首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trypanosoma brucei is a kinetoplastid parasite of medical and veterinary importance. Its digenetic life cycle alternates between the bloodstream form in the mammalian host and the procyclic form (PCF) in the bloodsucking insect vector, the tsetse fly. PCF trypanosomes rely in the glucose-depleted environment of the insect vector primarily on the mitochondrial oxidative phosphorylation of proline for their cellular ATP provision. We previously identified two T. brucei mitochondrial carrier family proteins, TbMCP5 and TbMCP15, with significant sequence similarity to functionally characterized ADP/ATP carriers from other eukaryotes. Comprehensive sequence analysis confirmed that TbMCP5 contains canonical ADP/ATP carrier sequence features, whereas they are not conserved in TbMCP15. Heterologous expression in the ANC-deficient yeast strain JL1Δ2Δ3u revealed that only TbMCP5 was able to restore its growth on the non-fermentable carbon source lactate. Transport studies in yeast mitochondria showed that TbMCP5 has biochemical properties and ADP/ATP exchange kinetics similar to those of Anc2p, the prototypical ADP/ATP carrier of S. cerevisiae. Immunofluorescence microscopy and Western blot analysis confirmed that TbMCP5 is exclusively mitochondrial and is differentially expressed with 4.5-fold more TbMCP5 in the procyclic form of the parasite. Silencing of TbMCP5 expression in PCF T. brucei revealed that this ADP/ATP carrier is essential for parasite growth, particularly when depending on proline for energy generation. Moreover, ADP/ATP exchange in isolated T. brucei mitochondria was eliminated upon TbMCP5 depletion. These results confirmed that TbMCP5 functions as the main ADP/ATP carrier in the trypanosome mitochondrion. The important role of TbMCP5 in the T. brucei energy metabolism is further discussed.  相似文献   

2.
Pyruvate is a key product of glycolysis that regulates the energy metabolism of cells. In Trypanosoma brucei, the causative agent of sleeping sickness, the fate of pyruvate varies dramatically during the parasite life cycle. In bloodstream forms, pyruvate is mainly excreted, whereas in tsetse fly forms, pyruvate is metabolized in mitochondria yielding additional ATP molecules. The character of the molecular machinery that mediates pyruvate transport across mitochondrial membrane was elusive until the recent discovery of mitochondrial pyruvate carrier (MPC) in yeast and mammals. Here, we characterized pyruvate import into mitochondrion of T. brucei. We identified mpc1 and mpc2 homologs in the T. brucei genome with attributes of MPC protein family and we demonstrated that both proteins are present in the mitochondrial membrane of the parasite. Investigations of mpc1 or mpc2 gene knock‐out cells proved that T. brucei MPC1/2 proteins facilitate mitochondrial pyruvate transport. Interestingly, MPC is expressed not only in procyclic trypanosomes with fully activated mitochondria but also in bloodstream trypanosomes in which most of pyruvate is excreted. Moreover, MPC appears to be essential for bloodstream forms, supporting the recently emerging picture that the functions of mitochondria in bloodstream forms are more diverse than it was originally thought.  相似文献   

3.
Trypanosoma brucei, a parasitic protozoan that causes African trypanosomiasis, possesses a single member of the presequence and amino acid transporter (PRAT) protein family, which is referred to as TbTim17. In contrast, three homologous proteins, ScTim23, ScTim17, and ScTim22, are found in Saccharomyces cerevisiae and higher eukaryotes. Here, we show that TbTim17 cannot rescue Tim17, Tim23, or Tim22 mutants of S. cerevisiae. We expressed S. cerevisiae Tim23, Tim17, and Tim22 in T. brucei. These heterologous proteins were properly imported into mitochondria in the parasite. Further analysis revealed that although ScTim23 and ScTim17 were integrated into the mitochondrial inner membrane and assembled into a protein complex similar in size to TbTim17, only ScTim17 was stably associated with TbTim17. In contrast, ScTim22 existed as a protease-sensitive soluble protein in the T. brucei mitochondrion. In addition, the growth defect caused by TbTim17 knockdown in T. brucei was partially restored by the expression of ScTim17 but not by the expression of either ScTim23 or ScTim22, whereas the expression of TbTim17 fully complemented the growth defect caused by TbTim17 knockdown, as anticipated. Similar to the findings for cell growth, the defect in the import of mitochondrial proteins due to depletion of TbTim17 was in part restored by the expression of ScTim17 but was not complemented by the expression of either ScTim23 or ScTim22. Together, these results suggest that TbTim17 is divergent compared to ScTim23 but that its function is closer to that of ScTim17. In addition, ScTim22 could not be sorted properly in the T. brucei mitochondrion and thus failed to complement the function of TbTim17.  相似文献   

4.
There are a variety of complex metabolic processes ongoing simultaneously in the single, large mitochondrion of Trypanosoma brucei. Understanding the organellar environment and dynamics of mitochondrial proteins requires quantitative measurement in vivo. In this study, we have validated a method for immobilizing both procyclic stage (PS) and bloodstream stage (BS) T. brucei brucei with a high level of cell viability over several hours and verified its suitability for undertaking fluorescence recovery after photobleaching (FRAP), with mitochondrion-targeted yellow fluorescent protein (YFP). Next, we used this method for comparative analysis of the translational diffusion of mitochondrial RNA-binding protein 1 (MRP1) in the BS and in T. b. evansi. The latter flagellate is like petite mutant Saccharomyces cerevisiae because it lacks organelle-encoded nucleic acids. FRAP measurement of YFP-tagged MRP1 in both cell lines illuminated from a new perspective how the absence or presence of RNA affects proteins involved in mitochondrial RNA metabolism. This work represents the first attempt to examine this process in live trypanosomes.  相似文献   

5.
Trypanosoma brucei has a complex life cycle during which its single mitochondrion is subjected to major metabolic and morphological changes. While the procyclic stage (PS) of the insect vector contains a large and reticulated mitochondrion, its counterpart in the bloodstream stage (BS) parasitizing mammals is highly reduced and seems to be devoid of most functions. We show here that key Fe-S cluster assembly proteins are still present and active in this organelle and that produced clusters are incorporated into overexpressed enzymes. Importantly, the cysteine desulfurase Nfs, equipped with the nuclear localization signal, was detected in the nucleolus of both T. brucei life stages. The scaffold protein Isu, an interacting partner of Nfs, was also found to have a dual localization in the mitochondrion and the nucleolus, while frataxin and both ferredoxins are confined to the mitochondrion. Moreover, upon depletion of Isu, cytosolic tRNA thiolation dropped in the PS but not BS parasites.  相似文献   

6.
Recognition of mitochondrial targeting signals (MTS) by receptor translocases of outer and inner membranes of mitochondria is one of the prerequisites for import of nucleus-encoded proteins into this organelle. The MTS for a majority of trypanosomatid mitochondrial proteins have not been well defined. Here we analyzed the targeting signal for trypanosome alternative oxidase (TAO), which functions as the sole terminal oxidase in the infective form of Trypanosoma brucei. Deleting the first 10 of 24 amino acids predicted to be the classical N-terminal MTS of TAO did not affect its import into mitochondria in vitro. Furthermore, ectopically expressed TAO was targeted to mitochondria in both forms of the parasite even after deletion of first 40 amino acid residues. However, deletion of more than 20 amino acid residues from the N terminus reduced the efficiency of import. These data suggest that besides an N-terminal MTS, TAO possesses an internal mitochondrial targeting signal. In addition, both the N-terminal MTS and the mature TAO protein were able to target a cytosolic protein, dihydrofolate reductase (DHFR), to a T. brucei mitochondrion. Further analysis identified a cryptic internal MTS of TAO, located within amino acid residues 115 to 146, which was fully capable of targeting DHFR to mitochondria. The internal signal was more efficient than the N-terminal MTS for import of this heterologous protein. Together, these results show that TAO possesses a cleavable N-terminal MTS as well as an internal MTS and that these signals act together for efficient import of TAO into mitochondria.  相似文献   

7.
α-Ketoglutarate decarboxylase (α-KDE1) is a Krebs cycle enzyme found in the mitochondrion of the procyclic form (PF) of Trypanosoma brucei. The bloodstream form (BF) of T. brucei lacks a functional Krebs cycle and relies exclusively on glycolysis for ATP production. Despite the lack of a functional Krebs cycle, α-KDE1 was expressed in BF T. brucei and RNA interference knockdown of α-KDE1 mRNA resulted in rapid growth arrest and killing. Cell death was preceded by progressive swelling of the flagellar pocket as a consequence of recruitment of both flagellar and plasma membranes into the pocket. BF T. brucei expressing an epitope-tagged copy of α-KDE1 showed localization to glycosomes and not the mitochondrion. We used a cell line transfected with a reporter construct containing the N-terminal sequence of α-KDE1 fused to green fluorescent protein to examine the requirements for glycosome targeting. We found that the N-terminal 18 amino acids of α-KDE1 contain overlapping mitochondrion- and peroxisome-targeting sequences and are sufficient to direct localization to the glycosome in BF T. brucei. These results suggest that α-KDE1 has a novel moonlighting function outside the mitochondrion in BF T. brucei.  相似文献   

8.
Phb2p, a homolog of the tumor suppressor protein prohibitin, was identified in a genetic screen for suppressors of the loss of Mdm12p, a mitochondrial outer membrane protein required for normal mitochondrial morphology and inheritance in Saccharomyces cerevisiae. Phb2p and its homolog, prohibitin (Phb1p), were localized to the mitochondrial inner membrane and characterized as integral membrane proteins which depend on each other for their stability. In otherwise wild-type genetic backgrounds, null mutations in PHB1 and PHB2 did not confer any obvious phenotypes. However, loss of function of either PHB1 or PHB2 in cells with mitochondrial DNA deleted led to altered mitochondrial morphology, and phb1 or phb2 mutations were synthetically lethal when combined with a mutation in any of three mitochondrial inheritance components of the mitochondrial outer membrane, Mdm12p, Mdm10p, and Mmm1p. These results provide the first evidence of a role for prohibitin in mitochondrial inheritance and in the regulation of mitochondrial morphology.  相似文献   

9.
10.
Letm1 is a conserved protein in eukaryotes bearing energized mitochondria. Hemizygous deletion of its gene has been implicated in symptoms of the human disease Wolf-Hirschhorn syndrome. Studies almost exclusively performed in opisthokonts have attributed several roles to Letm1, including maintaining mitochondrial morphology, mediating either calcium or potassium/proton antiport, and facilitating mitochondrial translation. We address the ancestral function of Letm1 in the highly diverged protist and significant pathogen, Trypanosoma brucei. We demonstrate that Letm1 is involved in maintaining mitochondrial volume via potassium/proton exchange across the inner membrane. This role is essential in the vector-dwelling procyclic and mammal-infecting bloodstream stages as well as in Trypanosoma brucei evansi, a form of the latter stage lacking an organellar genome. In the pathogenic bloodstream stage, the mitochondrion consumes ATP to maintain an energized state, whereas that of T. brucei evansi also lacks a conventional proton-driven membrane potential. Thus, Letm1 performs its function in different physiological states, suggesting that ion homeostasis is among the few characterized essential pathways of the mitochondrion at this T. brucei life stage. Interestingly, Letm1 depletion in the procyclic stage can be complemented by exogenous expression of its human counterpart, highlighting the conservation of protein function between highly divergent species. Furthermore, although mitochondrial translation is affected upon Letm1 ablation, it is an indirect consequence of K+ accumulation in the matrix.  相似文献   

11.
12.
Mitochondria consist of four compartments, outer membrane, intermembrane space, inner membrane, and matrix; each harboring specific functions and structures. In this study, we used LC‐MS/MS to characterize the protein composition of Trypanosoma brucei mitochondrial (mt) membranes, which were enriched by different biochemical fractionation techniques. The analyses identified 202 proteins that contain one or more transmembrane domain(s) and/or positive GRAVY scores. Of these, various criteria were used to assign 72 proteins to mt membranes with high confidence, and 106 with moderate‐to‐low confidence. The sub‐cellular localization of a selected subset of 13 membrane assigned proteins was confirmed by tagging and immunofluorescence analysis. While most proteins assigned to mt membrane have putative roles in metabolic, energy generating, and transport processes, ~50% have no known function. These studies result in a comprehensive profile of the composition and sub‐organellar location of proteins in the T. brucei mitochondrion thus, providing useful information on mt functions.  相似文献   

13.
Mitochondria have many different functions, the most important one of which is oxidative phosphorylation. They originated from an endosymbiotic event between a bacterium and an archaeal host cell. It was the evolution of a protein import system that marked the boundary between the endosymbiotic ancestor of the mitochondrion and a true organelle that is under the control of the nucleus. In present day mitochondria more than 95% of all proteins are imported from the cytosol in a proces mediated by hetero‐oligomeric protein complexes in the outer and inner mitochondrial membranes. In this review we compare mitochondrial protein import in the best studied model system yeast and the parasitic protozoan Trypanosoma brucei. The 2 organisms are phylogenetically only remotely related. Despite the fact that mitochondrial protein import has the same function in both species, only very few subunits of their import machineries are conserved. Moreover, while yeast has 2 inner membrane protein translocases, one specialized for presequence‐containing and one for mitochondrial carrier proteins, T. brucei has a single inner membrane translocase only, that mediates import of both types of substrates. The evolutionary implications of these findings are discussed.   相似文献   

14.
The genes for all cytoplasmic and potentially all mitochondrial aminoacyl-tRNA synthetases (aaRSs) were identified, and all those tested by RNA interference were found to be essential for the growth of Trypanosoma brucei. Some of these enzymes were localized to the cytoplasm or mitochondrion, but most were dually localized to both cellular compartments. Cytoplasmic T. brucei aaRSs were organized in a multiprotein complex in both bloodstream and procyclic forms. The multiple aminoacyl-tRNA synthetase (MARS) complex contained at least six aaRS enzymes and three additional non-aaRS proteins. Steady-state kinetic studies showed that association in the MARS complex enhances tRNA-aminoacylation efficiency, which is in part dependent on a MARS complex-associated protein (MCP), named MCP2, that binds tRNAs and increases their aminoacylation by the complex. Conditional repression of MCP2 in T. brucei bloodstream forms resulted in reduced parasite growth and infectivity in mice. Thus, association in a MARS complex enhances tRNA-aminoacylation and contributes to parasite fitness. The MARS complex may be part of a cellular regulatory system and a target for drug development.  相似文献   

15.

Background

Trypanosomatid parasites possess a single mitochondrion which is classically involved in the energetic metabolism of the cell, but also, in a much more original way, through its single and complex DNA (termed kinetoplast), in the correct progress of cell division. In order to identify proteins potentially involved in the cell cycle, we performed RNAi knockdowns of 101 genes encoding mitochondrial proteins using procyclic cells of Trypanosoma brucei.

Results

A major cell growth reduction was observed in 10 cases and a moderate reduction in 29 other cases. These data are overall in agreement with those previously obtained by a case-by-case approach performed on chromosome 1 genes, and quantitatively with those obtained by “high-throughput phenotyping using parallel sequencing of RNA interference targets” (RIT-seq). Nevertheless, a detailed analysis revealed many qualitative discrepancies with the RIT-seq-based approach. Moreover, for 37 out of 39 mutants for which a moderate or severe growth defect was observed here, we noted abnormalities in the cell cycle progress, leading to increased proportions of abnormal cell cycle stages, such as cells containing more than 2 kinetoplasts (K) and/or more than 2 nuclei (N), and modified proportions of the normal phenotypes (1N1K, 1N2K and 2N2K).

Conclusions

These data, together with the observation of other abnormal phenotypes, show that all the corresponding mitochondrial proteins are involved, directly or indirectly, in the correct progress or, less likely, in the regulation, of the cell cycle in T. brucei. They also show how post-genomics analyses performed on a case-by-case basis may yield discrepancies with global approaches.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1505-5) contains supplementary material, which is available to authorized users.  相似文献   

16.
Glycerol-3-phosphate dehydrogenases (G3PDHs) constitute a shuttle that serves for regeneration of NAD+ reduced during glycolysis. This NAD-dependent enzyme is employed in glycolysis and produces glycerol-3-phosphate from dihydroxyacetone phosphate, while its flavin adenine dinucleotide (FAD)-dependent homologue catalyzes a reverse reaction coupled to the respiratory chain. Trypanosoma brucei possesses two FAD-dependent G3PDHs. While one of them (mitochondrial G3PDH [mtG3PDH]) has been attributed to the mitochondrion and seems to be directly involved in G3PDH shuttle reactions, the function of the other enzyme (putative G3PDH [putG3PDH]) remains unknown. In this work, we used RNA interference and protein overexpression and tagging to shed light on the relative contributions of both FAD-G3PDHs to overall cellular metabolism. Our results indicate that mtG3PDH is essential for the bloodstream stage of T. brucei, while in the procyclic stage the enzyme is dispensable. Expressed putG3PDH-V5 was localized to the mitochondrion, and the data obtained by digitonin permeabilization, Western blot analysis, and immunofluorescence indicate that putG3PDH is located within the mitochondrion.  相似文献   

17.
A mitochondrial inner membrane protein, designated MIX, seems to be essential for cell viability. The deletion of both alleles was not possible, and the deletion of a single allele led to a loss of virulence and aberrant mitochondrial segregation and cell division in Leishmania major. However, the mechanism by which MIX exerts its effect has not been determined. We show here that MIX is also expressed in the mitochondrion of Trypanosoma brucei, and using RNA interference, we found that its loss leads to a phenotype that is similar to that described for Leishmania. The loss of MIX also had a major effect on cytochrome c oxidase activity, on the mitochondrial membrane potential, and on the production of mitochondrial ATP by oxidative phosphorylation. Using a tandem affinity purification tag, we found that MIX is associated with a multiprotein complex that contains subunits of the mitochondrial cytochrome c oxidase complex (respiratory complex IV), the composition of which was characterized in detail. The specific function of MIX is unknown, but it appears to be important for the function of complex IV and for mitochondrial segregation and cell division in T. brucei.  相似文献   

18.
The composition of the large, single, mitochondrion (mt) of Trypanosoma brucei was characterized by MS (2‐D LC‐MS/MS and gel‐LC‐MS/MS) analyses. A total of 2897 proteins representing a substantial proportion of procyclic form cellular proteome were identified, which confirmed the validity of the vast majority of gene predictions. The data also showed that the genes annotated as hypothetical (species specific) were overpredicted and that virtually all genes annotated as hypothetical, unlikely are not expressed. By comparing the MS data with genome sequence, 40 genes were identified that were not previously predicted. The data are placed in a publicly available web‐based database (www.TrypsProteome.org). The total mitochondrial proteome is estimated at 1008 proteins, with 401, 196, and 283 assigned to the mt with high, moderate, and lower confidence, respectively. The remaining mitochondrial proteins were estimated by statistical methods although individual assignments could not be made. The identified proteins have predicted roles in macromolecular, metabolic, energy generating, and transport processes providing a comprehensive profile of the protein content and function of the T. brucei mt.  相似文献   

19.
Maintenance of the lipid composition is important for proper function and homeostasis of the mitochondrion. In Trypanosoma brucei, the enzymes involved in the biosynthesis of the mitochondrial phospholipid, phosphatidylglycerol (PG), have not been studied experimentally. We now report the characterization of T. brucei phosphatidylglycerophosphate synthase (TbPgps), the rate‐limiting enzyme in PG formation, which was identified based on its homology to other eukaryotic Pgps. Lipid quantification and metabolic labelling experiments show that TbPgps gene knock‐down results in loss of PG and a reduction of another mitochondria‐specific phospholipid, cardiolipin. Using immunohistochemistry and immunoblotting of digitonin‐isolated mitochondria, we show that TbPgps localizes to the mitochondrion. Moreover, reduced TbPgps expression in T. brucei procyclic forms leads to alterations in mitochondrial morphology, reduction in the amounts of respiratory complexes III and IV and, ultimately, parasite death. Using native polyacrylamide gel electrophoresis we demonstrate for the first time in a eukaryotic organism that TbPgps is a component of a 720 kDa protein complex, co‐migrating with T. brucei cardiolipin synthase and cytochrome c1, a protein of respiratory complex III.  相似文献   

20.
High temperature requirement A2 (HtrA2)/Omi is a serine protease localized in mitochondria. In response to apoptotic stimuli, HtrA2 is released to the cytoplasm and cleaves many proteins, including XIAP, Apollon/BRUCE, WT1, and Ped/Pea-15, to promote apoptosis. However, the function of HtrA2 in mitochondria under normal conditions remains unclear. Here, we show that the mitochondrial proteins, LON protease 1 (LONP1) and prohibitin (PHB), are overexpressed in HtrA2−/− mouse embryonic fibroblast (MEF) cells and HtrA2 knock-down HEK293T cells. We also confirm the effect of the HtrA2 protease on the stability of the above mitochondrial quality control proteins in motor neuron degeneration 2 (mnd2) mice, which have a greatly reduced protease activity as a result of a Ser276Cys missense mutation of the HtrA2 gene. In addition, PHB interacts with and is directly cleaved by HtrA2. Luminescence assays demonstrate that the intracellular ATP level is decreased in HtrA2−/− cells compared to HtrA2+/+ cells. HtrA2 deficiency causes a decrease in the mitochondrial membrane potential, and reactive oxygen species (ROS) generation is greater in HtrA2−/− cells than in HtrA2+/+ cells. Our results implicate that HtrA2 might be an upstream regulator of mitochondrial homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号