首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

Hepatic fibrosis is a dynamic process which ultimately leads to cirrhosis in almost patients with chronic hepatic injury. However, progressive fibrosis is a reversible scarring response. Activation of hepatic stellate cells (HSCs) is the prevailing process during hepatic fibrosis. Osthole is an active component majorly contained in the fruit of Cnidium monnieri (L.) Cusson. This present study investigated the therapeutic effects of osthole on rat liver fibrosis and HSC activation.

Results

We established the thioacetamide (TAA)-model of Sprague–Dawley (SD) rats to induce hepatic fibrosis. Rats were divided into three groups: control, TAA, and TAA + osthole (10 mg/kg). In vivo, osthole significantly reduced liver injury by diminishing levels of plasma AST and ALT, improving histological architecture, decreasing collagen and α-SMA accumulation, and improving hepatic fibrosis scores. Additionally, osthole reduced the expression of fibrosis-related genes significantly. Osthole also suppressed the production of fibrosis-related cytokines and chemokines. Moreover, nuclear translocation of p65 was significantly suppressed in osthole-treated liver. Osthole also ameliorated TAA-induced injury through reducing cellular oxidation. Osthole showed inhibitory effects in inflammation-related genes and chemokines production as well. In vitro, we assessed osthole effects in activated HSCs (HSC-T6 and LX-2). Osthole attenuated TGF-β1-induced migration and invasion in HSCs. Furthermore, osthole decreased TNF-α-triggered NF-κB activities significantly. Besides, osthole alleviated TGF-β1- or ET-1-induced HSCs contractility.

Conclusions

Our study demonstrated that osthole improved TAA-caused liver injury, fibrogenesis and inflammation in rats. In addition, osthole suppressed HSCs activation in vitro significantly.

Electronic supplementary material

The online version of this article (doi:10.1186/s12929-015-0168-5) contains supplementary material, which is available to authorized users.  相似文献   

3.
The endocannabinoid system (CS) has been implicated in the development of hepatic fibrosis such as schistosomiasis-associated liver fibrosis (SSLF). However, the mechanisms mediating the action of the CS in hepatic fibrosis are unclear. The present study hypothesized that Schistosoma J. infection upregulates cannabinoid receptor 1 (CB1) due to activation of NADPH oxidase leading to a fibrotic phenotype in hepatic stellate cells (HSCs). The SSLF model was developed by infecting mice with Schistosoma J. cercariae in the skin, and HSCs from control and infected mice were then isolated, cultured, and confirmed by analysis of HSC markers α-SMA and desmin. CB1 significantly increased in HSCs isolated from mice with SSLF, which was accompanied by a greater expression of fibrotic markers α-SMA, collagen I, and TIMP-1. CB1 upregulation and enhanced fibrotic changes were also observed in normal HSCs treated with soluble egg antigen (SEA) from Schistosoma J. Electron spin resonance (ESR) analysis further demonstrated that superoxide (O2) production was increased in infected HSCs or normal HSCs stimulated with SEA. Both Nox4 and Nox1 siRNA prevented SEA-induced upregulation of CB1, α-SMA, collagen I, and TIMP-1 by inhibition of O2 production, while CB1 siRNA blocked SEA-induced fibrotic changes without effect on O2 production in these HSCs. Taken together, these data suggest that the fibrotic activation of HSCs on Schistosoma J. infection or SEA stimulation is associated with NADPH oxidase-mediated redox regulation of CB1 expression, which may be a triggering mechanism for SSLF.  相似文献   

4.
Activation and migration of resident stellate cells (HSCs) within the hepatic space of Disse play an important role in hepatic fibrosis, which accounts for the increased numbers of activated HSCs in areas of inflammation during hepatic fibrosis. Currently, microRNAs have been found to play essential roles in HSC differentiation, proliferation, apoptosis, fat accumulation and collagen production. However, little is known about microRNA mediated HSC activation and migration. In this study, the miRNA expression profiles of quiescent HSCs, partially activated HSCs and fully activated HSCs were compared in pairs. Gene ontology (GO) and GO-Map network analysis indicated that the activation of HSCs was regulated by microRNAs. Among them miR-335 was confirmed to be significantly reduced during HSC activation by qRT-PCR, and restoring expression of miR-335 inhibited HSC migration and reduced α-SMA and collagen type I. Previous study revealed that tenascin-C (TNC), an extracellular matrix glycoprotein involved in cell migration, might be a target of miR-335. Therefore, we further studied the TNC expression in miR-335 over-expressed HSCs. Our data showed that exogenous TNC could enhance HSC migration in vitro and miR-335 restoration resulted in a significant inhibition of TNC expression. These results demonstrated that miR-335 restoration inhibited HSC migration, at least in part, via downregulating the TNC expression.  相似文献   

5.

Liver fibrosis, with the characterization of progressive accumulation of extracellular matrix (ECM), is the common pathologic feature in the process of chronic liver disease. Hepatic stellate cells (HSCs) which are activated and differentiate into proliferative and contractile myofibroblasts are recognized as the main drivers of fibrosis. Obesity-related adipocytokine dysregulation is known to accelerate liver fibrosis progression, but the direct fibrogenic effect of mature adipocytes on HSCs has been rarely reported. Therefore, the purpose of this study was to explore the fibrogenic effect of adipocyte 3T3-L1 cells on hepatic stellate LX-2 cells. The results showed that incubating LX-2 cells with the supernatant of 3T3-L1 adipocytes triggered the expression of ECM related proteins, such as α-smooth muscle actin (α-SMA), type I collagen (CO-I), and activated TGF β/Smad2/3 signaling pathway in LX-2 cells. In addition, 3T3-L1 cells inhibited insulin sensitivity, activated endoplasmic reticulum stress and autophagy to promote the development of fibrosis. These results supported the notion that mature adipocytes can directly activate hepatic stellate cells, and the establishment of an in vitro model of adipocytes on HSCs provides an insight into screening of drugs for liver diseases, such as nonalcoholic fatty liver disease.

  相似文献   

6.
This study investigated the pro-fibrogenic role of high mobility group box 1 (HMGB1) peptides in liver fibrogenesis. An animal model of carbon tetrachloride (CCl4)-induced liver fibrosis was used to examine the serum HMGB1 levels and its intrahepatic distribution. The increased serum HMGB1 levels were positively correlated with elevation of transforming growth factor-β1 (TGF-β1) and collagen deposition during fibrogenesis. The cytoplasmic distribution of HMGB1 was noted in the parenchymal hepatocytes of fibrotic livers. In vitro studies confirmed that exposure to hydrogen peroxide and CCl4 induced an intracellular mobilization and extracellular release of nuclear HMGB1 peptides in clone-9 and primary hepatocytes, respectively. An uptake of exogenous HMGB1 by hepatic stellate cells (HSCs) T6 cells indicated a possible paracrine action of hepatocytes on HSCs. Moreover, HMGB1 dose-dependently stimulated HSC proliferation, up-regulated de novo synthesis of collagen type I and α-smooth muscle actin (α-SMA), and triggered Smad2 phosphorylation and its nuclear translocation through a TGF-β1-independent mechanism. Blockade with neutralizing antibodies and gene silencing demonstrated the involvement of the receptor for advanced glycation end-products (RAGE), but not toll-like receptor 4, in cellular uptake of HMGB1 and the HMGB1-mediated Smad2 and ERK1/2 phosphorylation as well as α-SMA up-regulation in HSC-T6 cells. Furthermore, anti-RAGE treatment significantly ameliorated CCl4-induced liver fibrosis. In conclusion, the nuclear HMGB1 peptides released from parenchymal hepatocytes during liver injuries may directly activate HSCs through stimulating HSC proliferation and transformation, eventually leading to the fibrotic changes of livers. Blockade of HMGB1/RAGE signaling cascade may constitute a therapeutic strategy for treatment of liver fibrosis.  相似文献   

7.
During liver fibrosis, quiescent HSCs (qHSCs) are activated to become activated HSCs (aHSCs)/myofibroblasts. The signal adapter MyD88, an essential component of TLR signaling, plays an important role in liver fibrosis. However, far less is known about the specific effects of MyD88 signaling in both qHSCs and aHSCs in the progress of liver fibrosis. Here, we used a CCl4-induced mouse fibrosis model in which MyD88 was selectively depleted in qHSCs (GFAPMyD88−/− mice) or aHSCs (α-SMAMyD88−/− mice). MyD88 deficiency in qHSCs or aHSCs attenuated liver fibrosis in mice and inhibited α-SMA-positive cell activation. Inhibition of MyD88 in HSCs decreased α-SMA and collagen I levels, inflammatory cell infiltration, and pro-inflammatory gene expression. Furthermore, MyD88 signaling in HSCs increased the secretion of CXCL10, which promoted macrophage M1 polarization through CXCR3, leading to activation of the JAK/STAT1 pathway. Inhibition of CXCL10 attenuated macrophage M1 polarization and reduced liver fibrosis. Thus, MyD88 signaling in HSCs crucially contributes to liver fibrosis and provides a promising therapeutic target for the prevention and treatment of liver fibrosis.Subject terms: Mechanisms of disease, Kupffer cells  相似文献   

8.
李严严  姜颖 《生物工程学报》2014,30(7):1059-1072
肝星型细胞(Hepatic stellate cells,HSCs),又叫储脂细胞(Fat-storing cells,FSCs)或脂肪细胞(lipocytes),是肝脏固有的非实质细胞类型之一,存在于狄氏腔内,以脂滴的形式储存人体维生素A总量的50%–80%。原代HSCs分离方法,目前主要集中于密度梯度离心法结合离心淘洗、HSCs高侧向角的流式分选法、紫外激发的自发荧光或特异性抗体标记的流式细胞术等,将为HSCs生理和病理研究提供坚实的基础。近年来,HSCs的研究蓬勃发展,合作领域不断拓宽。生理状态下,HSCs处于静息状态,合成细胞外基质(Extracellular matrix,ECM)并维持其稳态,同时广泛摄取和储存维生素A,并具有调节肝细胞再生的功能;而病理状态下,HSCs在肝损伤和持续性刺激条件下被激活,增殖活性明显增强,脂滴减少或消失,ECM合成也明显增加,具有收缩性,同时分泌多种促炎因子和粘附分子,并向肌成纤维细胞转变,表明HSCs的活化是肝纤维化发生发展过程中的关键环节之一。有关HSCs的分离和功能研究一直是肝脏细胞学和肝脏病理学研究的热点之一。文中我们将系统总结和探讨HSCs的分离方法和改进策略,及其功能研究进展和具有潜在价值的研究方向。  相似文献   

9.
《Phytomedicine》2014,21(3):254-260
Hepatic stellate cells (HSCs) are the major cell type involved in the production of extracellular matrix in liver. After liver injury, HSCs undergo transdifferentiation process from quiescent state to activated state, which plays an important role in liver fibrosis. Previous studies have shown that thymoquinone (TQ) might have protective effect against liver fibrosis in animal models; however, the underlying mechanism of action is not fully understood. The aim of this study is to examine whether TQ has any direct effect on HSCs. Our results showed that pretreatment of mice with TQ has protective effect against CCl4-induced liver injury compared to control group (untreated), which is consistent with previous studies. Moreover, our in vivo study showed that COL1A1 and α-SMA mRNA levels were significantly downregulated by TQ treatment. Similarly, in vitro study confirmed that TQ downregulated COL1A1, COL3A1 and α-SMA mRNA levels in activated rat HSCs and LX2 cells, an immortalized human hepatic stellate cell line. Pretreatment with TQ also inhibited the LPS-induced proinflammatory response in LX2 cells as demonstrated by reduced mRNA expression of IL-6 and MCP-1. Mechanistically, inactivation of NF-κB pathway is likely to play a role in the TQ-mediated inhibition of proinflammatory response in HSCs. Finally, we have shown that TQ inhibited the culture-triggered transdifferentiation of freshly isolated rat HSCs as shown by significant downregulation of mRNA expression of several fibrosis-related genes. In conclusion, our study suggests that TQ has a direct effect on HSCs, which may contribute to its overall antifibrotic effect.  相似文献   

10.
A key event in chronic allergic asthma is the TGF-β-induced activation of fibroblasts into α-SMA-positive myofibroblasts which synthesize type-I collagen. In the present study we investigated the effect of the anti-fibrotic molecule BMP-7 in asthma. Balb/c mice were immunized i.p. with ovalbumin in alum and challenged every 2 days with ovalbumin aerosol (two or six challenges for acute and chronic protocols, respectively). The lung was evaluated for: α-SMA and type-I collagen by immunohistochemistry; BMP-7 and TGF- β1 gene expression by qRT-PCR; type-I collagen and Smads 2 and 3 by immunoblotting; mucus by PSA staining. Type-I collagen around bronchi, α-SMA, mucus secretion, TGF- β1 and BMP-7 gene expression were all increased in asthma. The TGF- β1/BMP-7 ratio was higher in the chronic group and correlated with higher levels of collagen. Fibroblasts isolated from asthmatic and healthy lungs produced type-I collagen upon stimulation with TGF- β1 via phosphorylation of Smad-2, Smad-3. Pre-treatment of the fibroblasts with BMP-7 reduced collagen production and Smads phosphorylation. Intranasal treatment of asthmatic mice with recombinant BMP-7 during the immunization protocol reduced lung inflammation and type I collagen deposition. These results suggest a protective role for BMP-7 in lung allergic inflammation, opposing the pro-fibrotic effects of TGF- β1.  相似文献   

11.
In the healthy adult liver, quiescent hepatic stellate cells (HSCs) present the major site for vitamin A storage in cytoplasmic lipid droplets. During liver injury due to viral infection or alcohol intoxication, HSCs get activated and produce high amounts of extracellular matrix components for tissue repair and fibrogenesis. Employing p19 ARF deficiency, we established a non-transformed murine HSC model to investigate their plasticity and the dynamics of HSC activation. Primary HSCs isolated from livers of adult p19 ARF null mice underwent spontaneous activation through long-term passaging without an obvious replicative limit. The immortalized cell line, referred to as M1-4HSC, showed stellate cell characteristics including the expression of desmin, glial fibrillary acidic protein, alpha-smooth muscle actin and pro-collagen I. Treatment of these non-tumorigenic M1-4HSC with pro-fibrogenic TGF-beta1 provoked a morphological transition to a myofibroblastoid cell type which was accompanied by enhanced cellular turnover and impaired migration. In addition, M1-4HSCs expressed constituents of cell adhesion complexes such as p120(ctn) and beta-catenin at cell borders, which dislocalized in the cytoplasm during stimulation to myofibroblasts, pointing to the epitheloid characteristics of HSCs. By virtue of its non-transformed phenotype and unlimited availability of cells, the p19(ARF) deficient model of activated HSCs and corresponding myofibroblasts render this system a highly valuable tool for studying the cellular and molecular basis of hepatic fibrogenesis.  相似文献   

12.
Hepatic stellate cells (HSCs) activation is a key step that promotes hepatic fibrosis. Emerging evidence suggests that aerobic glycolysis is one of its important metabolic characteristics. Our previous study has reported that CD147, a glycosylated transmembrane protein, contributes significantly to the activation of HSCs. However, whether and how it is involved in the aerobic glycolysis of HSCs activation is unknown. The objective of the present study was to validate the effect of CD147 in HSCs activation and the underlying molecular mechanism. Our results showed that the silencing of CD147 decreased the expression of α-smooth muscle-actin (α-SMA) and collagen I at both mRNA and protein levels. Furthermore, CD147 silencing decreased the glucose uptake, lactate production in HSCs, and repressed the lactate dehydrogenase (LDH) activity, the expression of hexokinase 2 (HK2), glucose transporter 1 (Glut1). The effect of galloflavin, a well-defined glycolysis inhibitor, was similar to CD147 siRNA. Mechanistically, CD147 silencing suppressed glycolysis-associated HSCs activation through inhibiting the hedgehog signaling. Moreover, the hedgehog signaling agonist SAG could rescue the above effect of CD147 silencing. In conclusion, CD147 silencing blockade of aerobic glycolysis via suppression of hedgehog signaling inhibited HSCs activation, suggesting CD147 as a novel therapeutic target for hepatic fibrosis.Supplementary InformationThe online version contains supplementary material available at 10.1007/s10616-021-00460-9.  相似文献   

13.
14.
Persistent hepatic damage and chronic inflammation in liver activate the quiescent hepatic stellate cells (HSCs) and cause hepatic fibrosis (HF). Several microRNAs regulate the activation and proliferation of HSCs, thereby playing a critical role in HF progression. Previous studies have reported that miR-188-5p is dysregulated during the process of HF. However, the role of miR-188-5p in HF remains unclear. This study investigated the potential role of miR-188-5p in HSCs and HF. Firstly, we validated the miR-188-5p expression in primary cells isolated from liver of carbon tetrachloride (CCl4)-induced mice, TGF-β1-induced LX-2 cells, livers from 6-month high-fat diet (HFD)-induced rat and 4-month HFD-induced mice NASH models, and human non-alcoholic fatty liver disease (NAFLD) patients. Furthermore, we used miR-188-5p inhibitors to investigate the therapeutic effects of miR-188-5p inhibition in the HFD + CCl4 induced in vivo model and the potential role of miR-188-5p in the activation and proliferation of HSCs. This present study reported that miR-188-5p expression is significantly increased in the human NAFLD, HSCs isolated from liver of CCl4 induced mice, and in vitro and in vivo models of HF. Mimicking the miR-188-5p resulted in the up-regulation of HSC activation and proliferation by directly targeting the phosphatase and tensin homolog (PTEN). Moreover, inhibition of miR-188-5p reduced the activation and proliferation markers of HSCs through PTEN/AKT pathway. Additionally, in vivo inhibition of miR-188-5p suppressed the HF parameters, pro-fibrotic and pro-inflammatory genes, and fibrosis. Collectively, our results uncover the pro-fibrotic role of miR-188-5p. Furthermore, we demonstrated that miR-188-5p inhibition decreases the severity of HF by reducing the activation and proliferation of HSCs through PTEN/AKT pathway.  相似文献   

15.
16.
An extremely dense fibrosis is responsible for the main complications of alveolar echinococcosis (AE), a severe parasitic disease due to the development in the liver of a larval form of the cestode Echinococcus multilocularis. Immunotyping of collagens present in fibrous, granulomatous, and normal areas of the liver was performed in nine patients with AE. Immunofluorescent labelling of collagen types showed that dense fibrosis was entirely composed of thick bundles of type I and type III collagens, surrounding old parasitic vesicles with an autofluorescent laminated layer. In granulomatous areas, collagens were labelled as clusters consisting mainly of type III procollagen and collagen. Concentric bundles of type III collagen surrounded active parasitic vesicles. An enhancement of the normal labelling in portal spaces of the intact liver was present in all the patients. These results suggest that irreversible acellular keloid scar-like fibrosis observed in AE is the ultimate result of cytotoxic and fibrogenetic events related to the immune response of the host which are taking place initially in the granulomatous area surrounding the young parasite larvae.  相似文献   

17.
MicroRNAs (miRNAs) participate in the regulation of cellular functions including proliferation, apoptosis, and migration. It has been previously shown that the miR-29 family is involved in regulating type I collagen expression by interacting with the 3′UTR of its mRNA. Here, we investigated the roles of miR-29b in the activation of mouse primary-cultured hepatic stellate cells (HSCs), a principal collagen-producing cell in the liver. Expression of miR-29b was found to be down-regulated during HSC activation in primary culture. Transfection of a miR-29b precursor markedly attenuated the expression of Col1a1 and Col1a2 mRNAs and additionally blunted the increased expression of α-SMA, DDR2, FN1, ITGB1, and PDGFR-β, which are key genes involved in the activation of HSCs. Further, overexpression of miR-29b led HSCs to remain in a quiescent state, as evidenced by their quiescent star-like cell morphology. Although phosphorylation of FAK, ERK, and Akt, and the mRNA expression of c-jun was unaffected, miR-29b overexpression suppressed the expression of c-fos mRNA. These results suggested that miR-29b is involved in the activation of HSCs and could be a candidate molecule for suppressing their activation and consequent liver fibrosis.  相似文献   

18.
Duan YN  Qian HY  Qin YW  Zhu DD  He XX  Zhou Q  Yang YN  Bao J  Feng JR  Sun W  Chen JL 《Parasitology》2011,138(8):1003-1010
n order to investigate the dynamics of Septin4 (Sept4) expression and its function in the formation of fibrotic livers in mice infected with Schistosoma japonicum, we constructed the mouse model of S. japonicum egg-induced liver fibrosis for 24 weeks. Immunohistochemical staining, qRT-PCR and Western blot were used to detect the expression of Sept4 and α-smooth muscle actin (α-SMA). We found Sept4 localized in the perisinusoidal space where hepatic stellate cells (HSCs) distribute in the periphery of circumoval granulomas and the portal venule. The expression of Sept4 and α-SMA had a similar significant tendency of an up-regulation to a peak at 12 weeks post-infection (p.i.) followed by a down-regulation. At 24 weeks p.i. both were at a low level. These results suggest that Sept4 and α-SMA may interact together in HSCs. Based on this evidence, we hypothesize that Sept4 seems to be involved in the formation of inflammatory granulomata and subsequent liver fibrosis by regulating HSCs activation.  相似文献   

19.
《Cytotherapy》2014,16(8):1132-1144
BackgroundIntravenous infusion of human amniotic epithelial cells (hAECs) has been shown to ameliorate hepatic fibrosis in murine models. Hepatic stellate cells (HSCs) are the principal collagen-secreting cells in the liver. The aim of this study was to investigate whether factors secreted by hAECs and present in hAEC-conditioned medium (CM) have anti-fibrotic effects on activated human HSCs.MethodsHuman AECs were isolated from the placenta and cultured. Human hepatic stellate cells were exposed to hAEC CM to determine potential anti-fibrotic effects.ResultsHSCs treated for 48 h with hAEC CM displayed a significant reduction in the expression of the myofibroblast markers α-smooth muscle actin and platelet-derived growth factor. Expression of the pro-fibrotic cytokine transforming growth factor-β1 (TGF-β1) and intracellular collagen were reduced by 45% and 46%, respectively. Human AEC CM induced HSC apoptosis in 11.8% of treated cells and reduced HSC proliferation. Soluble human leukocyte antigen–G1, a hAEC-derived factor, significantly decreased TGF-β1 and collagen production in activated HSCs, although the effect on collagen production was less than that of hAEC CM. The reduction in collagen and TGF-B1 could not be attributed to PGE2, relaxin, IL-10, TGF-B3, FasL or TRAIL.ConclusionsHuman AEC CM treatment suppresses markers of activation, proliferation and fibrosis in human HSCs as well as inducing apoptosis and reducing proliferation. Human AEC CM treatment may be effective in ameliorating liver fibrosis and warrants further study.  相似文献   

20.

Background

Chronic liver disease is becoming a major cause of morbidity and mortality worldwide. During liver injury, hepatic stellate cells (HSCs) trans-differentiate into activated myofibroblasts, which produce extracellular matrix.Succinate and succinate receptor (G-protein coupled receptor91, GPR91) signaling pathway has now emerged as a regulator of metabolic signaling. A previous study showed that succinate and its specific receptor, GPR91, are involved in the activation of HSCs and the overexpression of α-smooth muscle actin (α-SMA).Metformin, a well-known anti-diabetic drug, inhibits hepatic gluconeogenesis in the liver. Many studies have shown that metformin not only prevented, but also reversed, steatosis and inflammation in a nonalcoholic steatohepatitis (NASH) animal model. However, the role of metformin in HSC activation and succinate-GPR91 signaling has not been clarified.

Methods

The immortalized human HSCs, LX-2?cells, were used for the in vitro study. For the in vivo study, male C57BL/J6 mice were randomly divided into 3 groups and were fed with a methionine-choline-deficient diet (MCD diet group) as a nonalcoholic steatohepatitis (NASH) mouse model with or without 0.1% metformin for 12 weeks, or were fed a control methionine-choline-sufficient diet (MCS diet group).

Results

In our study, metformin and 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside (AICAR), which is an analog of adenosine monophosphate, were shown to suppress α-SMA expression via enhanced phosphorylation of AMP-activated protein kinase (AMPK) and inhibition of succinate-GPR91 signaling in activated LX-2?cells induced by palmitate- or succinate. Metformin and AICAR also reduced succinate concentration in the cell lysates when LX-2?cells were treated with palmitate. Moreover, metformin and AICAR reduced interleukin-6 and, transforming growth factor-β1 production in succinate-treated LX-2?cells. Both metformin and AICAR inhibited succinate-stimulated HSC proliferation and cell migration.Mice fed a MCD diet demonstrated increased steatohepatitis and liver fibrosis compared to that of mice fed control diet. Metformin ameliorated steatohepatitis, liver fibrosis, inflammatory cytokine production and decreased α -SMA and GPR91expression in the livers of the MCD diet-fed mice.

Conclusion

This study shows that metformin can attenuate activation of HSCs by activating the AMPK pathway and inhibiting the succinate-GPR91 pathway. Metformin has therapeutic potential for treating steatohepatitis and liver fibrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号