首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasmodium knowlesi is a malaria parasite of Old World monkeys and is infectious to humans. In this study Macaca fascicularis was used as a model to understand the host response to P. knowlesi using parasitological and haematological parameters. Three M. fascicularis of either sex were experimentally infected with P. knowlesi erythrocytic parasites from humans. The pre-patent period for P. knowlesi infection in M. fascicularis ranged from seven to 14 days. The parasitemia observed was 13,686-24,202 parasites per μL of blood for asexual stage and 88-264 parasites per μL of blood for sexual stage. Periodicity analysis adopted from microfilaria periodicity technique of asexual stage showed that the parasitemia peak at 17:39 h while the sexual stage peaked at 02:36 h. Mathematical analysis of the data indicates that P. knowlesi gametocytes tend to display periodicity with a peak (24:00-06:00) that coincides with the peak biting activity (19:00-06:00) of the local vector, Anopheles latens. The morphology of P. knowlesi resembled P. falciparum in early trophozoite and P. malariae in late trophozoite. However, it may be distinguishable by observing the appliqué appearance of the cytoplasm and the chromatin lying inside the ring. Haematological analysis on macaques with knowlesi malaria showed clinical manifestations of hypoglycaemia, anaemia and hyperbilirubinemia. Gross examination of spleen and liver showed malaria pigments deposition in both organs.  相似文献   

2.
The invasion of red blood cells (RBCs) is an essential event in the life cycle of all malaria-causing Plasmodium parasites; however, there are major gaps in our knowledge of this process. Here, we use video microscopy to address the kinetics of RBC invasion in the human malaria parasite Plasmodium falciparum. Under in vitro conditions merozoites generally recognise new target RBCs within 1 min of their release from their host RBC. Parasite entry ensues and is complete on average 27.6 s after primary contact. This period can be divided into two distinct phases. The first is an ∼11 s ‘pre-invasion’ phase that involves an often dramatic RBC deformation and recovery process. The second is the classical ‘invasion’ phase where the merozoite becomes internalised within the RBC in a ∼17 s period. After invasion, a third ‘echinocytosis’ phase commences when about 36 s after every successful invasion a dramatic dehydration-type morphology was adopted by the infected RBC. During this phase, the echinocytotic effect reached a peak over the next 23.4 s, after which the infected RBC recovered over a 5-11 min period. By then the merozoite had assumed an amoeboid-like state and was apparently free in the cytoplasm. A comparison of our data with that of an earlier study of the distantly related primate parasite Plasmodium knowlesi indicated remarkable similarities, suggesting that the kinetics of invasion are conserved across the Plasmodium genus. This study provides a morphological and kinetic framework onto which the invasion-associated physiological and molecular events can be overlaid.  相似文献   

3.
Plasmodium falciparum, the causative agent of human malaria, is totally dependent on de novo pyrimidine biosynthetic pathway. A gene encoding P. falciparum dihydroorotase (pfDHOase) was cloned and expressed in Escherichia coli as monofunctional enzyme. PfDHOase revealed a molecular mass of 42 kDa. In gel filtration chromatography, the major enzyme activity eluted at 40 kDa, indicating that it functions in a monomeric form. This was similarly observed using the native enzyme purified from P. falciparum. Interestingly, kinetic parameters of the enzyme and inhibitory effect by orotate and its 5-substituted derivatives parallel that found in mammalian type I DHOase. Thus, the malarial enzyme shares characteristics of both type I and type II DHOases. This study provides the monofunctional property of the parasite DHOase lending further insights into its differences from the human enzyme which forms part of a multifunctional protein.  相似文献   

4.
We have selected piperaquine (PQ) and lumefantrine (LM) resistant Plasmodium berghei ANKA parasite lines in mice by drug pressure. Effective doses that reduce parasitaemia by 90% (ED90) of PQ and LM against the parent line were 3.52 and 3.93 mg/kg, respectively. After drug pressure (more than 27 passages), the selected parasite lines had PQ and LM resistance indexes (I90) [ED90 of resistant line/ED90 of parent line] of 68.86 and 63.55, respectively. After growing them in the absence of drug for 10 passages and cryo-preserving them at −80 °C for at least 2 months, the resistance phenotypes remained stable. Cross-resistance studies showed that the PQ-resistant line was highly resistant to LM, while the LM-resistant line remained sensitive to PQ. Thus, if the mechanism of resistance is similar in P. berghei and Plasmodium falciparum, the use of LM (as part of Coartem®) should not select for PQ resistance.  相似文献   

5.
Human infections with Plasmodium knowlesi have been misdiagnosed by microscopy as Plasmodium malariae due to their morphological similarities. Although microscopy-identified P. malariae cases have been reported in the state of Sarawak (Malaysian Borno) as early as 1952, recent epidemiological studies suggest the absence of indigenous P. malariae infections. The present study aimed to determine the past incidence and distribution of P. knowlesi infections in the state of Sarawak based on archival blood films from patients diagnosed by microscopy as having P. malariae infections. Nested PCR assays were used to identify Plasmodium species in DNA extracted from 47 thick blood films collected in 1996 from patients in seven different divisions throughout the state of Sarawak. Plasmodium knowlesi DNA was detected in 35 (97.2%) of 36 blood films that were positive for Plasmodium DNA, with patients originating from all seven divisions. Only one sample was positive for P. malariae DNA. This study provides further evidence of the widespread distribution of human infections with P. knowlesi in Sarawak and its past occurrence. Taken together with data from previous studies, our findings suggest that P. knowlesi malaria is not a newly emergent disease in humans.  相似文献   

6.
The merozoite surface protein-1 (MSP-1) from Plasmodium vivax was evaluated as an oral vaccine candidate by cloning and expressing the interspecies conserved block 10 (ICB10) of the MSP-1 from a Korean isolate in Escherichia coli. The expressed fusion protein contained ICB10 and a maltose-binding protein (MBP), rPv54, has a molecular weight of approximately 54 kDa as determined by SDS-PAGE analysis. IgG against rPv54 was successfully produced in BALB/c mice by oral immunization and sustained for more than 4 months. IgG2b was dominantly produced in both oral and parenteral immunizations. The rPv54 increased the frequency of NK, NKT, CD4+ T, CD8+ T, and B cells in both immunizations. IL-5 and TNF-α were increased in both significantly. In conclusion, rPv54 might be a valuable potential vaccine candidate for the oral and parenteral immunization against vivax malaria.  相似文献   

7.
Increase in drug detoxification and alteration of drug uptake and efflux of Plasmodium falciparum were investigated for their possible association with mefloquine (MQ) resistance in five different clones of P. falciparum from Thailand (T994b3, K1CB2, PR70CB1, PR71CB2 and TM4CB8-2.2.3). Fifty percent inhibitory concentration (IC50) values from these five clones varied between 30- and 50-fold. Regarding the detoxification mechanism, the ability of P. falciparum clones to biotransform MQ was shown in vitro by parasite microsomal protein prepared from parasite infected red blood cells protein (30 μg), NADPH (1 nM) and phosphate buffer pH 7.4, carried out at 37 °C with agitation. Radiolabelled unmetabolized MQ and possible metabolite(s) generated from the reaction was extracted into ethylacetate and separated by radiometric-HPLC after 1 h. All clones were capable of converting MQ into carboxymefloquine (CMQ), which is the main metabolite in human plasma. In addition, another unidentified metabolite eluted at 4.2 min on the chromatograph could be detected from the incubation reaction. This metabolite has never been detected in human liver microsomes before. There was no significant difference in the percentages of CMQ formed in the resistant (T994b3, PR70CB1, PR71CB2) and sensitive (TM4CB8-2.2.3, K1CB2) clones. Another possible mechanism, i.e., alteration in the accumulation of MQ in the parasites was investigated in vitro using [14C]MQ as a tracer. The time courses of [14C]MQ uptake and efflux were generally characterized by two phases. A trend of increased efflux of [14C]MQ was observed in the resistant compared with sensitive clones.  相似文献   

8.
Recent advances on the application of serologic methods employing the indirect hemagglutination test with a Plasmodium knowlesi antigen for the study of malaria epidemiology are outlined. Work in progress on the stabilization of malaria antigens and the preparation of gluteraldehyde sensitized cells were reviewed. Fluorescent antibody studies in progress are discussed and work on the cross reactivity of Babesia antigens with malaria is mentioned.  相似文献   

9.
Plasmodium cysteine proteases have been shown to be immunogenic and are being used as malaria potential serodiagnostic markers and vaccine targets. Genes encoding two Plasmodium chabaudi cysteine proteases chabaupain-1 (CP-1) and chabaupain-2 (CP-2) were identified and further expressed in Escherichia coli. Solubilisation of recombinant CP-1 and CP-2 was achieved by decreasing the temperature of induction.Anopheles gambiae tissues infected with Plasmodium were analyzed by Western blotting using the anti-CP-1 antibody showing that CP-1 is only present in the A. gambiae midguts being absent from other infected mosquito biological material. Anti-CP-1 anti-serum recognized a 30 kDa band in P. chabaudi, Plasmodium berghei and Plasmodium yoelii lysates but does not recognize the recombinant CP-2 extracts suggesting high antibody specificity.  相似文献   

10.
Dioleoylphosphatidylcholine and other phosphatidylcholines containing different fatty acid moieties were found to increase the ability of nonesterified fatty acids (NEFA) to sustain continuous intraerythrocytic growth of Plasmodium falciparum in the presence of specific proteins. Other phospholipids, including phosphatidylethanolamine, phosphatidylserine, and phosphatidic acid, were beneficial to parasite growth. Different combinations and concentrations of NEFA tested in the presence of phospholipids and bovine albumin had variable effects on parasite growth. The most effective combination for promoting parasite growth consisted of 30 μg/ml cis-9-octadecenoic acid (oleic acid) plus 15 μg/ml hexadecanoic acid (palmitic acid). Recombinant human albumin could replace bovine or human albumin in culture media enriched with structurally defined lipids. This study therefore established a chemically defined culture medium suitable for sustaining the growth of P. falciparum.  相似文献   

11.
12.
13.
Plasmodium vivax merozoite surface protein 1 (PvMSP1) is believed to be important in erythrocyte invasion. However, the detailed mechanism of PvMSP1-mediated invasion has been unclear. We demonstrate that the C-terminal 19 kDa domain (PvMSP119) of PvMSP1, the 42-kDa fragment of PvMSP1 is further cleaved to a 33 kDa N-terminal polypeptide and a 19 kDa C-terminal fragment in a secondary processing step, is a critical domain in the binding between parasite ligand and erythrocyte receptor. Also, its cytoadherence was successfully blocked by naturally acquired immunity, was partially sensitive to neuraminidase and trypsin. When expressed separately epidermal growth factor (EGF)-like motifs 1 and 2, subunits of the PvMSP119, mediated 64% and 66% of the erythrocyte-binding activity, respectively, relative to their expression together as a single intact ligand domain. These results suggest that the EGF-like motifs 1 and 2 of PvMSP119 function as a core-binding portion in the attachment of PvMSP1 to erythrocytes.  相似文献   

14.
We have evaluated the effect of mammalian codon optimization on the immunogenicity and protective efficacy of plasmid DNA vaccines encoding pre-erythrocytic stage Plasmodium falciparum and Plasmodium yoelii antigens in mice. Codon optimization significantly enhanced in vitro expression and in vivo antibody responses for P. falciparum circumsporozoite protein (PfCSP) and P. yoelii hepatocyte erythrocyte protein 17 kDa (PyHEP17) but not for P. yoelii circumsporozoite protein (PyCSP). Unexpectedly, more robust CD4+ and CD8+ T cell responses as measured by IFN-γ ELIspot, lymphoproliferation, and cytotoxic T lymphocyte assays were noted with native as compared with codon optimization constructs. Codon optimization also failed to enhance CD8+ T cell dependent protection against P. yoelii sporozoite challenge as measured by liver-stage parasite burden. These data demonstrate that the effect of mammalian codon optimization is antigen-dependent and may not be beneficial for vaccines designed to induce T cell dependent protective immunity in this malaria model.  相似文献   

15.
A novel dynamin-like GTPase gene, Pfdyn1, was cloned from an asexual stage cDNA library of Plasmodium falciparum Dd2 strain. Pfdyn1 contains a highly conserved N-terminal tripartite GTPase domain, a coiled-coil region, and a C-terminal 129 aa unknown function domain. Like yeast Vps1p, it lacks pleckstrin homology domain and proline-rich region. Western blot analysis showed that Pfdyn1 is a Triton X-100 insoluble protein expressed only in the mature sub-stage. Morphological studies indicated that Pfdyn1 is partly co-localized with PfGRP, a known ER-resident protein, and localizes diffusely with several membrane structures and a 60-100 nm vesicle both inside and on surface of the parasites and also in the cytoplasm of infected erythrocytes. The dsRNA originated by C-terminus fragment of Pfdyn1 inhibits markedly the growth of P. falciparum parasite at the erythrocyte stage. Those data showed that Pfdyn1 is a conservative, membrane related protein and plays an essential role for the survival of Plasmodium parasite.  相似文献   

16.
17.
18.
19.

Background

Plasmodium falciparum serine repeat antigen 5 (PfSERA5) is an abundant blood stage protein that plays an essential role in merozoite egress and invasion. The native protein undergoes extensive proteolytic cleavage that appears to be tightly regulated. PfSERA5 N-terminal fragment is being developed as vaccine candidate antigen. Although PfSERA5 belongs to papain-like cysteine protease family, its catalytic domain has a serine in place of cysteine at the active site.

Methods

In the present study, we synthesized a number of peptides from the N- and C-terminal regions of PfSERA5 active domain and evaluated their inhibitory potential.

Results

The final proteolytic step of PfSERA5 involves removal of a C-terminal ~ 6 kDa fragment that results in the generation of a catalytically active ~ 50 kDa enzyme. In the present study, we demonstrate that two of the peptides derived from the C-terminal ~ 6 kDa region inhibit the parasite growth and also cause a delay in the parasite development. These peptides reduced the enzyme activity of the recombinant protein and co-localized with the PfSERA5 protein within the parasite, thereby indicating the specific inhibition of PfSERA5 activity. Molecular docking studies revealed that the inhibitory peptides interact with the active site of the protein. Interestingly, the peptides did not have an effect on the processing of PfSERA5.

Conclusions

Our observations indicate the temporal regulation of the final proteolytic cleavage step that occurs just prior to egress.

General significance

These results reinforce the role of PfSERA5 for the intra-erythrocytic development of malaria parasite and show the role of carboxy terminal ~ 6 kDa fragments in the regulation of PfSERA5 activity. The results also suggest that final cleavage step of PfSERA5 can be targeted for the development of new anti-malarials.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号