首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we showed that Mycobacterium abscessus MAB2560 induces the maturation of dendritic cells (DCs), which are representative antigen-presenting cells (APCs). M. abscessus MAB2560 stimulate the production of pro-inflammatory cytokines [interleukin (IL)-6, tumor necrosis factor (TNF)-α, IL-1β, and IL-12p70] and reduce the endocytic capacity and maturation of DCs. Using TLR4-/- DCs, we found that MAB2560 mediated DC maturation via Toll-like receptor 4 (TLR4). MAB2560 also activated the MAPK signaling pathway, which was essential for DC maturation. Furthermore, MAB2560-treated DCs induced the transformation of naïve T cells to polarized CD4+ and CD8+ T cells, which would be crucial for Th1 polarization of the immune response. Taken together, our results indicate that MAB2560 could potentially regulate the host immune response to M. abscessus and may have critical implications for the manipulation of DC functions for developing DC-based immunotherapy. [BMB Reports 2014;47(9): 512-517]  相似文献   

2.
In this study, we show that Mycobacterium avium subsp. Paratuberculosis MAP1305 induces the maturation of bone marrow-derived dendritic cells (BMDCs), a representative antigen presenting cell (APC). MAP1305 protein induces DC maturation and the production of pro-inflammatory cytokines (Interleukin (IL)-6), tumor necrosis factor (TNF)-α, and IL-1β) through Toll like receptor-4 (TLR-4) signaling by directly binding with TLR4. MAP1305 activates the phosphorylation of MAPKs, such as ERK, p38MAPK, and JNK, which is essential for DC maturation. Furthermore, MAP1305-treated DCs transform naïve T cells to polarized CD4+ and CD8+ T cells, thus indicating a key role for this protein in the Th1 polarization of the resulting immune response. Taken together, M. avium subsp. Paratuberculosis MAP1305 is important for the regulation of innate immune response through DC-mediated proliferation of CD4+ and CD8+ T cells. [BMB Reports 2014; 47(2): 115-120]  相似文献   

3.
A key factor in dendritic cell (DC)-based tumor immunotherapy is the identification of an immunoadjuvant capable of inducing DC maturation to enhance cellular immunity. The efficacy of a 50S ribosomal protein L7/L12 (rplL) from Mycobacterium tuberculosis Rv0652, as an immunoadjuvant for DC-based tumor immunotherapy, and its capacity for inducing DC maturation was investigated. In this study, we showed that Rv0652 is recognized by Toll-like receptor 4 (TLR4) to induce DC maturation, and pro-inflammatory cytokine production (TNF-alpha, IL-1beta, and IL-6) that is partially modulated by both MyD88 and TRIF signaling pathways. Rv0652-activated DCs could activate naïve T cells, effectively polarize CD4+ and CD8+ T cells to secrete IFN-gamma, and induce T cell-mediated-cytotoxicity. Immunization of mice with Rv0652-stimulated ovalbumin (OVA)-pulsed DCs resulted in induction of a potent OVA-specific CD8+ T cell response, slowed tumor growth, and promoted long-term survival in a murine OVA-expressing E.G7 thymoma model. These findings suggest that Rv0652 enhances the polarization of T effector cells toward a Th1 phenotype through DC maturation, and that Rv0652 may be an effective adjuvant for enhancing the therapeutic response to DC-based tumor immunotherapy.  相似文献   

4.
Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of Johne disease in animals and MAP involvement in human Crohn disease has been recently emphasized. Evidence from M. tuberculosis studies suggests mycobacterial proteins activate dendritic cells (DCs) via Toll-like receptor (TLR) 4, eventually determining the fate of immune responses. Here, we investigated whether MAP CobT contributes to the development of T cell immunity through the activation of DCs. MAP CobT recognizes TLR4, and induces DC maturation and activation via the MyD88 and TRIF signaling cascades, which are followed by MAP kinases and NF-κB. We further found that MAP CobT-treated DCs activated naive T cells, effectively polarized CD4+ and CD8+ T cells to secrete IFN-γ and IL-2, but not IL-4 and IL-10, and induced T cell proliferation. These data indicate that MAP CobT contributes to T helper (Th) 1 polarization of the immune response. MAP CobT-treated DCs specifically induced the expansion of CD4+/CD8+CD44highCD62Llow memory T cells in the mesenteric lymph node of MAP-infected mice in a TLR4-dependent manner. Our results indicate that MAP CobT is a novel DC maturation-inducing antigen that drives Th1 polarized-naive/memory T cell expansion in a TLR4-dependent cascade, suggesting that MAP CobT potentially links innate and adaptive immunity against MAP.  相似文献   

5.
《Phytomedicine》2015,22(2):277-282
Annotine is a lycopodane-type alkaloid isolated from the Icelandic club moss Lycopodium annotinum ssp. alpestre. Annotine does not inhibit acetylcholinesterase, as some other lycopodium alkaloids do, and other bioactivities have not been reported. The aim of this study was to determine the effects of annotine on maturation of dendritic cells (DCs) and their ability to activate allogeneic CD4+ T cells. Human monocyte-derived DCs were matured in the absence or presence of annotine at a concentration of 1, 10 or 100 μg/ml. The effect of the annotine on maturation of the DCs was determined by measuring concentration of cytokines in culture supernatant by ELISA and expression of surface molecules by flow cytometry. DCs matured in the absence or presence of annotine at 100 µg/ml were also co-cultured with allogeneic CD4+ T cells and concentration of cytokines in supernatants determined by ELISA and expression of surface molecules by flow cytometry. When cultured alone, DCs matured in the presence of annotine secreted less of the pro-inflammatory cytokines IL-6 and IL-23 and had a tendency toward less secretion of IL-12p40 than DCs matured in the absence of annotine. However, when DCs were matured in the presence of annotine and then co-cultured with allogeneic CD4+ T cells they secreted more IL-12p40 and had a tendency toward secreting more IL-6 than DCs matured in the absence of annotine and then co-cultured with T cells. Allogeneic CD4+ T cells co-cultured with DCs matured in the presence of annotine secreted more IL-13 than T cells co-cultured with DCs matured in the absence of annotine, but stimulating the DCs in the presence of annotine did not affect T cell secretion of IFN-γ and IL-17. There was also more IL-10 in co-cultures of T cells and DCs matured in the presence of annotine than in co-cultures of T cells and DCs matured in the absence of annotine. These results show that annotine increases the ability of DCs to direct the differentiation of allogeneic CD4+ T cells toward a Th2/Treg phenotype, which may be of interest in the development of new treatments for Th1- and/or Th17-mediated inflammatory diseases.  相似文献   

6.
Dendritic cells (DCs) play a major role in the innate immune response since they recognize a broad repertoire of PAMPs mainly via Toll-like receptors (TLRs). During Helicobacter pylori (H. pylori) infection, TLRs have been shown to be important to control cytokine response particularly in murine DCs. In the present study we analyzed the effect of blocking TLRs on human DCs. Co-incubation of human DCs with H. pylori resulted in the release of the pro-inflammatory cytokines IL-12p70, IL-6 and IL-10. Release of IL-12p70 and IL-10 was predominantly influenced when TLR4 signaling was blocked by adding specific antibodies, suggesting a strong influence on subsequent T cell responses through TLR4 activation on DCs. Co-incubation of H. pylori-primed DC with allogeneic CD4+ T cells resulted in the production of IFN-γ and IL-17A as well as the expression of Foxp3, validating a mixed Th1/Th17 and Treg response in vitro. Neutralization of TLR4 during H. pylori infection resulted in significantly decreased amounts of IL-17A and IFN-γ and reduced levels of Foxp3-expressing and IL-10-secreting T cells. Our findings suggest that DC cytokine secretion induced upon TLR4-mediated recognition of H. pylori influences inflammatory and regulatory T cell responses, which might facilitate the chronic bacterial persistence.  相似文献   

7.
Long-chain polyunsaturated fatty acids (PUFAs) might regulate T-cell activation and lineage commitment. Here, we measured the effects of omega-3 (n-3), n-6 and n-9 fatty acids on the interaction between dendritic cells (DCs) and naïve T cells. Spleen DCs from BALB/c mice were cultured in vitro with ovalbumin (OVA) with 50 μM fatty acids; α-linolenic acid, arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), linoleic acid or oleic acid and thereafter OVA-specific DO11.10 T cells were added to the cultures. Fatty acids were taken up by the DCs, as shown by gas chromatography analysis. After culture with arachidonic acid or DHA CD11c+ CD11b+ and CD11c+ CD11bneg DCs expressed more CD40, CD80, CD83, CD86 and PDL-1, while IAd remained unchanged. However, fewer T cells co-cultured with these DCs proliferated (CellTrace Violetlow) and expressed CD69 or CD25, while more were necrotic (7AAD+). We noted an increased proportion of T cells with a regulatory T cell (Treg) phenotype, i.e., when gating on CD4+ FoxP3+ CTLA-4+, CD4+ FoxP3+ Helios+ or CD4+ FoxP3+ PD-1+, in co-cultures with arachidonic acid- or DHA-primed DCs relative to control cultures. The proportion of putative Tregs was inversely correlated to T-cell proliferation, indicating a suppressive function of these cells. With arachidonic acid DCs produced higher levels of prostaglandin E2 while T cells produced lower amounts of IL-10 and IFNγ. In conclusion arachidonic acid and DHA induced up-regulation of activation markers on DCs. However arachidonic acid- and DHA-primed DCs reduced T-cell proliferation and increased the proportion of T cells expressing FoxP3, indicating that these fatty acids can promote induction of regulatory T cells.  相似文献   

8.
Dendritic cells (DCs) are professional antigen presenting cells that have the dual ability to stimulate immunity and maintain tolerance. However, the signalling pathways mediating tolerogenic DC function in vivo remain largely unknown. The β-catenin pathway has been suggested to promote a regulatory DC phenotype. The aim of this study was to unravel the role of β-catenin signalling to control DC function in the autoimmune collagen-induced arthritis model (CIA). Deletion of β-catenin specifically in DCs was achieved by crossing conditional knockout mice with a CD11c-Cre transgenic mouse line. Bone marrow-derived DCs (BMDCs) were generated and used to study the maturation profile of these cells in response to a TLR2 or TLR4 ligand stimulation. CIA was induced by intra-dermal immunization with 100 μg chicken type II collagen in complete Freund’s adjuvant on days 0 and 21. CIA incidence and severity was monitored macroscopically and by histology. The T cell profile as well as their cytokine production were analysed by flow cytometry. Lack of β-catenin specifically in DCs did not affect the spontaneous, TLR2- or TLR4-induced maturation and activation of BMDCs or their cytokine production. Moreover, no effect on the incidence and severity of CIA was observed in mice lacking β-catenin in CD11c+ cells. A decreased frequency of splenic CD3+CD8+ T cells and of regulatory T cells (Tregs) (CD4+CD25highFoxP3+), but no changes in the frequency of splenic Th17 (CCR6+CXCR3-CCR4+), Th2 (CCR6-CXCR3-CCR4+) and Th1 (CCR6-CXCR3+CCR4-) cells were observed in these mice under CIA condition. Furthermore, the expression of IL-17A, IL-17F, IL-22, IL-4 or IFNγ was also not affected. Our data indicate that ablation of β-catenin expression in DCs did not alter the course and severity of CIA. We conclude that although deletion of β-catenin resulted in a lower frequency of Tregs, this decrease was not sufficient to aggravate the onset and severity of CIA.  相似文献   

9.
10.
HIV-1 pathogenesis is intimately linked with microbial infections and innate immunity during all stages of the disease. While the impact of microbial-derived products in transmission of R5-using virus to CD4+ T cells by dendritic cells (DCs) has been addressed before, very limited data are available on the effect of such compounds on DC-mediated dissemination of X4-tropic variant. Here, we provide evidence that treatment of DCs with dectin-1/TLR2 and NOD2 ligands increases cis-infection of autologous CD4+ T cells by X4-using virus. This phenomenon is most likely associated with an enhanced permissiveness of DCs to productive infection with X4 virus, which is linked to increased surface expression of CXCR4 and the acquisition of a maturation profile by DCs. The ensuing DC maturation enhances susceptibility of CD4+ T cells to productive infection with HIV-1. This study highlights the crucial role of DCs at different stages of HIV-1 infection and particularly in spreading of viral strains displaying a X4 phenotype.  相似文献   

11.
Dendritic cells (DCs) are antigen-presenting cells (APC) involved in the initiation of immune responses. Maturation of DCs is characterized by the high expression of major histocompatibility complex (MHC) class II and co-stimulatory clusters of differentiation (CD) 40, CD80, and CD86 molecules. Matured DCs are required for T cell differentiation and proliferation. However, the response of DCs to Opisthorchis viverrini antigens has not yet been understood. Therefore, this study sought to determine the expression of surface molecules of JAWSII mouse DCs stimulated by crude somatic (CS) and excretory-secretory (ES) antigens of O. viverrini. ES antigen significantly induced only mRNA expression of CD80 and MHC class II in JAWSII mouse DCs, while CS antigen promoted up-regulation of both mRNA and protein levels of CD80 and MHC class II, indicating relative maturation of JAWII mouse DCs. Moreover, the secreted cytokines from the co-cultures of O. viverrini antigens stimulated JAWSII DC with naïve CD4+ T cells was determined. Significantly increased levels of immunosuppressive cytokines interleukin (IL)-10 and transforming growth factor beta (TGF-β) were found. The up-regulation of these cytokines may indicate the response of regulatory T cells (Treg) to CS antigen-stimulated JAWSII DC. These findings may lead to a better understanding of the role that DCs play in O. viverrini infection.  相似文献   

12.
The limited efficacy of the BCG vaccine against tuberculosis is partly due to the missing expression of immunogenic proteins. We analyzed whether the addition to BCG of ESAT-6 and HspX, two Mycobacterium tuberculosis (Mtb) antigens, could enhance its capacity to activate human dendritic cells (DCs). BCG showed a weak ability to induce DC maturation, cytokine release, and CD4+ lymphocytes and NK cells activation. The addition of ESAT-6 or HspX alone to BCG-stimulated DC did not improve these processes, whereas their simultaneous addition enhanced BCG-dependent DC maturation and cytokine release, as well as the ability of BCG-treated DCs to stimulate IFN-γ release and CD69 expression by CD4+ lymphocytes and NK cells. Addition of TLR2-blocking antibody decreased IL-12 release by BCG-stimulated DCs incubated with ESAT-6 and HspX, as well as IFN-γ secretion by CD4+ lymphocytes co-cultured with these cells. Moreover, HspX and ESAT-6 improved the capacity of BCG-treated DCs to induce the expression of memory phenotype marker CD45RO in naïve CD4+ T cells. Our results indicate that ESAT-6 and HspX cooperation enables BCG-treated human DCs to induce T lymphocyte and NK cell-mediated immune responses through TLR2-dependent IL-12 secretion. Therefore ESAT-6 and HspX represent good candidates for improving the effectiveness of BCG vaccination.  相似文献   

13.
N-3-(Oxododecanoyl)-L-homoserine lactone (C12) is a small bacterial signaling molecule secreted by Pseudomonas aeruginosa (PA), which activates mammalian cells through TLR4-independent mechanisms. C12 acts as an immunosuppressant and it has been shown to modulate murine bone marrow-derived dendritic cell-mediated T-helper 2 (Th2) cell polarizations in vitro. In the present study, we initially examined the impact of C12 on the maturation of human monocyte-derived dendritic cells (Mo-DCs) and the induction of regulatory T-cells (iTregs) in culture. Our findings demonstrate that C12-treated Mo-DCs failed to undergo lipopolysaccharide (LPS)-induced maturation. At the molecular level, C12 blocked the upregulation of surface molecules, including CD11c, HLA-DR, CD40, and CD80, and it switched to an interleukin (IL)-10high, IL-12p70low phenotype. Moreover, C12 selectively inhibited the capacity of Mo-DCs to stimulate the proliferation of allogeneic CD4+ T-cells. Otherwise, the C12-treated Mo-DCs promoted the generation of CD4+CD25+Foxp3+-induced regulatory T-cells (iTregs) and enhanced their IL-10 and transforming growth factor (TGF)-β production associated with reduced interferon (IFN)-γ and IL-12p70 production. These findings provide new insights towards understanding the persistence of chronic inflammation in PA infection.  相似文献   

14.
Clostridium difficile is the etiological agent of antibiotic-associated diarrhoea (AAD) and pseudomembranous colitis in humans. The role of the surface layer proteins (SLPs) in this disease has not yet been fully explored. The aim of this study was to investigate a role for SLPs in the recognition of C. difficile and the subsequent activation of the immune system. Bone marrow derived dendritic cells (DCs) exposed to SLPs were assessed for production of inflammatory cytokines, expression of cell surface markers and their ability to generate T helper (Th) cell responses. DCs isolated from C3H/HeN and C3H/HeJ mice were used in order to examine whether SLPs are recognised by TLR4. The role of TLR4 in infection was examined in TLR4-deficient mice. SLPs induced maturation of DCs characterised by production of IL-12, TNFα and IL-10 and expression of MHC class II, CD40, CD80 and CD86. Furthermore, SLP-activated DCs generated Th cells producing IFNγ and IL-17. SLPs were unable to activate DCs isolated from TLR4-mutant C3H/HeJ mice and failed to induce a subsequent Th cell response. TLR4−/− and Myd88−/−, but not TRIF−/− mice were more susceptible than wild-type mice to C. difficile infection. Furthermore, SLPs activated NFκB, but not IRF3, downstream of TLR4. Our results indicate that SLPs isolated from C. difficile can activate innate and adaptive immunity and that these effects are mediated by TLR4, with TLR4 having a functional role in experimental C. difficile infection. This suggests an important role for SLPs in the recognition of C. difficile by the immune system.  相似文献   

15.
To better understand the relative efficiencies of using different TLR ligand-activated DCs to induce human CD4+ T lymphocyte responses, human DCs were activated with two viral and two bacterial TLR ligands, and their production of IL12, TNFα, and IL10 was examined. While the two viral TLR ligands (ssRNA and dsRNA) induced DC production of detectable levels of IL12p70, DCs activated by the two bacterial TLR ligands (LPS and flagellin) induced increased proliferation of human allogeneic naïve CD4+ T cells. dsRNA-activated DCs induced increased Th1 and decreased Th2 differentiation, resulting in extremely polarized responses relative to those induced by unstimulated and other TLR ligand-activated DCs. Neutralization of IL12p70 abrogated most of the Th1 skewing induced by all TLR ligand-activated moDCs. Collectively, these results demonstrate that dsRNA-activated DCs induce more highly polarized human Th1 responses than the other TLR ligand-activated DCs tested here. These results have implications for TLR ligands in immunotherapy.  相似文献   

16.
Dendritic cells (DCs) matured with helminth-derived molecules that promote Th2 immune responses do not follow conventional definitions of DC maturation processes. While a number of models of DC maturation by Th2 stimuli are postulated, further studies are required if we are to clearly define DC maturation processes that lead to Th2 immune responses. In this study, we examine the interaction of Th2-inducing molecules from the parasitic helminth Ascaris lumbricoides with the maturation processes and function of DCs. Here we show that murine bone marrow-derived DCs are partially matured by A. lumbricoides pseudocoelomic body fluid (ABF) as characterised by the production of IL-6, IL-12p40 and macrophage inflammatory protein 2 (MIP-2) but no enhanced expression of cluster of differentiation (CD)-14, T-cell co-stimulatory markers CD80, CD86, CD40, OX40L and major histocompatibility complex class II was observed. Despite these phenotypic characteristics, ABF-stimulated DCs displayed the functional hallmarks of fully matured cells, enhancing DC phagocytosis and promoting Th2-type responses in skin-draining lymph node cells in vivo. ABF activated Th2-associated extracellular signal-regulated kinase-1 and nuclear factor-kB intracellular signalling pathways independently of toll-like receptor 4. Taken together, we believe this is the first paper to demonstrate A. lumbricoides murine DC-Th cell-driven responses shedding further light on DC maturation processes by helminth antigens.  相似文献   

17.
WH1fungin, a surfactin cyclopeptide from Bacillus amyloliquefaciens WH1, is firstly reported as a novel immunoadjuvant, which can markedly enhance the immune response when given in mixture with antigens. After intramuscular or subcutaneous immunization, WH1fungin can help to induce both of durable humoral and cellular immune response, even as strong as Freund's adjuvant. Both IgG1 and IgG2a antigen-specific antibodies were elicited from the immunizations indicating a mixed Th1/Th2 response. Splenocytes from mice intramuscularly immunized with OVA plus WH1fungin responded to OVA CTL peptide stimulation resulting in an increase in CD8+TNF-α+ and CD8+IFN-γ+ T cell populations, and also an increase in CD4+TNF-α+ T cells and CD4+IFN-γ+ T cell populations was found from mice subcutaneously immunized with OVA plus WH1fungin when responded to OVA Th peptide stimulation. These results further suggest that WH1fungin helps to elicit humoral and cellular responses to OVA. The potential mechanism of WH1fungin as an immunoadjuvant was investigated. In vitro assays showed that WH1fungin could enter into RAW 264.7 cells, induce ROS accumulation, and increase the expression of cell surface markers and cytokines in cells. Further investigation suggested that WH1fungin might exert its adjuvant activity by ligating with TLR-2 in antigen present cells such as RAW 264.7. Taken together, WH1fungin is very potent as a novel adjuvant for development of vaccines in the future.  相似文献   

18.
Mycobacterium tuberculosis, an etiological agent of pulmonary tuberculosis, causes significant morbidity and mortality worldwide. Pathogenic mycobacteria survive in the host by subverting host innate immunity. Dendritic cells (DCs) are professional antigen-presenting cells that are vital for eliciting immune responses to infectious agents, including pathogenic mycobacteria. DCs orchestrate distinct Th responses based on the signals they receive. In this perspective, deciphering the interactions of the proline-glutamic acid/proline-proline-glutamic acid (PE/PPE) family of proteins of M. tuberculosis with DCs assumes significant pathophysiological attributes. In this study, we demonstrate that Rv1917c (PPE34), a representative member of the proline-proline-glutamic-major polymorphic tandem repeat family, interacts with TLR2 and triggers functional maturation of human DCs. Signaling perturbations implicated a critical role for integrated cross-talk among PI3K-MAPK and NF-κB signaling cascades in Rv1917c-induced maturation of DCs. However, this maturation of DCs was associated with a secretion of high amounts of anti-inflammatory cytokine IL-10, whereas Th1-polarizing cytokine IL-12 was not induced. Consistent with these results, Rv1917c-matured DCs favored secretion of IL-4, IL-5, and IL-10 from CD4+ T cells and contributed to Th2-skewed cytokine balance ex vivo in healthy individuals and in patients with pulmonary tuberculosis. Interestingly, the Rv1917c-skewed Th2 immune response involved induced expression of cyclooxygenase-2 (COX-2) in DCs. Taken together, these results indicate that Rv1917c facilitates a shift in the ensuing immunity toward the Th2 phenotype and could aid in immune evasion by mycobacteria.  相似文献   

19.
Protosappanin A (PrA), an immunosuppressive ingredient of the medicinal herb Caesalpinia sappan L, prolongs heart allograft survival in rats, possibly by impairing the function of antigen-presenting cells (APCs). We examined the effects of PrA on the maturation and function of dendritic cells (DCs), a potent class of APCs, and the downstream cell–cell and intracellular signaling pathways mediating the immunosuppressive activity of PrA. PrA inhibited LPS-stimulated maturation of Wistar rat DCs in vitro as reflected by reduced expression of costimulatory molecules (CD80 and CD86) and reduced expression of TLR4 and NF-κB, two critical signaling components for antigen recognition. PrA also enhanced the release of IL-10 and decreased the release of IL-12 from DCs, but had no effect on the production of TGF-ß. In mixed cultures, Wistar DCs pretreated with PrA impaired the proliferation of Sprague Dawley (SD) rat T cells while promoting the expansion of SD rat CD4+CD25+ regulatory T cells (Tregs). Both oral PrA treatment and infusion of PrA-pretreated Wistar DCs prolonged cardiac allograft survival (Wistar donor, SD recipient) and expanded recipient CD4+CD25+Foxp3+ Tregs. Donor spleen cells, but not spleen cells from a third rat strain (DA), supported the expansion of recipient CD4+CD25+Foxp3+ Tregs and suppressed recipient T cell proliferation. We conclude that PrA triggers a tolerogenic state in DCs that allows for the induction of alloantigen-specific Tregs and the suppression of allograft rejection in vivo.  相似文献   

20.
It remains unknown why the T cell tolerance to nuclear autoantigens is impaired in systemic autoimmune diseases. To clarify this, we generated transgenic mice expressing OVA mainly in the nuclei (Ld-nOVA mice). When CD4+ T cells from DO11.10 mice expressing a TCR specific for OVA(323-339) were transferred into Ld-nOVA mice, they were rendered anergic, but persisted in vivo for at least 3 mo. These cells expressed CD44(high), CD45RB(low), and were generated after multiple cell divisions, suggesting that anergy is not the result of insufficient proliferative stimuli. Whereas dendritic cells (DCs) from Ld-nOVA (DCs derived from transgenic mice (TgDCs)), which present rather low amount of the self-peptide, efficiently induced proliferation of DO11.10 T cells, divided T cells stimulated in vivo by TgDCs exhibited a lower memory response than T cells stimulated in vitro by peptide-pulsed DCs. Furthermore, we found that repeated transfer of either TgDCs or DCs derived from wild-type mice pulsed with a lower concentration of OVA(323-339) induced a lower response of DO11.10 T cells in Ag-free wild-type recipients than DCs derived from wild-type mice. These results suggest that peripheral tolerance to a nuclear autoantigen is achieved by continuous presentation of the self-peptide by DCs, and that the low expression level of the peptide might also be involved in the induction of hyporesponsiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号