首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fisheries catches worldwide have shown no increase over the last two decades, while aquaculture has been booming. To cover the demand for fish in the growing human population, continued high growth rates in aquaculture are needed. A potential constraint to such growth is infectious diseases, as disease transmission rates are expected to increase with increasing densities of farmed fish. Using an extensive dataset from all farms growing salmonids along the Norwegian coast, we document that densities of farmed salmonids surrounding individual farms have a strong effect on farm levels of parasitic sea lice and efforts to control sea lice infections. Furthermore, increased intervention efforts have been unsuccessful in controlling elevated infection levels in high salmonid density areas in 2009-2010. Our results emphasize host density effects of farmed salmonids on the population dynamics of sea lice and suggest that parasitic sea lice represent a potent negative feedback mechanism that may limit sustainable spatial densities of farmed salmonids.  相似文献   

2.
Infectious diseases can cause population declines and even extinctions. The amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), has caused population declines and extinctions in amphibians on most continents. In the tropics, research on the dynamics of this disease has focused on amphibian populations in mountainous areas. In most of these areas, high and low elevation sites are connected by an assemblage of streams that may transport the infectious stage of the pathogen from high to low elevations, and, also, this pathogen, which grows well at cool temperatures, may persist better in cooler water flowing from high elevations. Thus, the dynamics of disease at low elevation sites without aquatic connections to higher elevation sites, i.e., non-contiguous low elevation sites, may differ from dynamics at contiguous low elevation sites. We sampled adult common mistfrogs (Litoria rheocola) at six sites of three types: two at high (> 400m) elevations, two at low elevations contiguous with high elevation streams, and two at low elevations non-contiguous with any high elevation site. Adults were swabbed for Bd diagnosis from June 2010 to June 2011 in each season, over a total of five sampling periods. The prevalence of Bd fluctuated seasonally and was highest in winter across all site types. Site type significantly affected seasonal patterns of prevalence of Bd. Prevalence remained well above zero throughout the year at the high elevation sites. Prevalence declined to lower levels in contiguous low sites, and reached near-zero at non-contiguous low sites. Patterns of air temperature fluctuation were very similar at both the low elevation site types, suggesting that differences in water connectivity to high sites may have affected the seasonal dynamics of Bd prevalence between contiguous and non-contiguous low elevation site types. Our results also suggest that reservoir hosts may be important in the persistence of disease at low elevations.  相似文献   

3.
Fishes farmed in sea pens may become infested by parasites from wild fishes and in turn become point sources for parasites. Sea lice, copepods of the family Caligidae, are the best-studied example of this risk. Sea lice are the most significant parasitic pathogen in salmon farming in Europe and the Americas, are estimated to cost the world industry €300 million a year and may also be pathogenic to wild fishes under natural conditions.Epizootics, characteristically dominated by juvenile (copepodite and chalimus) stages, have repeatedly occurred on juvenile wild salmonids in areas where farms have sea lice infestations, but have not been recorded elsewhere. This paper synthesizes the literature, including modelling studies, to provide an understanding of how one species, the salmon louse, Lepeophtheirus salmonis, can infest wild salmonids from farm sources. Three-dimensional hydrographic models predicted the distribution of the planktonic salmon lice larvae best when they accounted for wind-driven surface currents and larval behaviour. Caligus species can also cause problems on farms and transfer from farms to wild fishes, and this genus is cosmopolitan. Sea lice thus threaten finfish farming worldwide, but with the possible exception of L. salmonis, their host relationships and transmission adaptations are unknown. The increasing evidence that lice from farms can be a significant cause of mortality on nearby wild fish populations provides an additional challenge to controlling lice on the farms and also raises conservation, economic and political issues about how to balance aquaculture and fisheries resource management.  相似文献   

4.
Opportunist saprotrophic pathogens differ from obligatory pathogens due to their capability in host-independent growth in environmental reservoirs. Thus, the outside-host environment potentially influences host-pathogen dynamics. Despite the socio-economical importance of these pathogens, theory on their dynamics is practically missing. We analyzed a novel epidemiological model that couples outside-host density-dependent growth to host-pathogen dynamics. Parameterization was based on columnaris disease, a major hazard in fresh water fish farms caused by saprotrophic Flavobacterium columnare. Stability analysis and numerical simulations revealed that the outside-host growth maintains high proportion of infected individuals, and under some conditions can drive host extinct. The model can show stable or cyclic dynamics, and the outside-host growth regulates the frequency and intensity of outbreaks. This result emerges because the density-dependence stabilizes dynamics. Our analysis demonstrates that coupling of outside-host growth and traditional host-pathogen dynamics has profound influence on disease prevalence and dynamics. This also has implications on the control of these diseases.  相似文献   

5.
Conservation management of wild fish may include fish health management in sympatric populations of domesticated fish in aquaculture. We developed a mathematical model for the population dynamics of parasitic sea lice (Lepeophtheirus salmonis) on domesticated populations of Atlantic salmon (Salmo salar) in the Broughton Archipelago region of British Columbia. The model was fit to a seven-year dataset of monthly sea louse counts on farms in the area to estimate population growth rates in relation to abiotic factors (temperature and salinity), local host density (measured as cohort surface area), and the use of a parasiticide, emamectin benzoate, on farms. We then used the model to evaluate management scenarios in relation to policy guidelines that seek to keep motile louse abundance below an average three per farmed salmon during the March–June juvenile wild Pacific salmon (Oncorhynchus spp.) migration. Abiotic factors mediated the duration of effectiveness of parasiticide treatments, and results suggest treatment of farmed salmon conducted in January or early February minimized average louse abundance per farmed salmon during the juvenile wild salmon migration. Adapting the management of parasites on farmed salmon according to migrations of wild salmon may therefore provide a precautionary approach to conserving wild salmon populations in salmon farming regions.  相似文献   

6.
Although increased disease severity driven by intensive farming practices is problematic in food production, the role of evolutionary change in disease is not well understood in these environments. Experiments on parasite evolution are traditionally conducted using laboratory models, often unrelated to economically important systems. We compared how the virulence, growth and competitive ability of a globally important fish pathogen, Flavobacterium columnare, change under intensive aquaculture. We characterized bacterial isolates from disease outbreaks at fish farms during 2003–2010, and compared F. columnare populations in inlet water and outlet water of a fish farm during the 2010 outbreak. Our data suggest that the farming environment may select for bacterial strains that have high virulence at both long and short time scales, and it seems that these strains have also evolved increased ability for interference competition. Our results are consistent with the suggestion that selection pressures at fish farms can cause rapid changes in pathogen populations, which are likely to have long-lasting evolutionary effects on pathogen virulence. A better understanding of these evolutionary effects will be vital in prevention and control of disease outbreaks to secure food production.  相似文献   

7.
The exact relationship between disease incidence in aquatic organisms and environmental pollution is not well defined. A number of mechanisms by which aquatic pollutants may act to increase disease incidence in fish have been speculated, many suggesting immunosuppression as a link in the etiology of disease among fishes in highly contaminated areas. This article will review the effects of metal pollutants on the immune responses of fish by examining in vitro and in vivo laboratory studies carried out since 1980. It will also describe how those alterations may be responsible for pollution-associated diseases in directly exposed fish. While a large number of environmental contaminants represent aquatic pollutants of concern (e.g. polycyclic aromatic hydrocarbons, chlorinated organics, and pesticides), heavy metals were selected as the pollutants for this review because of their: (a) prevalence in polluted aquatic environments; (b) immunotoxic potential in mammalian systems; (c) ability to induce tumors in exposed rodents; and (d) their overall toxicity in a variety of species. It can be concluded that a number of heavy metal pollutants shown to be immunotoxic in mammalian systems, including cadmium, chromium, copper, lead, manganese, nickel, and zic, also alter immunoregulatory functions in a variety of fish species. These alterations may ultimately lead to increased host susceptibility to infectious and malignant diseases in fish inhabiting heavy metal-contaminated waters.  相似文献   

8.

Background

Declining water quality coupled with the effects of climate change are rapidly increasing coral diseases on reefs worldwide, although links between coral diseases and environmental parameters remain poorly understood. This is the first study to document a correlation between coral disease and water quality on an inshore reef.

Methodology/Principal Findings

The temporal dynamics of the coral disease atramentous necrosis (AN) was investigated over two years within inshore populations of Montipora aequituberculata in the central Great Barrier Reef, in relation to rainfall, salinity, temperature, water column chlorophyll a, suspended solids, sedimentation, dissolved organic carbon, and particulate nitrogen, phosphorus and organic carbon. Overall, mean AN prevalence was 10-fold greater during summer wet seasons than winter dry seasons. A 2.5-fold greater mean disease abundance was detected during the summer of 2009 (44 ± SE 6.7 diseased colonies per 25 m2), when rainfall was 1.6-fold greater than in the summer of 2008. Two water quality parameters explained 67% of the variance in monthly disease prevalence in a Partial Least Squares regression analysis; disease abundance was negatively correlated with salinity (R2 = −0.6) but positively correlated with water column particulate organic carbon concentration (R2 = 0.32). Seasonal temperature patterns were also positively correlated with disease abundance, but explained only a small portion of the variance.

Conclusions/Significance

The results suggest that rainfall and associated runoff may facilitate seasonal disease outbreaks, potentially by reducing host fitness or by increasing pathogen virulence due to higher availability of nutrients and organic matter. In the future, rainfall and seawater temperatures are likely to increase due to climate change which may lead to decreased health of inshore reefs.  相似文献   

9.
Antibiotics are widely used to improve human and animal health and treat infections. Antibiotics are often used in livestock farms and fisheries to prevent diseases and promote growth. Recently, there has been increasing interest in the presence of antibiotics in aquatic environments. Low levels of antibiotic components are frequently detected in surface water, seawater, groundwater, and even drinking water. Antibiotics are consistently and continually discharged into the natural environment as parent molecules or metabolites, which are usually soluble and bioactive, and this results in a pseudo and persistent pollution. The effects of environmental antibiotic toxicity on non-target organisms, especially aquatic organisms, have become an increasing concern. Although antibiotics have been detected worldwide, their ecological and developmental effects have been poorly investigated, particularly in non-target organisms. This review describes the toxicity and underlying mechanism of antibiotic contamination in aquatic organisms, including the effects on vertebrate development. A considerable number of antibiotic effects on aquatic organisms have been investigated using acute toxicity assays, but only very little is known about the long-term effects. Aquatic photosynthetic autotrophs, such as Pseudokirchneriella subcapitata, Anabaena flos-aquae, and Lemna minor, were previously used for antibiotic toxicity tests because of low cost, simple operation, and high sensitivity. Certain antibiotics show a different degree of potency in algal toxicity tests on the basis of different test algae. Antibiotics inhibit protein synthesis, chloroplast development, and photosynthesis, ultimately leading to growth inhibition; some organisms exhibit growth stimulation at certain antibiotic concentrations. Daphnia magna and other aquatic invertebrates have also been used for checking the toxicity priority of antibiotics. When investigating the acute effect of antibiotics (e.g., growth inhibition), concentrations in standard laboratory organisms are usually about two or three orders of magnitude higher than the maximal concentrations in the aquatic environment, resulting in the underestimation of antibiotic hazards. Vertebrate organisms show a promising potential for chronic toxicity and potentially subtle effects of antibiotics, particularly on biochemical processes and molecular targets. The adverse developmental effects of macrolides, tetracyclines, sulfonamides, quinolones, and other antibiotic groups have been evaluated in aquatic vertebrates such as Danio rerio and Xenopus tropicalis. In acute toxicity tests, low levels of antibiotics have systematic teratogenic effects on fish. The effects of antibiotics on oxidative stress enzymes and cytochrome P450 have been investigated. Cytotoxicity, neurotoxicity, and genotoxicity have been observed for certain antibiotic amounts. However, there are no firm conclusions regarding the chronic toxicity of antibiotics at environmentally relevant levels because of the lack of long-term exposure studies. Herein, future perspectives and challenges of antibiotic toxicology were discussed. Researchers should pay more attention to the following points: chronic toxicity and potentially subtle effects of environmentally relevant antibiotics on vertebrates; effects of toxicity on biochemical processes and mode of action; combined toxicity of antibiotics and other antibiotics, metabolites, and heavy metals; and environmental factors such as temperature and pH.  相似文献   

10.
Opisthorchiasis, together with its associated cholangiocarcinoma, is one of the most important human parasitic diseases on continental Southeast Asia. A great deal of epidemiological data from humans is available on this disease, particularly from the northeast of Thailand, however, only limited information is available on those aspects of the life cycle relating to its Bithynia (Gastropoda) and cyprinid fish intermediate hosts. Here we review the information which is available on the Bithynia hosts of Opisthorchis viverrini. Only one major ecological study has been carried out at one site on a single species of Bithynia. We show not only that detailed ecological studies are required to clarify the epidemiology of opisthorchiasis, but also that the taxonomic status of the Bithynia species transmitting O. viverrini requires clarification.  相似文献   

11.
P Ghittino 《Parassitologia》1979,21(1-3):27-33
The speaker commented on the chief problems of parasitology found in Italian fresh water fish farms (troutfarming) and warm water pond farms (eel-, catfish-, cyprinids-, lagoo-fishfarmings). He discussed the most common fish losses connected in Italy with the diseases due to protozoans, worms, and crustaceans. The not yet solved and serious uncertainities which need priority in the research are, according to the speaker, the control of the amebiasis of hatchery rainbow trout, the incysted icthyophtiriasis of various fresh water fishes, the rainbow trout myxosomiasis (Whirling disease), and the argulosis of eel reared in brackish water lagoons. He concluded by emphasizing the need of a larger interest by Italian scientists on parasitic diseases of farmed fish. Without knowing and controlling them, it will be hard to program viable acquaculture industries.  相似文献   

12.
Saprolegniosis, the disease caused by Saprolegnia sp., results in considerable economic losses in aquaculture. Current control methods are inadequate, as they are either largely ineffective or present environmental and fish health concerns. Vaccination of fish presents an attractive alternative to these control methods. Therefore we set out to identify suitable antigens that could help generate a fish vaccine against Saprolegnia parasitica. Unexpectedly, antibodies against S. parasitica were found in serum from healthy rainbow trout, Oncorhynchus mykiss. The antibodies detected a single band in secreted proteins that were run on a one-dimensional SDS-polyacrylamide gel, which corresponded to two protein spots on a two-dimensional gel. The proteins were analysed by liquid chromatography tandem mass spectrometry. Mascot and bioinformatic analysis resulted in the identification of a single secreted protein, SpSsp1, of 481 amino acid residues, containing a subtilisin domain. Expression analysis demonstrated that SpSsp1 is highly expressed in all tested mycelial stages of S. parasitica. Investigation of other non-infected trout from several fish farms in the United Kingdom showed similar activity in their sera towards SpSsp1. Several fish that had no visible saprolegniosis showed an antibody response towards SpSsp1 suggesting that SpSsp1 might be a useful candidate for future vaccination trial experiments.  相似文献   

13.
Saprolegnia species are destructive pathogens to many aquatic organisms and are found in most parts of the world. Reports based on phylogenetic analysis suggest that Saprolegnia strains isolated from aquatic animals such as crustaceans and frogs are close to Saprolegnia strains isolated from infected fish or fish eggs and vice versa. However, it has often been assumed that host specificity occurs for each individual isolate or strain. Here we demonstrate that Saprolegnia spp. can have multiple hosts and are thus capable of infecting different aquatic organisms. Saprolegnia delica, Saprolegnia hypogyna, and 2 strains of Saprolegnia diclina were isolated from aquatic insects and amphipods while S. delica, Saprolegnia ferax, Pythium pachycaule, and a Pythium sp. were isolated from the water of a medium to fast flowing river. The ITS region of the rRNA gene was sequenced for all isolates. In challenge experiments, all four isolates from insects were found to be highly pathogenic to eggs of Atlantic salmon (Salmo salar) and embryos of the African clawed frog (Xenopus laevis). We found that Saprolegnia spp. isolated from salmon eggs were also able to successfully establish infection in nymphs of stonefly (Perla bipunctata) and embryos of X. laevis). These results suggest that Saprolegnia spp. are capable of infecting multiple hosts, which may give them an advantage during seasonal variation in their natural environments.  相似文献   

14.
Fish-borne parasites have been part of the global landscape of food-borne zoonotic diseases for many decades and are often endemic in certain regions of the world. The past 20 years or so have seen the expansion of the range of fish-borne parasitic zoonoses to new geographic regions leading to a substantial public health burden. In this article, we summarize current knowledge about the biology, epidemiology, clinical characteristics, diagnosis, treatment and control of selected fish-borne helminthic diseases caused by parasitic roundworm (Anisakis), tapeworm (Dibothriocephalus), and fluke (Metagonimus). Humans acquire infection via consumption of raw or improperly cooked fish or fish products. The burden from these diseases is caused by morbidity rather than mortality. Infected patients may present with mild to severe gastrointestinal (eg, abdominal pain, diarrhea, and indigestion) or allergic manifestations. Patients are often admitted to the hospital or clinic with acute symptoms and no prior health problems and no travel history. Diagnosis is often established based on the detection of the diagnostic parasite stages (eg, eggs or tapeworm segments) in the patient’s feces. Sometimes imaging is required to exclude other causes and avoid unnecessary surgery. Dibothriocephalus and Metagonimus are mainly treated with praziquantel. Extraction of adult Dibothriocephalus or Anisakis larvae from the bowel ensures complete elimination of the parasites and prevents a relapse of infection. The development and implementation of more efficient food safety and public health strategies to reduce the burden of zoonotic diseases attributable to fish-borne parasites is highly desirable.  相似文献   

15.
Water moulds (oomycetes) of the order Saprolegniales, such as Saprolegnia and Aphanomyces species, are responsible for devastating infections on fish in aquaculture, fish farms and hobby fish tanks. Members of the genus Saprolegnia cause Saprolegniosis, a disease that is characterised by visible white or grey patches of filamentous mycelium on the body or fins of freshwater fish. Up till 2002, Saprolegnia infections in aquaculture were kept under control with malachite green, an organic dye that is very efficient at killing the pathogen. However, the use of malachite green has been banned worldwide due to its carcinogenic and toxicological effects and this has resulted in a dramatic re-emergence of Saprolegnia infections in aquaculture. As a consequence Saprolegnia parasitica is now, economically, a very important fish pathogen, especially on catfish, salmon and trout species, and warrants further investigation to develop new alternative control strategies.  相似文献   

16.
Despite the existence of effective anthelmintics, parasitic infections remain a major public health problem in Southeast Asia, including Thailand. In rural communities, continuing infection is often reinforced by dietary habits that have a strong cultural basis and by poor personal hygiene and sanitation. This study presents a survey of the prevalence of intestinal parasitic infections among the people in rural Thailand. The community-based cross-sectional study was conducted in villages in Khon Kaen Province, northeastern Thailand, from March to August 2013. A total of 253 stool samples from 102 males and 140 females, aged 2-80 years, were prepared using formalin-ethyl acetate concentration methods and examined using light microscopy. Ninety-four individuals (37.2%) were infected with 1 or more parasite species. Presence of parasitic infection was significantly correlated with gender (P=0.001); nearly half of males in this survey (49.0%) were infected. Older people had a higher prevalence than younger members of the population. The most common parasite found was Opisthorchis viverrini (26.9%), followed by Strongyloides stercoralis (9.5%), Taenia spp. (1.6%), echinostomes (0.4%), and hookworms (0.4%). The prevalence of intestinal protozoa was Blastocystis hominis 1.6%, Entamoeba histolytica 0.8%, Entamoeba coli 0.8%, Balantidium coli 0.4%, Iodamoeba bütschlii 0.4%, and Sarcocystis hominis 0.4%. Co-infections of various helminths and protozoa were present in 15.9% of the people. The present results show that the prevalence of parasitic infections in this region is still high. Proactive education about dietary habits, personal hygiene, and sanitation should be provided to the people in this community to reduce the prevalence of intestinal parasite infections. Moreover, development of policies and programs to control parasites is needed.  相似文献   

17.
Microcotyle sebastis is a gill monogenean ectoparasite that causes serious problems in the mariculture of the Korean rockfish, Sebastes schlegelii. In this study, we isolated the parasite from fish farms along the coasts of Tongyeong, South Korea in 2016, and characterized its infection, morphology and molecular phylogeny. The prevalence of M. sebastis infection during the study period ranged from 46.7% to 96.7%, and the mean intensity was 2.3 to 31.4 ind./fish, indicating that the fish was constantly exposed to parasitic infections throughout the year. Morphological observations under light and scanning electron microscopes of the M. sebastis isolates in this study showed the typical characteristics of the anterior prohaptor and posterior opisthaptor of monogenean parasites. In phylogenetic trees reconstructed using the nuclear 28S ribosomal RNA gene and the mitochondrial cytochrome c oxidase I gene (cox1), they consistently clustered together with their congeneric species, and showed the closest phylogenetic relationships to M. caudata and M. kasago in the cox1 tree.  相似文献   

18.
Remote sensing is a promising technique for monitoring the distribution and dynamics of various vector-borne diseases. In this study, we used the multi-temporal CBERS images, obtained free of charge, to predict the habitats of the snail Oncomelania hupensis, the sole intermediate host of schistosomiasis japonica, a snail-borne parasitic disease of considerable public health in China. Areas of suitable snail habitats were identified based on the normalized difference vegetation index (NDVI) and the normalized difference water index (NDWI), and the predictive model was tested against sites (snails present or absent) that were surveyed directly for O. hupensis. The model performed well (sensitivity and specificity were 63.64% and 78.09%, respectively), and with further development, we may provide an accurate, inexpensive tool for the broad-scale monitoring and control of schistosomiasis, and other similar vector-borne diseases.  相似文献   

19.
The ecological impact of parasite transmission from fish farms is probably mediated by the migration of wild fishes, which determines the period of exposure to parasites. For Pacific salmon and the parasitic sea louse, Lepeophtheirus salmonis, analysis of the exposure period may resolve conflicting observations of epizootic mortality in field studies and parasite rejection in experiments. This is because exposure periods can differ by 2–3 orders of magnitude, ranging from months in the field to hours in experiments. We developed a mathematical model of salmon–louse population dynamics, parametrized by a study that monitored naturally infected juvenile salmon held in ocean enclosures. Analysis of replicated trials indicates that lice suffer high mortality, particularly during pre-adult stages. The model suggests louse populations rapidly decline following brief exposure of juvenile salmon, similar to laboratory study designs and data. However, when the exposure period lasts for several weeks, as occurs when juvenile salmon migrate past salmon farms, the model predicts that lice accumulate to abundances that can elevate salmon mortality and depress salmon populations. The duration of parasite exposure is probably critical to salmon–louse population dynamics, and should therefore be accommodated in coastal planning and management where fish farms are situated on wild fish migration routes.  相似文献   

20.
Anisakiasis, a human infection of Anisakis L3 larvae, is one of the common foodborne parasitic diseases in Korea. Studies on the identification of anisakid larvae have been performed in the country, but most of them have been focused on morphological identification of the larvae. In this study, we analyzed the molecular characteristics of 174 Anisakis type I larvae collected from 10 species of fish caught in 3 different sea areas in Korea. PCR-RFLP and sequence analyses of rDNA ITS and mtDNA cox1 revealed that the larvae showed interesting distribution patterns depending on fish species and geographical locations. Anisakis pegreffii was predominant in fish from the Yellow Sea and the South Sea. Meanwhile, both A. pegreffii and A. simplex sensu stricto (A. simplex s.str.) larvae were identified in fish from the East Sea, depending on fish species infected. These results suggested that A. pegreffii was primarily distributed in a diverse species of fish in 3 sea areas around Korea, but A. simplex s.str. was dominantly identified in Oncorhynchus spp. in the East Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号