首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies have demonstrated that, in Brazil and South America, strains of Toxoplasma gondii are often genotypically and biologically different from those found in countries on other continents. The objective of this study was to genotypically characterize T. gondii isolates from naturally infected sheep in herds in the southern region of the state of Rio Grande do Sul, Brazil, by means of the polymerase chain reaction with restriction fragment length polymorphism (PCR-RFLP). Five T. gondii isolates obtained from sheep in five municipalities in the state of Rio Grande do Sul were used. Application of multilocus PCR-RFLP multilocus using 12 genetic markers (SAG1, 5′3′ SAG2, alt. SAG2, SAG3, BTUB, c22-8, c29-2, GRA6, L358, PK1, APICO and CS3) revealed four different genotypes in the five isolates studied: clonal type II (TgOvBrRS4), type BrIV (TgOvBrRS2 and TgOvBrRS3) and two new non-archetypal genotypes, ToxoDB-RFLP#270 and #271 (TgOvBrRS1 and TgOvBrRS5, respectively). The genotype structure found in the T. gondii isolates from naturally infected sheep in the southern region of Brazil was revealed to have high diversity. This study confirms the presence of rare circulation of the clonal type II genotype in Brazil.  相似文献   

2.
The prevalence of Toxoplasma gondii infection in birds has epidemiological significance because birds are indeed considered as a good indicator of environmental contamination by T. gondii oocysts. In this study, the prevalence of T. gondii in 313 house sparrows in Lanzhou, northwestern China was assayed by the modified agglutination test (MAT). Antibodies to T. gondii were positive in 39 (12.46%) of 313 samples (MAT titer ≥ 1:5). Tissues of heart, brain, and lung from the 39 seropositive house sparrows were tested for T. gondii DNA, 11 of which were found to be positive for the T. gondii B1 gene by PCR amplification. These positive DNA samples were typed at 9 genetic markers, including 8 nuclear loci, i.e., SAG1, 5''- and 3''-SAG2, alternative SAG2, SAG3, GRA6, L358, PK1, c22-8 and an apicoplast locus Apico. Of them, 4 isolates were genotyped with complete data for all loci, and 2 genotypes (Type II variants; ToxoDB #3 and a new genotype) were identified. These results showed that there is a potential risk for human infection with T. gondii in this region. To our knowledge, this is the first report of T. gondii seroprevalence in house sparrows in China.  相似文献   

3.

Background

Recent population structure studies of T. gondii revealed that a few major clonal lineages predominated in different geographical regions. T. gondii in South America is genetically and biologically divergent, whereas this parasite is remarkably clonal in North America and Europe with a few major lineages including Types I, II and III. Information on genotypes and mouse virulence of T. gondii isolates from China is scarce and insufficient to investigate its population structure, evolution, and transmission.

Methodology/Principal Findings

Genotyping of 23 T. gondii isolates from different hosts using 10 markers for PCR-restriction fragment length polymorphism analyses (SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1 and Apico) revealed five genotypes; among them three genotypes were atypical and two were archetypal. Fifteen strains belong to the Chinese 1 lineage, which has been previously reported as a widespread lineage from swine, cats, and humans in China. Two human isolates fall into the type I and II lineages and the remaining isolates belong to two new atypical genotypes (ToxoDB#204 and #205) which has never been reported in China. Our results show that these genotypes of T. gondii isolates are intermediately or highly virulent in mice except for the strain TgCtwh6, which maintained parasitemia in mice for 35 days post infection although it possesses the uniform genotype of Chinese 1. Additionally, phylogenetic network analyses of all isolates of genotype Chinese 1 are identical, and there is no variation based on the sequence data generated for four introns (EF1, HP2, UPRT1 and UPRT7) and two dense granule proteins (GRA6 and GRA7).

Conclusion/Significance

A limited genetic diversity was found and genotype Chinese 1 (ToxoDB#9) is dominantly circulating in mainland China. The results will provide a useful profile for deep insight to the population structure, epidemiology and biological characteristics of T. gondii in China.  相似文献   

4.
Toxoplasma 3 main clonal lineages are designated as type I, II, and III; however, atypical and mixed genotypes were also reported. This study was conducted for detection of Toxoplasma gondii genotypes in rats (Rattus rattus) in Riyadh region, Saudi Arabia. PCR test on T. gondii B1 gene was conducted on ELISA IgM positive samples for confirmation of the infection. However, genetic analysis of the SAG2 locus was performed to determine T. gondii genotypes using PCR-RFLP technique. PCR test on T. gondii B1gene showed that 22 (81.5%) out of the 27 ELISA IgM positive samples have T. gondii DNA. Genotypic analysis shows that, of the total 22 PCR positive samples, only 13 (59.1%) were of type II, 7 (31.8%) were of type III, and 2 (9.1%) were of an unknown genotype. It is obvious that the prevalence of both type II and III is high in rats. No reports have been available on T. gondii genotypes among rats in Riyadh region, and only little is known about its seroprevalence in rats. Future studies on T. gondii genotypes in rats using multi-locus markers is needed in Riyadh region, Saudi Arabia for better understanding of T. gondii pathogenesis and treatment in humans and animals.  相似文献   

5.
Toxoplasma gondii infections are prevalent in humans and animals worldwide. In North America and Europe, T. gondii is highly clonal, consisting of three distinct lineages (Types I, II and III), whereas in South America, T. gondii is highly diverse with a few lineages expanded in the population. However, there is limited data on the diversity of T. gondii in Asia. Here we report the genetic characterization of T. gondii isolates from different hosts and geographical locations in China using the multilocus PCR–RFLP. A total of 17 T. gondii isolates from humans (3 strains), sheep (1 strain), pigs (5 strains) and cats (8 strains) were typed at 10 genetic markers including 9 nuclear loci SAG1, SAG2, SAG3, BTUB, GRA6, L358, PK1, c22-8, c29-2 and an apicoplast locus Apico. Four genotypes were revealed, including three previously reported and one new genotype. Three isolates belong to the clonal Type I lineage, one isolate belongs to the clonal Type II lineage, and the rest 13 isolates are grouped into two genotypes. This is the first report of genetic typing of T. gondii isolates from different hosts and geographical locations in China using a number of genetic markers, which has implications for the studies of population genetic structures of T. gondii, as well as for the prevention and control of T. gondii infections in humans and animals in China.  相似文献   

6.
7.
The prevalence and genotype of Toxoplasma gondii infection in dogs in Henan Province, Central China was investigated. A total of 125 blood samples were collected from pet dogs during April to June 2013, and all samples were examined by indirect hemagglutination antibody test (IHA) and nested PCR. The overall T. gondii prevalence in pet dogs was 24.0% (30/125), with 20.8% (26/125) in IHA and 10.4% (13/125) in PCR, respectively. No statistical associations were found between animal gender and age and the prevalence of T. gondii infection. Thirteen positive DNA samples were genotyped using 11 PCR-RFLP markers, including SAG1, (3’+5’) SAG2, alt.SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, and Apico. Of these, only 2 samples were genotyped with complete data for all loci, and a novel genotype (type III at SAG3 and GRA6 loci, and type I at other loci) was identified. This is the first report of genetic characterization of T. gondii infection in dogs in China.  相似文献   

8.
A total of 421 fecal samples from a variety of captive and wild marsupial hosts in Western Australia, Victoria and South Australia were screened for the presence of Giardia species/genotypes using PCR and sequence analysis of a fragment of the 18S rRNA gene. Giardia spp. were identified in 13.4% (28/209) of samples from captive marsupials and 13.7% (29/212) of samples from wild marsupials. Sequence analysis at the 18S locus identified the zoonotic Giardia duodenalis Genotypes A and B in both captive and wild marsupials. Eight isolates were typed as genotype B3 and B4 at the gdh locus, although 7/8 were typed as genotype A at the 18S rRNA locus. The possible reasons for this discordance are discussed. This is the first report of genotype B and only the second report of genotype A in marsupials. As some of the genotype B isolates were identical to human-derived Giardia gdh sequences, these results suggest that marsupials in catchments may pose a public health risk and therefore warrant further investigation.  相似文献   

9.
A monoclonal antibody against Toxoplasma gondii of Tg556 clone (Tg556) blotted a 29 kDa protein, which was localized in the dense granules of tachyzoites and secreted into the parasitophorous vacuolar membrane (PVM) after infection to host cells. A cDNA fragment encoding the protein was obtained by screening a T. gondii cDNA expression library with Tg556, and the full-length was completed by 5''-RACE of 2,086 bp containing an open reading frame (ORF) of 669 bp. The ORF encoded a polypeptide of 222 amino acids homologous to the revised GRA3 but not to the first reported one. The polypeptide has 3 hydrophobic moieties of an N-terminal stop transfer sequence and 2 transmembrane domains (TMD) in posterior half of the sequence, a cytoplasmic localization motif after the second TMD and an endoplasmic reticulum (ER) retrival motif in the C-terminal end, which suggests GRA3 as a type III transmembrane protein. With the ORF of GRA3, yeast two-hybrid assay was performed in HeLa cDNA expression library, which resulted in the interaction of GRA3 with calcium modulating ligand (CAMLG), a type II transmembrane protein of ER. The specific binding of GRA3 and CAMLG was confirmed by glutathione S-transferase (GST) pull-down and immunoprecipitation assays. The localities of fluorescence transfectionally expressed from GRA3 and CAMLG plasmids were overlapped completely in HeLa cell cytoplasm. In immunofluorescence assay, GRA3 and CAMLG were shown to be co-localized in the PVM of host cells. Structural binding of PVM-inserted GRA3 to CAMLG of ER suggested the receptor-ligand of ER recruitment to PVM during the parasitism of T. gondii.  相似文献   

10.
Little is known of the genetic diversity of Toxoplasma gondii circulating in wildlife. In the present study wild animals, from the USA were examined for T. gondii infection. Tissues of naturally exposed animals were bioassayed in mice for isolation of viable parasites. Viable T. gondii was isolated from 31 animals including, to our knowledge for the first time, from a bald eagle (Haliaeetus leucocephalus), five gray wolves (Canis lupus), a woodrat (Neotoma micropus), and five Arctic foxes (Alopex lagopus). Additionally, 66 T. gondii isolates obtained previously, but not genetically characterised, were revived in mice. Toxoplasma gondii DNA isolated from these 97 samples (31 + 66) was characterised using 11 PCR-restriction fragment length polymorphism (RFLP) markers (SAG1, 5′- and 3′-SAG2, alt.SAG2, SAG3, BTUB, GRA6, c22–8, c29–2, L358, PK1 and Apico). A total of 95 isolates were successfully genotyped. In addition to clonal Types II, and III, 12 different genotypes were found. These genotype data were combined with 74 T. gondii isolates previously characterised from wildlife from North America and a composite data set of 169 isolates comprised 22 genotypes, including clonal Types II, III and 20 atypical genotypes. Phylogenetic network analysis showed limited diversity with dominance of a recently designated fourth clonal type (Type 12) in North America, followed by the Type II and III lineages. These three major lineages together accounted for 85% of strains in North America. The Type 12 lineage includes previously identified Type A and X strains from sea otters. This study revealed that the Type 12 lineage accounts for 46.7% (79/169) of isolates and is dominant in wildlife of North America. No clonal Type I strain was identified among these wildlife isolates. These results suggest that T. gondii strains in wildlife from North America have limited diversity, with the occurrence of only a few major clonal types.  相似文献   

11.
Toxoplasma gondii is an opportunistic protozoan parasite that can infect almost all warm-blooded animals including humans with a worldwide distribution. Micronemes play an important role in invasion process of T. gondii, associated with the attachment, motility, and host cell recognition. In this research, sequence diversity in microneme protein 6 (MIC6) gene among 16 T. gondii isolates from different hosts and geographical regions and 1 reference strain was examined. The results showed that the sequence of all the examined T. gondii strains was 1,050 bp in length, and their A + T content was between 45.7% and 46.1%. Sequence analysis presented 33 nucleotide mutation positions (0-1.1%), resulting in 23 amino acid substitutions (0-2.3%) aligned with T. gondii RH strain. Moreover, T. gondii strains representing the 3 classical genotypes (Type I, II, and III) were separated into different clusters based on the locus of MIC6 using phylogenetic analyses by Bayesian inference (BI), maximum parsimony (MP), and maximum likelihood (ML), but T. gondii strains belonging to ToxoDB #9 were separated into different clusters. Our results suggested that MIC6 gene is not a suitable marker for T. gondii population genetic studies.  相似文献   

12.

Background

Environmental transmission of the zoonotic parasite Toxoplasma gondii, which is shed only by felids, poses risks to human and animal health in temperate and tropical ecosystems. Atypical T. gondii genotypes have been linked to severe disease in people and the threatened population of California sea otters. To investigate land-to-sea parasite transmission, we screened 373 carnivores (feral domestic cats, mountain lions, bobcats, foxes, and coyotes) for T. gondii infection and examined the distribution of genotypes in 85 infected animals sampled near the sea otter range.

Methodology/Principal Findings

Nested PCR-RFLP analyses and direct DNA sequencing at six independent polymorphic genetic loci (B1, SAG1, SAG3, GRA6, L358, and Apico) were used to characterize T. gondii strains in infected animals. Strains consistent with Type X, a novel genotype previously identified in over 70% of infected sea otters and four terrestrial wild carnivores along the California coast, were detected in all sampled species, including domestic cats. However, odds of Type X infection were 14 times higher (95% CI: 1.3–148.6) for wild felids than feral domestic cats. Type X infection was also linked to undeveloped lands (OR = 22, 95% CI: 2.3–250.7). A spatial cluster of terrestrial Type II infection (P = 0.04) was identified in developed lands bordering an area of increased risk for sea otter Type II infection. Two spatial clusters of animals infected with strains consistent with Type X (P≤0.01) were detected in less developed landscapes.

Conclusions

Differences in T. gondii genotype prevalence among domestic and wild felids, as well as the spatial distribution of genotypes, suggest co-existing domestic and wild T. gondii transmission cycles that likely overlap at the interface of developed and undeveloped lands. Anthropogenic development driving contact between these cycles may increase atypical T. gondii genotypes in domestic cats and facilitate transmission of potentially more pathogenic genotypes to humans, domestic animals, and wildlife.  相似文献   

13.
Due to their ground-feeding behaviour, free-ranging chickens and turkeys are exposed to oocysts and are good indicators of the presence of Toxoplasma gondii in the environment. In addition, poultry may become infected by ingestion of tissues of infected intermediate hosts such as small rodents. Free-ranging poultry are considered an important source of T. gondii infection in humans, especially in developing countries. Knowledge on T. gondii genotypes in infected animals and humans is important for understanding the epidemiology of T. gondii infections. The aim of the present study was to analyse the ability of experimentally infected turkeys and chickens to develop a T. gondii clonal type-specific antibody response (IgY) after i.v. inoculation with tachyzoites of three T. gondii clonal lineages, types I, II and III. A peptide microarray displaying a panel of 101 different synthetic peptides was used for serotyping. Peptide sequences were derived from polymorphic regions of 16?T. gondii proteins (GRA1, GRA3-7, SAG1, SAG2A, SAG3, SAG4, SRS1, SRS2, ROP1, NTPase I and NTPase III and BSR4). The array was probed with 120 sera from experimentally infected chickens and turkeys inoculated with different doses of T. gondii tachyzoites (104, 103 and 102) collected from isolates representative for T. gondii clonal types I (RH), II (ME49) or III (NED) and uninfected controls. After screening of the peptides with reference sera from chickens and turkeys, and evaluation of data by Receiver Operating Characteristics analysis, 41 and 40 peptides were identified that appeared suitable to detect type-specific reactions with sera collected at 2, 5, 7 and 9?weeks p.i. Selected peptides allowed the identification of T. gondii clonal types, until 9?week p.i., which the chickens or turkeys had been inoculated with. At 9?weeks p.i., a high proportion of the experimentally infected chickens (67% (12/18)) and turkeys (61% (11/18)) no longer reacted with the selected peptides. Serotyping of the infection in individual chickens or turkeys was only possible when the whole peptide panel was applied. Clonal type-specific antibody responses were dynamic in both poultry species and depended on the individual animal and the time after infection.  相似文献   

14.
Toxoplasmosis is an important zoonotic disease that can cause abortion in humans and animals. The aim of this study was isolation and subsequent genotyping of Toxoplasma gondii isolates in ovine aborted fetuses. During 2012-2013, 39 ovine aborted fetuses were collected from sheep flocks in Khorasan Razavi Province, Iran. The brain samples were screened for detection of the parasite DNA by nested PCR. The positive brain samples were bioassayed in Webster Swiss mice. The serum samples of mice were examined for T. gondii antibodies by IFAT at 6 weeks post inoculation, and T. gondii cysts were searched in brain tissue samples of seropositive mice. The positive samples were genotyped by using a PCR-RLFP method. Subsequently, GRA6 sequences of isolates were analyzed using a phylogenetic method. The results revealed that T. gondii DNA was detected in 54% (20/37, 95% CI 38.4-69.0%) brain samples of ovine aborted fetuses. In bioassay of mice, only 2 samples were virulent and the mice were killed at 30 days post inoculation, while the others were non-virulent to mice. The size of cysts ranged 7-22 µm. Complete genotyping data for GRA6 locus were observed in 5 of the 20 samples. PCR-RLFP results and phylogenetic analysis revealed that all of the isolated samples were closely related to type I. For the first time, we could genotype and report T. gondii isolates from ovine aborted fetuses in Khorasan Razavi Province, Iran. The results indicate that the T. gondii isolates are genetically related to type I, although most of them were non-virulent for mice.  相似文献   

15.
Toxoplasma gondii is a worldwide prevalent parasite, affecting a wide range of mammals and human beings. Little information is available about the distribution of genetic diversity of T. gondii infection in minks (Neovison vison). This study was conducted to estimate the prevalence and genetic characterization of T. gondii isolates from minks in China. A total of 418 minks brain tissue samples were collected from Jilin and Hebei provinces, northern China. Genomic DNA were extracted and assayed for T. gondii infection by semi-nested PCR of B1 gene. The positive DNA samples were typed at 10 genetic markers (SAG1, SAG2 (5''+3'' SAG2, alter.SAG2), SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, and Apico) using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technology. 36 (8.6%) of 418 DNA samples were overall positive for T. gondii. Among them, 5 samples were genotyped at all loci, and 1 sample was genotyped for 9 loci. In total, five samples belong to ToxoDB PCR-RFLP genotype#9, one belong to ToxoDB genotye#3. To our knowledge, this is the first report of genetic characterization of T. gondii in minks in China. Meanwhile, these results revealed a distribution of T. gondii infection in minks in China. These data provided base-line information for controlling T. gondii infection in minks.  相似文献   

16.
The intracellular protozoan parasite Toxoplasma gondii develops within the parasitophorous vacuole (PV), an intracellular niche in which it secretes proteins from secretory organelles named dense granules and rhoptries. Here, we describe a new dense granule protein that should now be referred to as GRA12, and that displays no homology with other proteins. Immunofluorescence and immuno-electron microscopy showed that GRA12 behaves similarly to both GRA2 and GRA6. It is secreted into the PV from the anterior pole of the parasite soon after the beginning of invasion, transits to the posterior invaginated pocket of the parasite where a membranous tubulovesicular network is first assembled, and finally resides throughout the vacuolar space, associated with the mature membranous nanotubular network. GRA12 fails to localise at the parasite posterior end in the absence of GRA2. Within the vacuolar space, like the other GRA proteins, GRA12 exists in both a soluble and a membrane-associated form. Using affinity chromatography experiments, we showed that in both the parasite and the PV soluble fractions, GRA12 is purified with the complex of GRA proteins associated with a tagged version of GRA2 and that this association is lost in the PV membranous fraction.  相似文献   

17.
BackgroundDiagnosis of toxoplasmic encephalitis (TE) is challenging under the best clinical circumstances. The poor clinical sensitivity of quantitative polymerase chain reaction (qPCR) for Toxoplasma in blood and CSF and the limited availability of molecular diagnostics and imaging technology leaves clinicians in resource-limited settings with few options other than empiric treatment.Methology/principle findingsHere we describe proof of concept for a novel urine diagnostics for TE using Poly-N-Isopropylacrylamide nanoparticles dyed with Reactive Blue-221 to concentrate antigens, substantially increasing the limit of detection. After nanoparticle-concentration, a standard western blotting technique with a monoclonal antibody was used for antigen detection. Limit of detection was 7.8pg/ml and 31.3pg/ml of T. gondii antigens GRA1 and SAG1, respectively. To characterize this diagnostic approach, 164 hospitalized HIV-infected patients with neurological symptoms compatible with TE were tested for 1) T. gondii serology (121/147, positive samples/total samples tested), 2) qPCR in cerebrospinal fluid (11/41), 3) qPCR in blood (10/112), and 4) urinary GRA1 (30/164) and SAG1 (12/164). GRA1 appears to be superior to SAG1 for detection of TE antigens in urine. Fifty-one HIV-infected, T. gondii seropositive but asymptomatic persons all tested negative by nanoparticle western blot and blood qPCR, suggesting the test has good specificity for TE for both GRA1 and SAG1. In a subgroup of 44 patients, urine samples were assayed with mass spectrometry parallel-reaction-monitoring (PRM) for the presence of T. gondii antigens. PRM identified antigens in 8 samples, 6 of which were concordant with the urine diagnostic.Conclusion/significancesOur results demonstrate nanoparticle technology’s potential for a noninvasive diagnostic test for TE. Moving forward, GRA1 is a promising target for antigen based diagnostics for TE.  相似文献   

18.
Toxoplasma gondii atypical type II genotype was diagnosed in a pet peach-faced lovebird (Agapornis roseicollis) based on histopathology, immunohistochemistry, and multilocus DNA typing. The bird presented with severe neurological signs, and hematology was suggestive of chronic granulomatous disease. Gross post-mortem examination revealed cerebral hemorrhage, splenomegaly, hepatitis, and thickening of the right ventricular free wall. Histologic sections of the most significant lesions in the brain revealed intralesional protozoan organisms associated with malacia, spongiform changes, and a mild histiocytic response, indicative of diffuse, non-suppurative encephalitis. Immunohistochemistry confirmed the causative organisms to be T. gondii. DNA isolated from the brain was used to confirm the presence of T. gondii DNA. Multilocus genotyping based on SAG1, altSAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, and Apico markers demonstrated the presence of ToxoDB PCR-RFLP genotype #3 and B1 gene as atypical T. gondii type II. The atypical type II strain has been previously documented in Australian wildlife, indicating an environmental transmission route.  相似文献   

19.
Toxoplasma gondii dense granule proteins (GRAs) are secreted abundantly in both the tachyzoite and bradyzoite stages of the parasite and are known to localize to various compartments of the parasitophorous vacuole (PV) that interfaces with the host cell milieu. Thus, GRAs may play significant roles in the biogenesis of the PV that is important for survival of intracellular T. gondii. GRA10 is a dense granule protein whose role in T. gondii has not yet been characterized. Therefore, in this study, we endeavored to determine the role of GRA10 in the growth and survival of intracellular T. gondii by using phosphorodiamidate morpholino oligomers (PPMOs) antisense knockdown approach to disrupt the translation of GRA10 mRNA in the parasites. We expressed and purified a truncated recombinant GRA10 protein to generate anti-GRA10 polyclonal antibodies that we used to characterize GRA10 in T. gondii. We found that GRA10 is a soluble, dense granule-associated protein that is secreted into the parasite cytosol and the parasitophorous vacuole milieu. Using in vitro cultures, we found that knockdown of GRA10 results in severe inhibition of T. gondii growth in human fibroblasts and in ovine monocytic cells. Together, our findings define GRA10 as a dense granule protein that plays a significant role in the growth and propagation of intracellular T. gondii in human fibroblasts and in ovine monocytic cells.  相似文献   

20.
Recent studies have demonstrated that strains of Toxoplasma gondii in Brazil are frequently different from those detected in other countries, thus making an accurate phylogenetic analysis difficult. The aim of this study was to genetically characterize T. gondii samples from sheep raised in southern Bahia and intended for human consumption, by means of PCR–RFLP and sequencing techniques. Experimental samples were obtained from 200 sheep brains purchased at butcher's shops in Itabuna, Bahia, Brazil. In total, three samples (#54, #124 and #127) were T. gondii-positive. The application of multilocus PCR–RFLP using ten molecular markers (SAG1, SAG2, SAG3, BTUB, c22-8, PK1, GRA6, L358, c-29-2 and Apico) revealed a single genotype common to all samples of this study, which differed from any other published T. gondii genotypes. An atypical allele was detected in the L358 genetic marker; this has not previously been shown in any other South American T. gondii isolates. Phylogenetic analysis on the sequences from multilocus PCR sequencing revealed that these three samples were classified into the same lineage. Extensive indel regions were detected in the Apico genetic marker. Together, our findings revealed a new Brazilian T. gondii genotype. Further research should be conducted to enrich the database of Brazilian T. gondii genotypes from different regions. This will make it possible to understand the phylogenetic relationship between isolates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号