首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies have demonstrated that mice disrupted with the cyclooxygenase-2 gene showed much more severe liver damage compared with wild-type mice after liver injury, and prostaglandins (PGs) such as PGE(1/2) and PGI(2) have decreased hepatic injury, but the mechanisms by which prostaglandins exhibit protective action on the liver have yet to be addressed. In the present study, we investigated the mechanism of the protective action of PGI(2) using the synthetic IP receptor agonist ONO-1301. In primary cultures of hepatocytes and nonparenchymal liver cells, ONO-1301 did not show protective action directly on hepatocytes, whereas it stimulated expression of hepatocyte growth factor (HGF) in nonparenchymal liver cells. In mice, peroral administration of ONO-1301 increased hepatic gene expression and protein levels of HGF. Injections of CCl4 induced acute liver injury in mice, but the onset of acute liver injury was strongly suppressed by administration of ONO-1301. The increases in serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) by CCl4 were suppressed by 10 mg/kg ONO-1301 to 39.4 and 33.6%, respectively. When neutralizing antibody against HGF was administered with ONO-1301 and CCl4, the decreases by ONO-1301 in serum ALT and AST, apoptotic liver cells, and expansion of necrotic areas in liver tissue were strongly reversed by neutralization of endogenous HGF. These results indicate that ONO-1301 increases expression of HGF and that hepatoprotective action of ONO-1301 in CCl4-induced liver injury may be attributable to its activity to induce expression of HGF, at least in part. The potential for involvement of HGF-Met-mediated signaling in the hepatotrophic action of endogenous prostaglandins generated by injury-dependent cyclooxygenase-2 induction is considerable.  相似文献   

2.
Hepatocyte growth factor (HGF) inhibits acute liver injury. NK2 acts as an antagonist to HGF in vitro, but its in vivo function has reached no consensus conclusions. We have investigated in vivo effects of HGF and NK2 on CCl4-induced acute liver injury. Elevation of the serum alanine aminotransferase level and extension of centrilobular necrosis were inhibited in HGF transgenic mice but were promoted in NK2 transgenic mice. Hepatocyte proliferation after liver injury was not inhibited in NK2 transgenic mice. Thus, this study indicates that HGF inhibits liver injury, and NK2 antagonizes HGF on liver injury, however, NK2 may not antagonize HGF on hepatocyte proliferation.  相似文献   

3.
We examined the effect of L-tryptophan (Trp) administration on the reversion of CCl(4)-induced chronic liver injury after hepatotoxicant withdrawal in rats. When rats treated with CCl(4) twice a week for 6 weeks were released from CCl(4) treatment for 2 weeks, there was an incomplete reversion of liver injury. The reversion was enhanced by 2 weeks of daily intraperitoneal administration of Trp (50 mg/kg body weight), starting just after CCl(4) withdrawal. There were increases in the levels of thiobarbituric acid reactive substances, an index of lipid peroxidation, Ca(2+), triglycerides, and Trp, and decreases in tryptophan 2,3-dioxygenase activity and serum triglyceride concentrations in the liver of rats treated with CCl(4) for 6 weeks. Serum albumin concentrations and in vitro hepatic protein synthesis activity did not change in the CCl(4)-treated rats. The changes in the CCl(4)-treated rats were partially attenuated 2 weeks after CCl(4) withdrawal. The attenuation was enhanced by 2 weeks of daily Trp administration. The increases in hepatic thiobarbituric acid reactive substances and triglycerides and the decreases in hepatic tryptophan 2,3-dioxygenase activity and serum triglyceride concentrations observed 2 weeks after CCl(4) withdrawal were almost completely attenuated by Trp administration. In vitro hepatic protein synthesis in CCl(4)-treated and untreated rats was increased by 2 weeks of daily Trp administration. These results indicate that Trp administration promotes the reversion of pre-established chronic liver injury in rats treated with CCl(4,) and suggest that Trp exerts this effect by enhancing the improvement of several parameters of liver dysfunction associated with chronic liver injury and by stimulating hepatic protein synthesis.  相似文献   

4.
A protective effect of Rho-kinase inhibitor on various organ injuries is gaining attention. Regarding liver injury, Rho-kinase inhibitor is reported to prevent carbon tetrachloride (CCl4)- or dimethylnitrosamine-induced liver fibrosis and hepatic ischemia-reperfusion injury in rats. Because Rho-kinase inhibitor not only improved liver fibrosis but also reduced serum alanine aminotransferase (ALT) level in CCl4-induced liver fibrosis, we wondered whether Rho-kinase inhibitor might exert a direct hepatocyte-protective effect. We examined this possibility in acute CCl4 intoxication in rats. Rho-kinase inhibitor, HA-1077, reduced serum alanine ALT level in rats with acute liver injury induced by CCl4 with the improvement of histological damage and the reduction of the number of apoptotic cells. In cultured rat hepatocytes in serum-free condition, HA-1077 reduced apoptosis evaluated by quantitative determination of cytoplasmic histone-associated DNA oligonucleosome fragments with the reduction of caspase-3 activity and the enhancement of Bcl-2 expression. HA-1077 stimulated phosphorylation of Akt, and wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PI3-kinase)/Akt pathway, abrogated the reduction of hepatocyte apoptosis by HA-1077 in vitro. Furthermore, wortmannin abrogated the reduction of serum ALT level by HA-1077 in rats with acute liver injury induced by CCl4, suggesting that the activation of PI3-kinase/Akt pathway may be involved in the hepatocyte-protective effect by Rho-kinase inhibitor in vivo. In conclusion, Rho-kinase inhibitor prevented hepatocyte damage in acute liver injury induced by CCl4 in rats and merits consideration as a hepatocyte-protective agent in liver injury, considering its direct antiapoptotic effect on hepatocytes in vitro.  相似文献   

5.
Megli FM  Sabatini K 《FEBS letters》2004,573(1-3):68-72
The purpose of this study was to investigate whether, after oxidative injury in vivo, liver mitochondrial phospholipids suffered from structural defects similar to those we have previously observed after either chemical oxidation or respiration state IV incubation of isolated mitochondria in vitro. Oxidative injury of the liver was simulated by endogastric administration of CCl4 to rats in variable amounts for different times, under various conditions. Measurements of the phospholipid bilayer packing order were carried out by electron paramagnetic resonance (EPR) spectrometry of oriented planar samples of phospholipids extracted from liver mitochondria, spin labeled with 5-doxylstearoyl-lecithin. Disordering of the bilayer was revealed by the anisotropy loss of EPR spectra and reached a maximum value 4.5 h after CCl4 administration, vanishing thereafter. The observed disorder also increased with the amount of CCl4 administered, showing distinct dose-dependence, while administration of resveratrol soon after carbon tetrachloride decreased bilayer disordering by 50%. On the contrary, the order parameter S of spin labeled lecithin in isolated mitochondrial membranes from intoxicated rats revealed no change in membrane fluidity after oxidative stress. It is concluded that the phospholipid damage leading to disturbed bilayer geometry after oxidative attack already observed in model membranes and in isolated mitochondria in vitro also occurs in a simulated pathological state in vivo, indicating its possible occurrence also in real oxidative stress-linked pathologies as a contribution to the onset/sustaining of related diseases.  相似文献   

6.
A single dose of CCl4 when administered to a rat produces centrilobular necrosis and fatty degeneration of the liver. These hepatotoxic effects of CCl4 are dependent upon its metabolic activation in the liver endoplasmic reticulum to reactive intermediates, including the trichloromethyl free radical. Positive identification of the formation of this free radical in vivo, in isolated liver cells and in microsomal suspensions in vitro has been achieved by e.s.r. spin-trapping techniques. The trichloromethyl radical has been found to be relatively unreactive in comparison with the secondarily derived peroxy radical CCl3O2., although each free radical species contributes significantly to the biological disturbances that occur. Major early perturbations produced to liver endoplasmic reticulum by exposure in vivo or in vitro to CCl4 include covalent binding and lipid peroxidation; studies of these processes occurring during CCl4 intoxication have uncovered a number of concepts of general relevance to free-radical mediated tissue injury. Lipid peroxidation produces a variety of substances that have high biological activities, including effects on cell division; many liver tumours have a much reduced rate of lipid peroxidation compared with normal liver. A discussion of this rather general feature of liver tumours is given in relation to the liver cell division that follows partial hepatectomy.  相似文献   

7.
Free radical reactions involved in the metabolism of carbon tetrachloride by rat liver have been considered to be a cause of at least part of the injury resulting from exposure to this halocarbon. In an earlier study employing electron spin resonance and spin-trapping techniques, we demonstrated that trichloromethyl (13.CCl3) radicals are readily observed in rat liver microsomes metabolizing 13CCl4, and that the same radical could be shown to form in vivo in the liver of intact rats given a single dose of 13CCl4. This report describes the production of lipid dienyl (L.) and oxygen-centered lipid radicals (LO. or LOO., or both) in in vitro systems metabolizing 13CCl4, and also the formation of lipid dienyl radicals (L.) in liver of intact animals exposed to CCl4. The radicals appear to be produced in a sequence of reactions governed among other things by the oxygen tension in the system. The lipid radicals (L.) which form in intact liver of CCl4-treated rats are apparently the result of an attack on lipids of the endoplasmic reticulum by 13.CCl3 radicals formed by reductive cleavage to CCl4 and are the initial intermediates in the process of lipid peroxidation. These investigations demonstrate that while the events occurring in liver microsomes in vitro appear to parallel those which take place in intact liver in vivo, the conditions in vivo make the spin-trapping studies of radicals in intact animals much more selective than it is in vitro for a given spin trap, and requires the use of more than one type of spin-trapping agent to detect different radical species in vivo.  相似文献   

8.
Propolis has been extensively used in folk medicine for the management of a wide spectrum of disorders. In a previous study, we demonstrated the protective effect of the aqueous propolis extract (APE) against the injurious effects of carbon tetrachloride (CCl4) on hepatocytes in vitro. The present investigation was carried out to show whether the hepatoprotective effect of the extract could also be manifested in vivo. Rats were given APE orally for 14 consecutive days, before being subjected to a single intraperitoneal injection of CCl4. One day after the CCl4 injection, the animals were sacrificed, hepatocytes were isolated and liver homogenates were prepared for the assessment of liver injury. In isolated hepatocytes, APE afforded protection against CCl4-induced injury as manifested by a decrease in the leakage of the cytosolic enzyme lactate dehydrogenase (LDH), decreased generation of lipid peroxide and maintenance of cellular reduced glutathione (GSH) content. In principle, similar findings were observed in liver homogenates. The present findings show that APE has in vivo hepatoprotective potential which could be attributed at least in part to the maintenance of cellular GSH content. The latter effect seems to play an important role in conserving the integrity of biomembranes as it was associated with a decrease in lipid peroxidation and reduced leakage of cytosolic LDH.  相似文献   

9.
Cell-cycle induction in hepatocytes protects from prolonged tissue damage after toxic liver injury. Early growth response (Egr)-1(-/-) mice exhibit increased liver injury after carbon tetrachloride (CCl(4)) exposure and reduced TNF-α production. Because TNF-α is required for prompt cell-cycle induction after liver injury, here, we tested the hypothesis that Egr-1 is required for timely hepatocyte entry into the cell cycle after CCl(4)-induced liver injury. Acute liver injury was induced by a single injection of CCl(4). Assays were employed to assess indices of the cell cycle in liver after CCl(4) exposure. Bromodeoxyuridine incorporation peaked in wild-type mice at 48 h after CCl(4) but was reduced by 80% in Egr-1(-/-) mice. Proliferating-cell nuclear-antigen immunohistochemistry revealed blocks in cell-cycle entry and progression to DNA synthesis in Egr-1-deficient mice 48 h after CCl(4). Cyclin D, important for G0/G1 progression, was reduced at baseline and 36 h after CCl(4). Cyclin E1, required for G1/S-phase transition, was reduced in Egr-1(-/-) mice 24 and 48 h after CCl(4) exposure and was associated with reduced phosphorylation of the retinoblastoma protein. Proliferation in Egr-1(-/-) mice was delayed, rather than blocked, because indices of cell-cycle progression were restored 72 h after CCl(4) exposure. We concluded that Egr-1 was required for prompt cell-cycle entry (G0- to G1-phase) and G1/S-phase transition after toxic liver injury. These data support the hypothesis that Egr-1 provides hepatoprotection in the CCl(4)-injured liver, attributable, in part, to timely cell-cycle induction and progression.  相似文献   

10.
IFN-inducible protein-10 (IP-10/CXCL10) is a CXC chemokine that targets both T cells and NK cells. Elevation of IP-10 expression has been demonstrated in a number of human diseases, including chronic cirrhosis and biliary atresia. Cytokine-responsive gene-2 (Crg-2), the murine ortholog of IP-10, was induced following CCl(4) treatment of the hepatocyte-like cell line AML-12. Crg-2 expression was noted in vivo in multiple models of hepatic and bile duct injury, including bile duct ligation and CCl(4), D-galactosamine, and methylene dianiline toxic liver injuries. Induction of Crg-2 was also examined following two-thirds hepatectomy, a model that minimally injures the remaining liver, but that requires a large hepatic regenerative response. Crg-2 was induced in a biphasic fashion after two-thirds hepatectomy, preceding each known peak of hepatocyte DNA synthesis. Induction of Crg-2 was also observed in the kidney, gut, thymus, and spleen within 1 h of two-thirds hepatectomy. Characteristic of an immediate early gene, pretreatment of mice with the protein synthesis inhibitor cycloheximide before either two-thirds hepatectomy or CCl(4) injection led to Crg-2 superinduction. rIP-10 was demonstrated to have hepatocyte growth factor-inducing activity in vitro, but alone had no direct mitogenic effect on hepatocytes. Our data demonstrate that induction of Crg-2 occurs in several distinct models of liver injury and regeneration, and suggest a role for CRG-2/IP-10 in these processes.  相似文献   

11.
Hepatoprotective activity of 70% ethanolic extract of flowers of C. procera was studied against CCl4 induced hepatic injury in albino rats and mice. In addition, antioxidant activity was studied by in vitro models. Pre-treatment with 70% ethanolic extract (CPA) reduced the biochemical markers of hepatic injury like serum glutamate pyruvate transaminase, serum glutamate oxaloacetate transaminase, alkaline phosphatase, bilirubin, cholesterol, HDL and tissue glutathione (GSH) levels. Similarly pretreatment with CPA reduced the CCl4 induced elevation in the pentobarbitone sleeping time. Histopathological observations also revealed that pretreatment with CPA protected the animals from CCl4 induced liver damage. CPA demonstrated dose dependant reduction in the in vitro and in vivo lipid peroxidation induced by CCl4. In addition it showed dose dependant free radical scavenging activity. The results indicate that flowers of C. procera possess hepatoprotective property possibly because of its anti-oxidant activity. This property may be attributed to the quercetin related flavonoids present in the flowers of Calotropis procera.  相似文献   

12.
Central neuropeptides play important roles in many physiological and pathophysiological regulation mediated through the autonomic nervous system. In regard to the hepatobiliary system, several neuropeptides act in the brain to regulate bile secretion, hepatic blood flow, and hepatic proliferation. Central injection of corticotropin-releasing factor (CRF) aggravates carbon tetrachloride (CCl4)-induced acute liver injury through the sympathetic nervous pathway in rats. However, still nothing is known about a role of endogenous neuropeptides in the brain in hepatic pathophysiological regulations. Involvement of endogenous CRF in the brain in CCl4-induced acute liver injury was investigated by centrally injecting a CRF receptor antagonist in rats. Male fasted Wistar rats were injected with CRF receptor antagonist alpha-helical CRF-(9-41) (0.125-5 microg) intracisternally just before and 6 h after CCl4 (2 ml/kg) administration, and blood samples were obtained before and 24 h after CCl4 injection for measurement of hepatic enzymes. The liver sample was removed 24 h after CCl4 injection, and histological changes were examined. Intracisternal alpha-helical CRF-(9-41) dose dependently (0.25-2 microg) reduced the elevation of alanine aminotransferase and aspartate aminotransferase levels induced by CCl4. Intracisternal alpha-helical CRF-(9-41) reduced CCl4-induced liver histological changes, such as centrilobular necrosis. The effect of central CRF receptor antagonist on CCl4-induced liver injury was abolished by sympathectomy and 6-hydroxydopamine pretreatment but not by hepatic branch vagotomy or atropine pretreatment. These findings suggest the regulatory role of endogenous CRF in the brain in experimental liver injury in rats.  相似文献   

13.
Sphingosine 1-phosphate (S1P), a bioactive lipid mediator, stimulates proliferation and contractility in hepatic stellate cells, the principal matrix-producing cells in the liver, and inhibits proliferation via S1P receptor 2 (S1P(2)) in hepatocytes in rats in vitro. A potential role of S1P and S1P(2) in liver regeneration and fibrosis was examined in S1P(2)-deficient mice. Nuclear 5-bromo-2'-deoxy-uridine labeling, proliferating cell nuclear antigen (PCNA) staining in hepatocytes, and the ratio of liver weight to body weight were enhanced at 48 h in S1P(2)-deficient mice after a single carbon tetrachloride (CCl(4)) injection. After dimethylnitrosamine (DMN) administration with a lethal dose, PCNA staining in hepatocytes was enhanced at 48 h and survival rate was higher in S1P(2)-deficient mice. Serum aminotransferase level was unaltered in those mice compared with wild-type mice in both CCl(4)- and DMN-induced liver injury, suggesting that S1P(2) inactivation accelerated regeneration not as a response to enhanced liver damage. After chronic CCl(4) administration, fibrosis was less apparent, with reduced expression of smooth-muscle alpha-actin-positive cells in the livers of S1P(2)-deficient mice, suggesting that S1P(2) inactivation ameliorated CCl(4)-induced fibrosis due to the decreased accumulation of hepatic stellate cells. Thus, S1P plays a significant role in regeneration and fibrosis after liver injury via S1P(2).  相似文献   

14.
Both in vivo and in vitro 31P-NMR spectroscopy were used to demonstrate metabolic changes in rat liver as a function of time after exposure to either carbon tetrachloride (CCl4) or bromotrichloromethane (BrCCl3). The inorganic phosphate resonance, measured in vivo, moves upfield, which is associated with a decrease in cytosolic pH over a 12 or 20 h period (for BrCCl3 or CCl4, respectively). Intoxication by CCl4 or BrCCl3 causes an intracellular acidosis to pH 7.05 or 6.82 (+/- 0.05), respectively. Also, it has been found that halocarbon exposure increases the amounts of phosphomonoesters (PME) detected. High resolution in vitro 31P-NMR spectroscopy studies of perchloric acid extracts of CCl4-treated rat livers indicated a significant increase in the height of the phosphocholine resonance in the PME region 4-5 h after CCl4 exposure.  相似文献   

15.
This study is focused on the role of UCP-2 in hepatic oxidative metabolism following acute CCl(4) administration to rats. UCP-2 mRNA, almost undetectable in the liver of controls, was significantly increased 24 h after CCl(4) administration, peaked at 72 h and then tended to disappear. UCP-2 protein, undetectable in controls, increased 48-72 h after CCl(4) treatment. Experiments with isolated liver cells indicated that in control rats UCP-2 was expressed in non-parenchymal cells and not in hepatocytes, whereas in CCl(4)-treated rats UCP-2 expression was induced in hepatocytes and was not affected in non-parenchymal cells. Addition of CCl(4) to the culture medium of hepatocytes from control rats failed to induce UCP-2 expression. Liver mitochondria from CCl(4)-treated rats showed an increase of H(2)O(2) release at 12-24 h, followed by a rise of TBARS. Vitamin E protected liver from CCl(4) injury and reduced the expression of UCP-2. Treatment with GdCl(3) prior to CCl(4), in order to inhibit Kupffer cells, reduced TBARS and UCP-2 mRNA increase in hepatic mitochondria. Our data indicate that CCl(4) induces the expression of UCP-2 in hepatocytes with a redox-dependent mechanism involving Kupffer cells. A role of UCP-2 in moderating CCl(4)-induced oxidative stress during tissue regeneration after injury is suggested.  相似文献   

16.
Arachidonic acid metabolism was evaluated in isolated rat hepatocytes after CCl4 exposure. CCl4 induced dose-dependently the synthesis and release of prostacyclin (PGI2) and thromboxane (TXB2). Treatment with prostaglandin E2 (PGE2) 30 min after exposure to CCl4, significantly reduced the cell damage as well as the release of TXB2 from the cells.  相似文献   

17.
CCl4致小鼠肝损伤中几种免疫介质含量变化的研究   总被引:3,自引:0,他引:3  
本文通过研究CCl4致小鼠肝损伤组织匀浆和血浆一些免疫介质含量的变化以探讨这些免疫介质在CCl4诱发肝损伤过程中作用机制。分别选用30只健康成年小鼠,雌雄各半,随机分成对照组和CCl4负荷组,每组15只。通过腹腔注射CCl4诱发肝损伤后,分别在第2、4、6周检测肝组织匀浆cAMP、cGMP和MDA及血浆IL-2、TNF-α水平的变化。结果显示,在整个实验期内,CCl4组肝组织匀浆cAMP水平均低于或明显低于对照组;cGMP在实验第2周后,高于或显著高于对照组;cAMP/cGMP比值呈现下降趋势,并低于或明显低于对照组;MDA含量明显高于对照组。在整个实验期内,CCl4组血浆IL-2水平下降或显著下降;TNF-α水平则均高于或显著高于对照组。结果提示,CCl4负荷诱发免疫介质cAMP、cGMP、TNF-α和IL-2发生剧烈变化,在介导肝损伤过程中可能起重要作用。  相似文献   

18.
The antioxidative properties of drugs--diethylcarbamazine citrate--DECC, dipyridamole-DP, levamisole and labinzarit--have been investigated in various microsomal lipid peroxidation (LPO) models: NADPH-, ascorbate- and CCl4-dependent. The most strong antioxidant of direct action turned out to be DP, DECC exhibited the antioxidative properties as a result of metabolic activity in monooxygenases system of rat liver microsomes. Levamisole and labinzarit turned out to be weak antioxidants. The control of microsomal membrane stability against Fe(2+)-ADP, NADPH-induced LPO, after being isolated from rat liver after the action of CCl4 without and with DECC, showed that DECC protected microsomal membranes from CCl4 in vivo and they remained stable against LPO in vitro.  相似文献   

19.
Mice were administered a single dose of carbon tetrachloride (CCl(4)) to induce acute liver injury. We found that lactate dehydrogenase (LDH) and glutamic pyruvic transaminase (GPT) levels in serum, as well as the level of thiobarbituric acid reaction substances (TBARS) in liver homogenate increased significantly in a manner both dose dependent and time dependent after CCl(4) administration. Such results suggest that the liver is susceptible to CCl(4) treatment and that lipid peroxidation is associated with CCl(4)-induced liver injury. The spin-trapping electron paramagnetic resonance (EPR) method was used to detect nitric oxide (NO) level in liver. The chemiluminescence method was also employed to measure the NO(2)(-)/NO(3)(-) concentration in serum. The NO levels in liver tissues and NO(2)(-)/NO(3)(-) concentration in serum were found to decrease significantly both in a dose-dependent manner and in time course after CCl(4) treatment. The nitric oxide synthase (NOS) II activity in the liver, in contrast, was found to increase significantly. Our study suggests that not only should the expression of NOS be analyzed but NO organ and blood concentration must be measured in the study of diseases involving nitric oxide. L-arginine treatment had no significant effect on the liver function of CCl(4)-treated mice. It was found that NO donor sodium nitroprusside (SNP; 50 or 100 microg/kg) treatment resulted in decreases of LDH, GPT, and TBARS levels, leading to a protective effect on CCl(4)-treated mice. On the other hand, N(G)-nitro-L-arginine methyl ester (L-NAME, 100 or 300 mg/kg) treatment caused more severe liver damage. Moreover, we have found in an in vitro EPR study that SNP could scavenge lipid peroxyl radical LOO&z.rad;. The above results together suggest that NO may protect CCl(4)-induced liver injury through scavenging lipid radical, inhibiting the lipid peroxidation chain reaction. On the basis of our analysis, we put forth two explanations for the stated discrepancy between NOS II and NO production: (i) NO was used up gradually in terminating lipid peroxidation and (ii) NADPH was depleted (on the basis of correlation evidence only).  相似文献   

20.
The exact functional role of nitric oxide (NO) in liver injury is currently a source of controversy. NO is enzymatically synthesized by nitric oxide synthase (NOS). In this study, we assessed the role of inducible NOS (iNOS) in carbon tetrachloride (CCl4)-induced acute liver injury using inhibitors of iNOS, and an NO donor. Adult ICR mice were injected with CCl4 with or without the iNOS inhibitors (5-methylisothiourea hemisulfate [SMT] and l-N6-(1-iminoethyl)-lysine [L-NIL]) and an NO donor (Sodium Nitroprusside [SNP]). Blood and liver tissues were collected for analysis. Immunohistochemistry (IHC), serum alanine aminotransferase (ALT), serum total 8-isoprostane analysis, RT-PCR, Western Blotting (WB) and EMSA were done. Our results showed increased levels of ALT, necrosis, total 8-isoprostane and nitrotyrosine after CCl4 administration. iNOS inhibitors and SNP abrogated these effects but the effect was more pronounced with SMT and L-NIL. RT-PCR, WB and IHC in CCl4-treated mice demonstrated upregulation of TNF-alpha, iNOS, and COX-2. The administration of iNOS inhibitors with CCl4 diminished the expression of these proinflammatory mediators. NF-kappaB was also upregulated in CCl4-treated mice and was reversed in mice pretreated with iNOS inhibitors. SNP pretreated mice also showed a lower expression of COX-2 when compared with CCl4 treated mice but TNF-alpha, iNOS and NF-kappaB activity were unaffected. We propose that a high level of nitric oxide is associated with CCl4-induced acute liver injury and the liver injury can be ameliorated by decreasing the NO level with iNOS inhibitors and an NO donor with the former more effective in reducing CCl4-induced liver injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号