首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Plasmodium falciparum is a protozoan parasite that is responsible for the most pathogenic form of human malaria. The particular virulence of this parasite derives from its ability to develop within the erythrocytes of its host and to subvert their function. The intraerythrocytic parasite devours haemoglobin, and remodels its host cell to cause adhesion to blood vessel walls. Ultrastructural studies of P. falciparum have played a major role in defining its cell architecture and in resolving cell biology controversies. Here we review some of the early studies and describe some recent developments in electron microscopy techniques that have revealed information about the organization of the parasite in the blood stage of development. We present images of P. falciparum at different stages of the life cycle and highlight some of the plasmodium-specific organelles, the haemoglobin digestive apparatus and the membrane structures that are elaborated in the host cell cytoplasm to traffic virulence proteins to the erythrocyte surface. We describe methods for whole cell ultrastructural imaging that can provide three-dimensional views of intraerythrocytic development.  相似文献   

2.
The human malaria parasite Plasmodium falciparum exports a large number of proteins into its host erythrocyte to install functions necessary for parasite survival. Important structural components of the export machinery are membrane profiles of parasite origin, termed Maurer's clefts. These profiles span much of the distance between the parasite and the host cell periphery and are believed to deliver P. falciparum-encoded proteins to the erythrocyte plasma membrane. Although discovered more than a century ago, Maurer's clefts remain a mysterious organelle with little information available regarding their origin, their morphology or their precise role in protein trafficking. Here, we evaluated different techniques to prepare samples for electron tomography, including whole cell cryo-preparations, vitreous sections, freeze-substitution and chemical fixation. Our data show that the different approaches tested all have their merits, revealing different aspects of the complex structure of the Maurer's clefts.  相似文献   

3.
During development within the host erythrocyte malaria parasites generate nascent membranous structures which serve as a pathway for parasite protein transport to modify the host cell. The molecular basis of such membranous structures is not well understood, particularly for malaria parasites other than Plasmodium falciparum. To characterize the structural basis of protein trafficking in the Plasmodium knowlesi-infected erythrocyte, we identified a P. knowlesi ortholog of MAHRP2, a marker of the tether structure that connects membranous structures in the P. falciparum-infected erythrocyte. We show that PkMAHRP2 localizes on amorphous structures that connect Sinton Mulligan's clefts (SMC) to each other and to the erythrocyte membrane. Three dimensional reconstruction of the P. knowlesi-infected erythrocyte revealed that the SMC is a plate-like structure with swollen ends, reminiscent of the morphology of the Golgi apparatus. The PkMAHRP2-localized amorphous structures are possibly functionally equivalent to P. falciparum tether structure. These findings suggest a conservation in the ultrastructure of protein trafficking between P. falciparum and P. knowlesi.  相似文献   

4.
Plasmodium falciparum infection of human erythrocytes is known to result in the modification of the host cell cytoskeleton by parasite-coded proteins. However, such modifications and corresponding implications in malaria pathogenesis have not been fully explored. Here, we probed the gradual modification of infected erythrocyte cytoskeleton with advancing stages of infection using atomic force microscopy (AFM). We reported a novel strategy to derive accurate and quantitative information on the knob structures and their connections with the spectrin network by performing AFM–based imaging analysis of the cytoplasmic surface of infected erythrocytes. Significant changes on the red cell cytoskeleton were observed from the expansion of spectrin network mesh size, extension of spectrin tetramers and the decrease of spectrin abundance with advancing stages of infection. The spectrin network appeared to aggregate around knobs but also appeared sparser at non-knob areas as the parasite matured. This dramatic modification of the erythrocyte skeleton during the advancing stage of malaria infection could contribute to the loss of deformability of the infected erythrocyte.  相似文献   

5.
It is somewhat paradoxical that the malaria parasite’s survival strategy involves spending almost all of its blood-stage existence residing behind a two-membrane barrier in a host red blood cell, yet giving considerable attention to exporting parasite-encoded proteins back across these membranes. These exported proteins are thought to play diverse roles and are crucial in pathogenic processes, such as re-modelling of the erythrocyte cytoskeleton and mediating the export of a major virulence protein known as Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), and in metabolic processes such as nutrient uptake and solute exchange. Despite these varied roles most exported proteins have at least one common link; they share a trafficking pathway that begins with entry into the endoplasmic reticulum and concludes with passage across the vacuole membrane via a proteinaceous translocon known as the Plasmodium translocon of exported proteins (PTEX). In this commentary we review recent advances in our understanding of this export pathway and suggest several models by which different aspects of the process may be interconnected.  相似文献   

6.
The intraerythrocytic malaria parasite, Plasmodium falciparum, derives amino acids from the digestion of host cell haemoglobin. However, it also takes up amino acids from the extracellular medium. Isoleucine is absent from adult human haemoglobin and an exogenous source of isoleucine is essential for parasite growth. An extracellular source of methionine is also important for the normal growth of at least some parasite strains. In this study we have characterised the uptake of methionine by P. falciparum-infected human erythrocytes, and by parasites functionally isolated from their host cells by saponin-permeabilization of the erythrocyte membrane. Infected erythrocytes take up methionine much faster than uninfected erythrocytes, with the increase attributable to the flux of this amino acid via the New Permeability Pathways induced by the parasite in the erythrocyte membrane. Having entered the infected cell, methionine is taken up by the intracellular parasite via a saturable, temperature-dependent process that is independent of ATP, Na+ and H+. Substrate competition studies, and comparison of the transport of methionine with that of isoleucine and leucine, yielded results consistent with the hypothesis that the parasite has at its surface one or more transporters which mediate the flux into and out of the parasite of a broad range of neutral amino acids. These transporters function most efficiently when exchanging one neutral amino acid for another, thus providing a mechanism whereby the parasite is able to import important exogenous amino acids in exchange for surplus neutral amino acids liberated from the digestion of host cell haemoglobin.  相似文献   

7.
The export of numerous proteins to the plasma membrane of its host erythrocyte is essential for the virulence and survival of the malaria parasite Plasmodium falciparum. The Maurer's clefts, membrane structures transposed by the parasite in the cytoplasm of its host erythrocyte, play the role of a marshal platform for such exported parasite proteins. We identify here the export pathway of three resident proteins of the Maurer's clefts membrane: the proteins are exported as soluble forms in the red cell cytoplasm to the Maurer's clefts membrane in association with the parasite group II chaperonin (PfTRIC), a chaperone complex known to bind and address a large spectrum of unfolded proteins to their final location. We have also located the domain of interaction with PfTRiC within the amino‐terminal domain of one of these Maurer's cleft proteins, PfSBP1. Because several Maurer's cleft membrane proteins with different export motifs seem to follow the same route, we propose a general role for PfTRiC in the trafficking of malarial parasite proteins to the host erythrocyte.   相似文献   

8.
Plasmodium falciparum, the most lethal malaria parasite species for humans, vastly remodels the mature erythrocyte host cell upon invasion for its own survival. Maurer’s clefts (MC) are membraneous structures established by the parasite in the cytoplasm of infected cells. These organelles are deemed essential for trafficking of virulence complex proteins. The display of the major virulence protein, P. falciparum erythrocyte membrane protein 1 (PfEMP1) on the surface of the infected red blood cell and the subsequent cytoadhesion of infected cells in the microvasculature of vital organs is the key mechanism that leads to the pathology associated with malaria infection. In a previous study we established that PFE60 (PIESP2) is one of the protein components of this complex. Here we demonstrate that PFE60 plays a role in MC lamella segmentation since in the absence of the protein, infected cells display a higher number of stacked MC compared with wild type infected red blood cells. Also, another exported parasite protein (Pf332) failed to localise correctly to the MC in cells lacking PFE60. Furthermore – unlike all other described resident MC membrane proteins – PFE60 does not require its transmembrane regions to be targeted to the organelle. We also provide further evidence that PFE60 is not a red blood cell surface antigen.  相似文献   

9.
Eukaryotic parasites of the genus Plasmodium cause malaria by invading and developing within host erythrocytes. Here, we demonstrate that PfShelph2, a gene product of Plasmodium falciparum that belongs to the Shewanella-like phosphatase (Shelph) subfamily, selectively hydrolyzes phosphotyrosine, as shown for other previously studied Shelph family members. In the extracellular merozoite stage, PfShelph2 localizes to vesicles that appear to be distinct from those of rhoptry, dense granule, or microneme organelles. During invasion, PfShelph2 is released from these vesicles and exported to the host erythrocyte. In vitro, PfShelph2 shows tyrosine phosphatase activity against the host erythrocyte protein Band 3, which is the most abundant tyrosine-phosphorylated species of the erythrocyte. During P. falciparum invasion, Band 3 undergoes dynamic and rapid clearance from the invasion junction within 1 to 2 s of parasite attachment to the erythrocyte. Release of Pfshelph2 occurs after clearance of Band 3 from the parasite-host cell interface and when the parasite is nearly or completely enclosed in the nascent vacuole. We propose a model in which the phosphatase modifies Band 3 in time to restore its interaction with the cytoskeleton and thus reestablishes the erythrocyte cytoskeletal network at the end of the invasion process.  相似文献   

10.
11.
Membrane lipid rafts have been implicated in erythrocyte invasion process by Plasmodium falciparum. In this study, we examined the effect of lidocaine, a local anesthetic, which disrupts lipid rafts reversibly without affecting membrane cholesterol content on parasite invasion. In the presence of increasing concentrations of lidocaine in the culture medium, parasite invasion was progressively decreased with complete inhibition at 2 mM. Decreased invasion was also seen in erythrocytes pre-treated with lidocaine and cultured in the absence of lidocaine. This inhibitory effect on parasite invasion was reversed following removal of lidocaine from erythrocyte membranes. Our findings show that disruption of lipid rafts in the context of normal cholesterol content markedly inhibits parasite invasion and confirm an important role for lipid rafts in invasion of erythrocytes by P. falciparum.  相似文献   

12.
In Plasmodium falciparum infections the parasite transmission stages, the gametocytes, mature in 10 days sequestered in internal organs. Recent studies suggest that cell mechanical properties rather than adhesive interactions play a role in sequestration during gametocyte maturation. It remains instead obscure how sequestration is established, and how the earliest sexual stages, morphologically similar to asexual trophozoites, modify the infected erythrocytes and their cytoadhesive properties at the onset of gametocytogenesis. Here, purified P. falciparum early gametocytes were used to ultrastructurally and biochemically analyse parasite‐induced modifications on the red blood cell surface and to measure their functional consequences on adhesion to human endothelial cells. This work revealed that stage I gametocytes are able to deform the infected erythrocytes like asexual parasites, but do not modify its surface with adhesive ‘knob’ structures and associated proteins. Reduced levels of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesins are exposed on the red blood cell surface bythese parasites, and the expression of the var gene family, which encodes 50–60 variants of PfEMP1, is dramatically downregulated in the transition from asexual development to gametocytogenesis. Cytoadhesion assays show that such gene expression changes and host cell surface modifications functionally result in the inability of stage I gametocytes to bind the host ligands used by the asexual parasite to bind endothelial cells. In conclusion, these results identify specific differences in molecular and cellular mechanisms of host cell remodelling and in adhesive properties, leading to clearly distinct host parasite interplays in the establishment of sequestration of stage I gametocytes and of asexual trophozoites.  相似文献   

13.
Adherence of Plasmodium falciparum‐infected erythrocytes to host endothelium is conferred through the parasite‐derived virulence factor P. falciparum erythrocyte membrane protein 1 (PfEMP1), the major contributor to malaria severity. PfEMP1 located at knob structures on the erythrocyte surface is anchored to the cytoskeleton, and the Plasmodium helical interspersed subtelomeric (PHIST) gene family plays a role in many host cell modifications including binding the intracellular domain of PfEMP1. Here, we show that conditional reduction of the PHIST protein PFE1605w strongly reduces adhesion of infected erythrocytes to the endothelial receptor CD36. Adhesion to other endothelial receptors was less affected or even unaltered by PFE1605w depletion, suggesting that PHIST proteins might be optimized for subsets of PfEMP1 variants. PFE1605w does not play a role in PfEMP1 transport, but it directly interacts with both the intracellular segment of PfEMP1 and with cytoskeletal components. This is the first report of a PHIST protein interacting with key molecules of the cytoadherence complex and the host cytoskeleton, and this functional role seems to play an essential role in the pathology of P. falciparum.  相似文献   

14.
The Plasmodium falciparum var multigene family encodes P. falciparum erythrocyte membrane protein 1, which is responsible for the pathogenic traits of antigenic variation and adhesion of infected erythrocytes to host receptors during malaria infection. Clonal antigenic variation of P. falciparum erythrocyte membrane protein 1 is controlled by the switching between exclusively transcribed var genes. The tremendous diversity of the var gene repertoire both within and between parasite strains is critical for the parasite's strategy of immune evasion. We show that ectopic recombination between var genes occurs during mitosis, providing P. falciparum with opportunities to diversify its var repertoire, even during the course of a single infection. We show that the regulation of the recombined var gene has been disrupted, resulting in its persistent activation although the regulation of most other var genes is unaffected. The var promoter and intron of the recombined var gene are not responsible for its atypically persistent activity, and we conclude that altered subtelomeric cis sequence is the most likely cause of the persistent activity of the recombined var gene.  相似文献   

15.
During the intra-erythrocytic development of Plasmodium falciparum, the parasite modifies the host cell surface by exporting proteins that interact with or insert into the erythrocyte membrane. These proteins include the principal mediator of cytoadherence, P. falciparum erythrocyte membrane protein 1 (PfEMP1). To implement these changes, the parasite establishes a protein-trafficking system beyond its confines. Membrane-bound structures called Maurer's clefts are intermediate trafficking compartments for proteins destined for the host cell membrane. We disrupted the gene for the membrane-associated histidine-rich protein 1 (MAHRP1). MAHRP1 is not essential for parasite viability or Maurer's cleft formation; however, in its absence, these organelles become disorganized in permeabilized cells. Maurer's cleft-resident proteins and transit cargo are exported normally in the absence of MAHRP1; however, the virulence determinant, PfEMP1, accumulates within the parasite, is depleted from the Maurer's clefts and is not presented at the red blood cell surface. Complementation of the mutant parasites with mahrp1 led to the reappearance of PfEMP1 on the infected red blood cell surface, and binding studies show that PfEMP1-mediated binding to CD36 is restored. These data suggest an important role of MAHRP1 in the translocation of PfEMP1 from the parasite to the host cell membrane.  相似文献   

16.

Background

The insertion of parasite antigens into the host erythrocyte membrane and the structure and distribution of Plasmodium falciparum adhesion receptors on that membrane are poorly understood. Laser scanning confocal microscopy (LSCM) and a novel labelling and fixation method have been used to obtain high resolution immuno-fluorescent images of erythrocyte surface PfEMP1 and internal antigens which allow analysis of the accumulation of PfEMP1 on the erythrocyte membrane during asexual development.

Methods

A novel staining technique has been developed which permits distinction between erythrocyte surface PfEMP1 and intracellular PfEMP1, in parasites whose nuclear material is exceptionally well resolved. Primary antibody detection by fluorescence is carried out on the live parasitized erythrocyte. The surface labelled cells are then fixed using paraformaldehyde and permeabilized with a non-ionic detergent to permit access of antibodies to internal parasite antigens. Differentiation between surface and internal antigens is achieved using antibodies labelled with different fluorochromes and confocal microscopy

Results

Surface exposed PfEMP1 is first detectable by antibodies at the trophozoite stage of intracellular parasite development although the improved detection method indicates that there are differences between different laboratory isolates in the kinetics of accumulation of surface-exposed PfEMP1.

Conclusion

A sensitive method for labelling surface and internal PfEMP1 with up to three different fluorochromes has been developed for laser scanning confocal optical microscopy and the analysis of the developmental expression of malaria adhesion antigens.  相似文献   

17.
Infection of erythrocytes by the human malaria parasite Plasmodium falciparum results in dramatic modifications to the host cell, including changes to its antigenic and transport properties and the de novo formation of membranous compartments within the erythrocyte cytosol. These parasite-induced structures are implicated in the transport of nutrients, metabolic products, and parasite proteins, as well as in parasite virulence. However, very few of the parasite effector proteins that underlie remodeling of the host erythrocyte are functionally characterized. Using bioinformatic examination and modeling, we have found that the exported P. falciparum protein PFA0210c belongs to the START domain family, members of which mediate transfer of phospholipids, ceramide, or fatty acids between membranes. In vitro phospholipid transfer assays using recombinant PFA0210 confirmed that it can transfer phosphatidylcholine, phosphatidylinositol, phosphatidylethanolamine, and sphingomyelin between phospholipid vesicles. Furthermore, assays using HL60 cells containing radiolabeled phospholipids indicated that orthologs of PFA0210c can also transfer phosphatidylcholine, phosphatidylinositol, and phosphatidylethanolamine. Biochemical and immunochemical analysis showed that PFA0210c associates with membranes in infected erythrocytes at mature stages of intracellular parasite growth. Localization studies in live parasites revealed that the protein is present in the parasitophorous vacuole during growth and is later recruited to organelles in the parasite. Together these data suggest that PFA0210c plays a role in the formation of the membranous structures and nutrient phospholipid transfer in the malaria-parasitized erythrocyte.  相似文献   

18.
Plasmodium falciparum invasion of host erythrocytes is essential for the propagation of the blood stage of malaria infection. Additionally, the brief extracellular merozoite stage of P. falciparum represents one of the rare windows during which the parasite is directly exposed to the host immune response. Therefore, efficient invasion of the host erythrocyte is necessary not only for productive host erythrocyte infection, but also for evasion of the immune response. Host traits, such as hemoglobinopathies and differential expression of erythrocyte invasion ligands, can protect individuals from malaria by impeding parasite erythrocyte invasion. Here we combine RBC barcoding with flow cytometry to study P. falciparum invasion. This novel high-throughput method allows for the (i) direct comparison of P. falciparum invasion into different erythrocyte populations and (ii) assessment of the impact of changing erythrocyte population dynamics on P. falciparum invasion.  相似文献   

19.
The human malarial parasite Plasmodium falciparum exports virulence determinants, such as the P. falciparum erythrocyte membrane protein 1 (PfEMP1), beyond its own periplasmatic boundaries to the surface of its host erythrocyte. This is remarkable given that erythrocytes lack a secretory pathway. Here we present evidence for a continuous membrane network of parasite origin in the erythrocyte cytoplasm. Co-localizations with antibodies against PfEMP1, PfExp-1, Pf332 and PfSbpl at the light and electron microscopical level indicate that this membrane network is composed of structures that have been previously described as tubovesicular membrane network (TVM), Maurer's clefts and membrane whorls. This membrane network could also be visualized in vivo by vital staining of infected erythrocytes with the fluorescent dye LysoSensor Green DND-153. At sites where the membrane network abuts the erythrocyte plasma membrane we observed small vesicles of 15-25 nm in size, which seem to bud from and/or fuse with the membrane network and the erythrocyte plasma membrane, respectively. On the basis of our data we hypothesize that this membrane network of parasite origin represents a novel secretory organelle that is involved in the trafficking of PfEMP1 across the erythrocyte cytoplasm.  相似文献   

20.
Glycosylphosphatidylinositol-anchored micronemal antigen (GAMA) is an erythrocyte binding protein known to be involved in malarial parasite invasion. Although anti-GAMA antibodies have been shown to block GAMA attachment to the erythrocyte surface and subsequently inhibit parasite invasion, little is known about the molecular mechanisms by which GAMA promotes the invasion process. In this study, LC-MS analysis was performed on the erythrocyte membrane to identify the specific receptor that interacts with GAMA. We found that ankyrin 1 and the band 3 membrane protein showed affinity for GAMA, and characterization of their binding specificity indicated that both Plasmodium falciparum and Plasmodium vivax GAMA bound to the same extracellular loop of band 3 (loop 5). In addition, we show the interaction between GAMA and band 3 was sensitive to chymotrypsin. Furthermore, antibodies against band 3 loop 5 were able to reduce the binding activity of GAMA to erythrocytes and inhibit the invasion of P. falciparum merozoites into human erythrocytes, whereas antibodies against P. falciparum GAMA (PfGAMA)-Tr3 only slightly reduced P. falciparum invasion. The identification and characterization of the erythrocyte GAMA receptor is a novel finding that identifies an essential mechanism of parasite invasion of host erythrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号