances showed higher rates of gene flow than predicted under a strict IBD model at small distances (40 km) within clusters and at larger distances up to 100 km among clusters. This pattern of genetic structure suggests increased migration and gene flow among expanding reproductive fronts.  相似文献   

12.
This study assessed the possibility of predicting the distribution of potential winter habitats for fisherMartes pennanti Erxleben, 1777 in central interior British Columbia (BC) with the BC Vegetation Resources Inventory (VRI) dataset used to produce forestry maps. I predicted that fisher winter habitat would correspond to coniferous or coniferous-deciduous stands with the following characteristics: (1) absence of disturbance, (2) >- 80 years old, (3) mature and old forest structural stages, (4) ≥ 20 m2·ha-1 basal area in mature trees, (5) ≥ 30% canopy closure, (6) shrub cover ≥ 20%, and (7) diameter at breast height ≥ 27.5 cm. I allocated weight values to these criteria to classify map polygons into excellent-, high-, medium-, and low- quality habitats, and produce predictive maps of winter habitat use by fishers. I tested predictive maps in the field by snow-tracking along 27 transects (44.2 km) in winter 2003–2004, and 16 transects (31.4 km) in winter 2004–2005. A total of 89 tracks were recorded during both years. The proportion of fisher tracks within each polygon type was significantly different from random (p < 0.001). The majority of tracks (> 83%) were in structurally complex coniferous stands. This study showed that it is possible to predict the distribution of potential winter habitats for fisher in central interior British Columbia using simple habitat criteria and the VRI dataset. This study’s query may be used in other regions with similar vegetation composition to identify forests be inhabited by fishers in winter, and develop effective conservation programs in managed landscapes.  相似文献   

13.
Fragmented landscapes resulting from anthropogenic habitat modification can have significant impacts on dispersal, gene flow, and persistence of wildlife populations. Therefore, quantifying population connectivity across a mosaic of habitats in highly modified landscapes is critical for the development of conservation management plans for threatened populations. Endangered populations of the eastern tiger salamander (Ambystoma tigrinum) in New York and New Jersey are at the northern edge of the species’ range and remaining populations persist in highly developed landscapes in both states. We used landscape genetic approaches to examine regional genetic population structure and potential barriers to migration among remaining populations. Despite the post-glacial demographic processes that have shaped genetic diversity in tiger salamander populations at the northern extent of their range, we found that populations in each state belong to distinct genetic clusters, consistent with the large geographic distance that separates them. We detected overall low genetic diversity and high relatedness within populations, likely due to recent range expansion, isolation, and relatively small population sizes. Nonetheless, landscape connectivity analyses reveal habitat corridors among remaining breeding ponds. Furthermore, molecular estimates of population connectivity among ponds indicate that gene flow still occurs at regional scales. Further fragmentation of remaining habitat will potentially restrict dispersal among breeding ponds, cause the erosion of genetic diversity, and exacerbate already high levels of inbreeding. We recommend the continued management and maintenance of habitat corridors to ensure long-term viability of these endangered populations.  相似文献   

14.
Yao X  Ye Q  Kang M  Huang H 《The New phytologist》2007,176(2):472-480
Polymorphic simple sequence repeat (SSR) markers were used to investigate the impact of habitat fragmentation on the population structure and gene flow of Changiostyrax dolichocarpa, a critically endangered tree in central China. Intrapopulation genetic diversity, population structure and gene flow in the five extant populations of this species were analysed by eight SSR markers. Intrapopulation genetic diversity results suggest that C. dolichocarpa remnants maintained a relatively high degree of genetic diversity despite severe fragmentation. Low genetic differentiation among populations was found based on Wright's F(ST) and amova analysis. Both the F(ST)-based estimate and private allele method revealed high historical gene flow among the remnant populations. Recent immigrants, detected by assignment tests, tend to decrease from the grandparent generation to the current generation. The potentially highly restricted current gene flow among fragments may render the fragmented populations of C. dolichocarpa at a higher risk of local extinction several generations after fragmentation. Both in situ and ex situ conservation management for the remnant populations of C. dolichocarpa are therefore urgently needed to rescue remaining genetic diversity.  相似文献   

15.
Today, most wild tigers live in small, isolated Protected Areas within human dominated landscapes in the Indian subcontinent. Future survival of tigers depends on increasing local population size, as well as maintaining connectivity between populations. While significant conservation effort has been invested in increasing tiger population size, few initiatives have focused on landscape-level connectivity and on understanding the effect different landscape elements have on maintaining connectivity. We combined individual-based genetic and landscape ecology approaches to address this issue in six protected areas with varying tiger densities and separation in the Central Indian tiger landscape. We non-invasively sampled 55 tigers from different protected areas within this landscape. Maximum-likelihood and Bayesian genetic assignment tests indicate long-range tiger dispersal (on the order of 650 km) between protected areas. Further geo-spatial analyses revealed that tiger connectivity was affected by landscape elements such as human settlements, road density and host-population tiger density, but not by distance between populations. Our results elucidate the importance of landscape and habitat viability outside and between protected areas and provide a quantitative approach to test functionality of tiger corridors. We suggest future management strategies aim to minimize urban expansion between protected areas to maximize tiger connectivity. Achieving this goal in the context of ongoing urbanization and need to sustain current economic growth exerts enormous pressure on the remaining tiger habitats and emerges as a big challenge to conserve wild tigers in the Indian subcontinent.  相似文献   

16.
Fishers are mid-sized forest carnivores indigenous to North America that experienced sharp population declines from the early 1800s through to the mid-1900s. To evaluate levels of genetic variation within and subdivision among northern fisher populations 459 individuals were genotyped using 13 microsatellite loci. Genetic diversity was found to be slightly lower in re-introduced populations than in adjacent indigenous populations. Furthermore, fisher populations revealed much more genetic structuring than two closely related mustelids. Further investigation is needed to determine if fishers are more philopatric than martens and wolverines or if barriers to dispersal explain the levels of structure identified in this study.  相似文献   

17.
Although habitat fragmentation and agricultural intensification are known as threads to pollinator diversity, little is known about consequences for population size and genetic diversity. Here, we combined detailed field observations, molecular approaches and GIS-based quantification of landscape structure (measured by proportions of seminatural habitats and proportions of mass flowering crops) to get new insights into driving forces of population dynamics of the bumblebee species Bombus pascuorum. Comparing 13 agriculturally dominated landscape sectors, we found the proportion of mass flowering crops to positively influence bumblebee abundance whereas the proportion of seminatural habitats was of minor importance. We used microsatellites to quantify landscape-related colony densities, inbreeding and population substructure. Detected colony densities did not correlate with landscape parameters or with local worker abundance, measured by field observations. These results indicate that increased worker abundances within landscapes are rather due to greater colony sizes than due to an increased number of nests. We found significant population substructure, measured by F(ST) and seven landscape sectors to bear significantly increased inbreeding values (F(IS)). F(IS) was strongly varying between sectors but did not correlate with landscape structure. Moreover, F(IS) had a significantly negative effect on colony size, demonstrating the importance of genetic diversity on population fitness at a landscape scale. We suggest that inbreeding levels might be related to the temporal variation of food resources and population sizes in agricultural landscapes.  相似文献   

18.
Spatial configuration of habitats influences genetic structure and population fitness whereas it affects mainly species with limited dispersal ability. To reveal how habitat fragmentation determines dispersal and dispersal-related morphology in a ground-dispersing insect species we used a bush-cricket (Pholidoptera griseoaptera) which is associated with forest-edge habitat. We analysed spatial genetic patterns together with variability of the phenotype in two forested landscapes with different levels of fragmentation. While spatial configuration of forest habitats did not negatively affect genetic characteristics related to the fitness of sampled populations, genetic differentiation was found higher among populations from an extensive forest. Compared to an agricultural matrix between forest patches, the matrix of extensive forest had lower permeability and posed barriers for the dispersal of this species. Landscape configuration significantly affected also morphological traits that are supposed to account for species dispersal potential; individuals from fragmented forest patches had longer hind femurs and a higher femur to pronotum ratio. This result suggests that selection pressure act differently on populations from both landscape types since dispersal-related morphology was related to the level of habitat fragmentation. Thus observed patterns may be explained as plastic according to the level of landscape configuration; while anthropogenic fragmentation of habitats for this species can lead to homogenization of spatial genetic structure.  相似文献   

19.
Ecosystem management requires an understanding of how landscapes vary in space and time, how this variation can be affected by management decisions or stochastic events, and the potential consequences for species. Landscape trajectory analysis, coupled with a basic knowledge of species habitat selection, offers a straightforward approach to ecological risk analysis and can be used to project the effects of management decisions on species of concern. The fisher (Martes pennanti) occurs primarily in late-successional forests which, in the Sierra Nevada mountains, are susceptible to high-intensity wildfire. Understanding the effects of fuels treatments and fire on the distribution of fisher habitat is a critical conservation concern. We assumed that the more a treated landscape resembled occupied female fisher home ranges, the more likely it was to be occupied by a female and therefore the lower the risk to the population. Thus, we characterized important vegetation attributes within the home ranges of 16 female fishers and used the distribution of these attributes as a baseline against which the effects of forest management options could be compared. We used principal components analysis to identify the major axes defining occupied female fisher home ranges and these, in addition to select univariate metrics, became our reference for evaluating the effects of landscape change. We demonstrated the approach at two management units on the Sierra National Forest by simulating the effects of both no action and forest thinning, with and without an unplanned fire, on vegetation characteristics over a 45-yr period. Under the no action scenario, landscapes remained similar to reference conditions for approximately 30-yr until forest succession resulted in a loss of landscape heterogeneity. Comparatively, fuel treatment resulted in the reduction of certain forest elements below those found in female fisher home ranges yet little overall change in habitat suitability. Adding a wildfire to both scenarios resulted in divergence from reference conditions, though in the no action scenario the divergence was 4× greater and the landscape did not recover within the 45-yr timeframe. These examples demonstrate that combining the results of forest growth and disturbance modeling with habitat selection data may be used to quantify the potential effects of vegetation management activities on wildlife habitat. © 2011 The Wildlife Society.  相似文献   

20.
Brown lemmings reach much higher densities than collared lemmings near Barrow, Alaska, and captures from 19 summers of snap trapping confirm previous reports that brown lemmings prefer lower, wetter habitats than do collared lemmings. Data also support the hypothesis that brown lemmings concentrate in higher habitats during early summer when melt water floods lower habitats, then shift to lower habitats where preferred food is more available as the waters recede. This pattern appears similar to seasonal shifts in habitat use reported for Norwegian lemmings. Two hypotheses were not supported by our data: (1) Unlike Norwegian lemmings, brown lemmings did not expand their use of suboptimal habitats at higher population densities. Rather, absolute densities changed in concert so that the relative densities among habitats remained unchanged. (2) Preferential use of polygon troughs during winter, as indicated by patterns of winter grazing, was not simply a function of snow depth. Instead it appeared to be related to shoot density of preferred foods. Nearly all patterns of habitat use seemed to be linked to food availability. Other factors, such as protection from predators by vegetative cover in summer and increased insulation from deeper snow in winter, did not appear to influence the distribution of lemmings as strongly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号