首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. Models of semiarid vegetation dynamics were evaluated to explain changes in the grassland of interior South Island, New Zealand. Annual records were taken for six years of plant species height frequency and percentage ground cover in five plots established in 1986. One subplot at each site was fenced to exclude sheep, one to exclude rabbits and sheep, and one remained unfenced as a control. Records from 1986–1992 were analysed by ordination. The overall pattern of vegetation change shows considerable year-to-year variation. At some sites, variation in vegetation composition between years was as great as, or greater than, that between grazed and ungrazed subplots. Such variation is particularly evident in grazed vegetation, perhaps because it is under greater stress than ungrazed vegetation. At one site changes in vegetation total cover and species composition could be statistically related to rainfall during the first half of the growing season. The only general trends following cessation of grazing were for perennials to increase in frequency, and for year-to-year changes to become smaller with time. Total vegetation cover values seldom changed as a result of cessation of grazing, but tended to follow year-to-year changes in species frequency. The results do not in general support switch/state-and-transition models of semi-arid vegetation dynamics. Vegetation change follows changes in grazing and climate with little lag. This most closely conforms with the Pulse-phase dynamic model.  相似文献   

2.
Response of floodplain grassland plant communities to altered water regimes   总被引:2,自引:1,他引:1  
Floodplain grasslands are often composed of a mosaic of plant communities controlled by hydrological regime. This article examines the sensitivity of floodplain grassland plant communities to water regime using reciprocal transplantation of an inundation grassland and a flood-meadow within an English floodplain. Experimental treatments comprised control, transplanted and lifted plots; the last treatment, in order to elucidate any disturbance effects of transplantation. Plant community response was analysed using species abundance and their ecological traits. Results from both communities showed substantial annual variations related to hydrology, including significant species changes, but generally, vegetation seemed to be responding to drier conditions following a major flood event. This ‘drying’ trend was characterised by increased species diversity, a greater abundance of competitive species and fewer typical wetland plants. Transplanted community composition increasingly resembled receptor sites and transplant effects were most pronounced the first year after treatment for both vegetation types. Differential responses to water regime were detected for the two plant communities. The inundation grassland community was particularly dynamic with a composition that rapidly reflected drying conditions following the major flood, but transplantation into a drier flood-meadow site prompted little additional change. The flood-meadow community appeared more resistant to post-inundation drying, but was sensitive to increased wetness caused by transplantation into inundation grassland, which significantly reduced six species while none were significantly favoured. The effects of disturbance caused by lifting the transplants were limited in both communities, although five species showed significant annual fluctuations. The study shows that small alterations in water regime can prompt rapid vegetation changes and significant plant species responses in floodplain grasslands, with effects probably magnified through competitive interactions. The dynamic properties of floodplain vegetation demonstrated by this study suggest that its classification, management and monitoring are challenging and ideally should be based on long-term studies.  相似文献   

3.
Soil erosion after vegetation degradation induced by disturbance by feral goats, an invasive mammal, can lead to loss or accumulation of soil at a local scale and can alter soil chemical properties. This alteration of soil properties can in turn affect the establishment of plant species. We evaluated relationships among the extent of soil erosion, soil chemical properties, and the distribution of plant species in grassland ecosystems after goat eradication on Nakodo‐jima Island in the northwestern Pacific. In 105 1 × 1–m quadrats, changes were measured in the position of topsoil over 2 years. Surface soils were sampled for analysis of chemical properties, and plant species in the quadrat were recorded. Changes in the position of topsoil were related to the area of bare ground. Soil loss occurred at sites where areas of bare ground were extremely large. Significantly higher values of soil exchange acidity and smaller amounts of available phosphorus, total carbon, and total nitrogen were detected in soils at sites with large soil losses. Most of the 11 dominant plant species were absent from sites with large losses of soil. The presence of eight species was significantly negatively related to soil exchange acidity, and three species were significantly positively related to available phosphorus. Our results indicated that exposure of subsoils at the soil surface after vegetation degradation can increase soil loss, which can alter soil chemical properties, and this alteration can continue to limit the establishment of plant species, even long after goat eradication.  相似文献   

4.
In this survey, we studied the response of plant functional traits to calcareous grassland restoration in the Calestienne region, Southern Belgium (restoration protocol: forest clear-cutting followed by grazing at all sites). We considered traits related to dispersal, establishment, and persistence that integrate the main challenges of plants to re-establish and survive in restored areas. Functional traits were compiled from databases and compared among (i) pre-restoration and young restoration forests; (ii) restoration areas of different ages; and (iii) old restorations and reference grasslands. The following questions were addressed: (i) What is the early response (2–4 years) in terms of plant functional trait following one restorative clear-cut event? (ii) What plants functional trait responses occur from restorative management (i.e., sheep and goat grazing)? (iii) Which differences still persist between the oldest restored parcels (10–15 years), and the historical reference grasslands? Forest clear-cuts induced several changes among functional traits, including decreased mean seed mass and certain vegetative traits (i.e., decreased phanerophytes, branching species; and increased short lifespan species i.e., annuals and biennials). During restorative management, clonal, epizoochorous and autumn germinating species were favored. Despite numerous other changes during this phase, many differences remained compared to reference grasslands. In particular, geophytes, mycorrhizal and evergreen species abundance were not approaching reference grassland values. The observed pattern helped to draw inferences on the possible mechanisms operating under vegetation recovery following restorative forest clear-cut and subsequent management were identified and described in this study. Results indicated grazing was an important factor, which increased epizoochorous species, and autumn germinating taxa that filled niches in vegetation opened by summer grazing animals. Finally, differences between old restoration and reference grasslands emphasized that management should focus on reduction in soil fertility, and geophyte rhizomatous grasses. Long-term monitoring is vital to assess if management plans are effective in the complete restoration of species functional trait assemblages.  相似文献   

5.
Abstract. Responses of plant communities to mammalian herbivores vary widely, due to variation in plant species composition, herbivore densities, forage preferences, soils, and climate. In this study, we evaluated vegetation changes on 30 sites within and adjacent to the Sevilleta National Wildlife Refuge (SNWR) in central New Mexico, USA, over a 20‐yr period following removal of the major herbivores (livestock and prairie dogs) in 1972–1975. The study sites were established in 1976, and were resampled in 1986 and 1996 using line transect methods. At the landscape scale, repeated measures ANOVA of percentage cover measurements showed no significant overall net changes in total perennial plant basal cover, either with or without herbivores present; however, there was an overall increase in annual forbs and plant litter from 1976 to 1996. At the site scale, significant changes in species composition and dominance were observed both through time and across the SNWR boundary. Site histories varied widely, with sites dominated by Bouteloua eriopoda being the most dynamic and sites dominated by Scleropogon brevifolius being the most persistent. Species‐specific changes also were observed across multiple sites: B. eriopoda cover increased while Gutierrezia sarothrae greatly decreased. The non‐uniform, multi‐directional changes of the sites' vegetation acted to prevent detection of overall changes in perennial vegetation at the landscape level. Some sites displayed significant changes after removal of herbivores, while others appeared to respond primarily to climate dynamics. Certain species that were not preferred by livestock or prairie dogs, showed overall declines during drought periods, while other preferred species exhibited widespread increases during wetter periods regardless of herbivore presence. Therefore, the vegetation dynamics cannot be attributed solely to removal of herbivores, and in some cases can be explained by short‐ and long‐term fluctuations in climate. These results emphasize the variety of responses of sites with differences in vegetation to mammalian herbivores under otherwise similar climatic conditions, and illustrate the value of site‐ and landscape‐scale approaches to understanding the impacts of plant‐herbivore interactions.  相似文献   

6.
Establishing relationships between biodiversity and ecosystem function is an ongoing endeavor in contemporary ecosystem and community ecology, with important practical implications for conservation and the maintenance of ecosystem services. Removal of invasive plant species to conserve native diversity is a common management objective in many ecosystems, including wetlands. However, substantial changes in plant community composition have the potential to alter sediment characteristics and ecosystem services, including permanent removal of nitrogen from these systems via microbial denitrification. A balanced assessment of costs associated with keeping and removing invasive plants is needed to manage simultaneously for biodiversity and pollution targets. We monitored small-scale removals of Phragmites australis over four years to determine their effects on potential denitrification rates relative to three untreated Phragmites sites and adjacent sites dominated by native Typha angustifolia. Sediment ammonium increased following the removal of vegetation from treated sites, likely as a result of decreases in both plant uptake and nitrification. Denitrification potentials were lower in removal sites relative to untreated Phragmites sites, a pattern that persisted at least two years following removal as native plant species began to re-colonize treated sites. These results suggest the potential for a trade-off between invasive-plant management and nitrogen-removal services. A balanced assessment of costs associated with keeping versus removing invasive plants is needed to adequately manage simultaneously for biodiversity and pollution targets.  相似文献   

7.
Some regions and habitats harbour high numbers of plant species at a fine scale. A remarkable example is the grasslands of the White Carpathian Mountains (Czech Republic), which holds world records in local species richness; however, the causes are still poorly understood. To explore the landscape context of this phenomenon and its relationships to diversity patterns at larger scales, we compared diversity patterns in grasslands and other vegetation types in the White Carpathians with those in nearby regions lacking extremely species-rich grasslands, using data from vegetation plots and flora grid mapping of entire landscapes. Although small-scale species richness of grasslands and ruderal/weed vegetation of the White Carpathians was higher than in the nearby regions, the number of grassland and ruderal/weed species in the regional flora of the White Carpathians was not. Diversity of forests was not higher in this region at any scale. Thus the remarkably high local species richness of the White Carpathian grasslands does not result from a larger grassland species pool in the region, but from the fine-scale co-occurrence of many grassland species in this landscape, which results in the formation of grassland communities that are locally rich but with similar species composition when comparing different sites (i.e. high alpha but low beta diversity). This pattern can be partly attributed to the large total area of these grasslands, which reduces random extinctions of rare species, low geological diversity, which enables many species to occur at many sites across the landscape, and high land-cover diversity, which supports mixing of species from different vegetation types.  相似文献   

8.
Islands exhibit disproportionally high biodiversity, however high levels of endemism and simplified food webs make their communities susceptible to invasive species. Introduced goats (Capra hircus), a generalist herbivore, are among the most harmful invasive species on islands. Concern about goat impacts on island communities have resulted in eradication programs, which have been generally implemented without comprehensive evaluation and monitoring. Unintended consequences may follow eradication, as grazing can have complex effects on island food webs. Using whole island manipulations, we evaluate the long-term, community-wide effects of goat herbivory, as well as their subsequent removal, in a system of 16 islands in the Aegean Sea (Greece) located within the Mediterranean biodiversity hotspot. Goat grazing on these islands is a major conservation concern, as these support endemic plant communities that have evolved in low herbivory conditions and lack appropriate defenses. We show that goat introductions lead to significant decreases in vegetation height, percent cover, and biomass but not to immediate plant species loss, as native island endemics are replaced with widespread generalist taxa carried in by the livestock. Additionally, goats contribute to the desertification of islands by initiating a long-term soil loss cycle that continues even after goats are removed; however, remaining soil structure and chemistry are not affected. Island arthropod populations do not appear to be significantly impacted by goat introduction or removal, except for a distinct increase in the order Diptera with goat presence. This study also reaffirms the role of seabirds in providing important marine subsidies, rich in nitrogen and phosphorus, to island food webs. Plant species diversity declines following goat removal, and vegetation cover returns only partially, as further recovery is being prevented by the long-term loss of soil. This suggests that following goat removal, island communities may require additional restoration efforts, including seabird reestablishment and reintroduction of extirpated plant populations, to promote island recovery.  相似文献   

9.
Specialist plant species in calcareous sandy grasslands are threatened by acidification and high nutrient levels in the topsoil. We investigated whether topsoil removal and soil perturbation in degraded sandy grasslands could lead to establishment of specialist species belonging to the threatened xeric sand calcareous grassland habitat. Restoration actions performed in 2006 resulted in increased soil pH and reduced nitrogen availability. We found early colonisztion of the perennial key species Koeleria glauca after both deep perturbation and topsoil removal, and high seedling establishment in topsoil removal plots 5 and 6 years following the restoration treatment (2011–2012). After topsoil removal, overall vegetation composition in 2012 had developed toward the undegraded community, with target species accounting for 20% of the community after topsoil removal, compared to 30% in the undegraded vegetation, and less than 1% in untreated controls. Deep perturbation led to 7% target species, while there were almost no effects of shallow perturbation 6 years following treatment. These results demonstrate that topsoil removal can promote colonization of target species of calcareous sandy grassland and highlights the importance of considering the regeneration niche for target species when implementing restoration measures .  相似文献   

10.
Soil disturbance is recognized as an important driver of biodiversity in dry grasslands, and can therefore be implemented as a restoration measure. However, because community re-assembly following disturbance includes stochastic processes, a focus only on species richness or establishment success of particular species will not inform on how plant communities respond ecologically to disturbance. We therefore evaluated vegetation development following disturbance by quantifying species richness, species composition and functional trait composition. Degraded calcareous sandy grassland was subjected to experimental disturbance treatments (ploughing or rotavation), and the vegetation was surveyed during four subsequent years of succession. Treated plots were compared with control plots representing untreated grassland, as well as nearby plots characterized by plant communities representing the restoration target.Species richness and functional diversity both increased in response to soil disturbance, and rotavation, but not ploughing, had a persistent positive effect on the occurrence of specialist species of calcareous sandy grassland. However, no type of soil disturbance caused the plant species composition to develop towards the target vegetation. The disturbance had an immediate and large impact on the vegetation, but the vegetation developed rapidly back towards the control sites. Plant functional composition analysis indicated that the treatments created habitats different both from control sites and target sites. Community-weighted mean Ellenberg indicator values suggested that the observed plant community response was at least partially due to an increase in nitrogen and water availability following disturbance. This study shows that a mild type of disturbance, such as rotavation, may be most successful in promoting specialist species in calcareous sandy grassland, but that further treatments are needed to reduce nutrient availability. We conclude that a functional trait based analysis provides additional information of the vegetation response and the abiotic conditions created, complementing the information from the species composition.  相似文献   

11.
Small scale disturbances could act as patches that provide sites for the colonization of competitively inferior species, promoting the establishment of non-native species in some cases. We analyzed the vegetation associated with feral horse dung piles in montane pampas grasslands in Mid-East Argentina and described the changes following their abandonment, evaluating whether dung piles act as invasion windows, allowing the entrance of alien plant species. We estimated the portion of the study area directly covered by horse manure and dung height was used to estimate the time elapsed after the abandonment of each pile. Vegetation replacement on dung piles of different ages was assessed and compared with grassland controls using discriminant analysis. We used regression analysis to look for changes in vegetation cover, species richness, species diversity and evenness in response to height (age) of the dung piles, and principal component analyses (PCA) to identify groups of plants associated with different successional stages. We compared cover of alien plant species on dung piles with grassland controls using one-way ANOVA. On average, 2.5% of the study area was covered by horse dung. Total vegetation cover, species richness, diversity and evenness increased after the piles were abandoned. Characteristic plant groups were associated with initial, middle and last phases of the studied succession. Vegetation on the dung piles significantly differed from that in grassland controls and two species were consistently associated with dung piles: the invasive Red Star Thistle, Centaurea calcitrapa, and a native grazing-intolerant grass, Nassella clarazii. Non-native species cover was also higher in dung piles than in control plots. Dung piles cover a significant portion of grassland area in our study site, produce significant changes in the vegetation and are associated with some invasive alien plants that could eventually colonize more pristine areas in the vicinity. On the other hand, they might represent refuges for palatable species, since horses seem to avoid them for grazing.  相似文献   

12.
This study examined the recovery, via biotic and abiotic pathways, of a grassland ecosystem after eradication of introduced exotic goats. We used path analyses to evaluate the relative strength of relationships among aboveground biomass, soil chemical properties (carbon, nitrogen, and phosphorus content; soil acidity), presence of nesting seabirds after goat eradication, extent of vegetation degraded by goats before their eradication, plant species composition after removal of goats, and topography. Models including the same variables with different paths were constructed using the Bayesian estimation method, and the best-fit models were constructed by comparing deviance information criterion values. Results of the path analyses demonstrated that vegetation degradation and soil erosion prior to goat eradication increased soil exchangeable acidity, which resulted in limitation of aboveground biomass. Seabird nesting after goat eradication increased the quantity of soil nutrients, possibly through inputs of feces, eggshells, and dead chicks or adults. The increase in nutrients was affected indirectly, via seabird nesting, by topography and vegetation type after goat eradication. The direct and indirect relationships demonstrated by our results suggest the existence of complex interrelationships during recovery of ecosystem function after eradication of exotic mammals.  相似文献   

13.
赵成章  任珩  盛亚萍  高福元  石福习 《生态学报》2011,31(21):6388-6395
种群空间格局是种群自身特性、种间相互关系及环境条件综合作用的结果。采用草地群落学调查与点格局分析方法,在祁连山北坡选择未退化、轻度退化、中度退化和重度退化等4种高寒草地,分析了阿尔泰针茅(Stipa krylovii)种群斑块特征、株丛结构和点格局特征。结果表明:阿尔泰针茅在衰退过程中种群密度和种群领地面积减小,空斑面积增大,领地密度先增大后减小,小株丛(株丛径0.1-1.0 cm)比例增加,大株丛(株丛径2.1-7.0 cm)比例减小;不同草地梯度中阿尔泰针茅种群的空间格局存在明显差异:未退化草地中阿尔泰针茅种群在0-64 cm尺度上为均匀分布,64-100 cm尺度上为随机分布;中度退化草地中阿尔泰针茅种群在0-70 cm尺度上为随机分布,而在70-100 cm尺度上为聚集分布;轻度退化和重度退化草地中阿尔泰针茅种群在0-100 cm尺度上均为随机分布。在放牧干扰和种间竞争作用下,阿尔泰针茅种群斑块从中心开始破碎,并逐渐向四周辐散,引起小尺度上种群斑块间分布格局出现"随机分布-聚集分布-随机分布"转变,促使原有斑块被分割为多个直径较小的"岛"状小斑块并进一步分化,最终种群斑块完全破碎、草毡层逐步消失,从而造成阿尔泰针茅种群的衰退。  相似文献   

14.
Abstract. Field reconnaissance data are used in a supervised classification of a 1989 Landsat Thematic Mapper (TM) scene to create a digital database of high and low quality grasslands for northwestern Kansas. To test the classification of grassland quality, plot-based vegetation data collected from 32 sites are analyzed for differences in species composition, and evaluated for relationships between TM data and plant diversity. Significant differences between predicted high and low quality grassland sites are identified for the following variables: cover of the dominant and common species, overall species richness, number of forbs, number of grasses, and plant diversity using Shannon's index. Linear regression analysis reveals a significant relationship (r2= 0.61) between species diversity and the prediction of grassland quality from the supervised classification. The addition of spectral data to this model did not improve the prediction of species diversity, but spectral brightness is identified as a key feature in mapping shortgrass vegetation diversity patterns with TM data.  相似文献   

15.
Grazing‐induced degradation of grasslands is the primary impediment to the socioeconomic development of Inner Mongolia. It affects the entire environment of northern China. Understanding grassland dynamics is necessary for restoration and sustainable management of these degraded ecosystems. The recovery dynamics of a degraded Leymus chinensis (Trin.) Tzvel. grassland after removal of grazing was studied in comparison with its spatial variation along a grazing gradient, using its climax community as a benchmark. The species composition, diversity, and biomass of the grassland vegetation, as well as the attributes (height, density, and individual mass) of major species, were examined on the eight sites along the grazing gradient and in the recovering grassland over 11 years. The spatial pattern of grassland vegetation along the grazing gradient closely reflected its recovery trajectory over time. Both the spatial and the temporal processes exhibited the same shift in species dominance in association with grazing removal or less grazing intensity. Grassland degradation was accompanied by an increase in species density and a decrease in species size; this trend was reversed during recovery. This result suggested that the degraded grassland is highly resilient and that restoration could occur naturally by reducing or excluding grazing animals. However, some differences existed between the spatial and the temporal processes. Species richness was high on the light‐ or no‐grazing sites along the gradient, but varied little during the recovery of the degraded grassland. Species evenness was high under moderate to light grazing along the gradient and was high at the beginning of the recovery period but not at the end. Although standing biomass improved significantly during the recovery period, it did not change significantly along the grazing gradient. These observed discrepancies were related to the intrinsic difference in the spatial versus temporal processes and are discussed together with the advantage/disadvantage of the grazing gradient versus dynamic monitoring methods in grassland dynamics studies.  相似文献   

16.
A survey of the arbuscular mycorrhizal (AM) status of plants growing in the Western Ghats region of Southern India was undertaken. Root and soil samples of plants growing in the four vegetation types forest, grassland, scrub, and cultivated land or plantation were examined. Of the 329 species (representing 61 families) examined, 174 were mycorrhizal. AM association was recorded in 81 species for the first time, including species from several families assumed to be non-mycorrhizal, e.g. Amaranthaceae, Capparaceae, Commelinaceae, Cyperaceae and Portulacaceae. AM fungal spores of 35 species belonging to Acaulospora, Gigaspora, Glomus, Sclerocystis and Scutellospora were recorded. AM fungal species richness was found to be highest in scrub and lowest in agricultural and plantation soils. Mean colonization levels were dependent on plant life-form, life-cycle pattern and vegetation type. Accepted: 26 October 1999  相似文献   

17.
The impacts of domesticated herbivores on ecosystems that did not evolve with mammalian grazing can profoundly influence community composition and trophic interactions. Also, such impacts can occur over long time frames by altering successional vegetation trajectories. Removal of domesticated herbivores to protect native biota can therefore lead to unexpected consequences at multiple trophic levels for native and non-native species. In the eastern South Island of New Zealand large areas of seral grassland–shrubland have had livestock (sheep and cattle) removed following changes in land tenure. The long-term (>10 years) outcomes for these communities are complex and difficult to predict: land may return to a native-dominated woody plant community or be invaded by exotic plants and mammals. We quantified direct and indirect effects of livestock removal on this ecosystem by comparing plant and invasive mammal communities at sites where grazing by livestock ceased c.10–35 years ago (conservation sites) with paired sites where pastoralism has continued to the present (pastoral sites). There was higher total native plant richness and reduced richness of exotic plants on conservation sites compared with pastoral sites. Further, there were differences in the use of conservation and pastoral sites by invasive mammals: rabbits and hedgehogs favoured sites grazed by livestock whereas house mice, brushtail possums and hares favoured conservation sites. Changes in the relative abundance of invasive mammal species after removal of domesticated livestock may compromise positive outcomes for conservation in successional plant communities with no evolutionary history of mammalian grazing.  相似文献   

18.
Nitrogen (N) and phosphorus (P) are most commonly the limiting essential elements that affect the functioning of plants and ecosystems. However, their stoichiometry in relation to climatic variables and vegetation organization levels has not been comprehensively characterized. N and P concentrations were measured for 329 leaf samples collected at 132 sites along the 5000 km long China Grassland Transect that traverses the Inner Mongolian and Qinghai-Tibet Plateaus. The patterns of these measurements were analyzed with reference to climate factors, plant species, plant functional groups, grassland communities and grassland ecosystems. The aim was to explore whether geographical patterns of plant leaf elements are related to zonal climatic variables, and at which vegetation organization levels changes of plant leaf N and P stoichiometric characteristics and pattern occur. Results showed that interspecific differences of N and P concentrations were most significant for the three vegetation organization levels of species, community and ecosystem. Plant leaf N and P concentrations were higher, coefficients of variation of N and P lower, and N/P, C/N and C/P ratios were also lower for leaf samples from the cold high altitude Qinghai-Tibet Plateau than for those from the relatively lower altitude and warmer Inner Mongolian Plateau. Correlation of N and P for Inner Mongolian grassland was higher than that for the Qinghai-Tibet Plateau. The study indicates plant species are the most basic unit influencing plant stoichiometric geographic patterns, and that climatic variables affect leaf element concentrations mainly through their effect on changes of plant species composition of vegetation.  相似文献   

19.
Le Roux X  Bardy M  Loiseau P  Louault F 《Oecologia》2003,137(3):417-425
Stimulation of nitrification and denitrification by long term (from years to decades) grazing has commonly been reported in different grassland ecosystems. However, grazing generally induces important changes in plant species composition, and whether changes in nitrification and denitrification are primarily due to changes in vegetation composition has never been tested. We compared soil nitrification- and denitrification-enzyme activities (NEA and DEA, respectively) between semi-natural grassland sites experiencing intensive (IG) and light (LG) grazing/mowing regimes for 13 years. Mean NEA and DEA (i.e. observed from random soil sampling) were higher in IG than LG sites. The NEA/DEA ratio was higher in IG than LG sites, indicating a higher stimulation of nitrification. Marked changes in plant species composition were observed in response to the grazing/mowing regime. In particular, the specific phytomass volume of Elymus repens was lower in IG than LG sites, whereas the specific volume of Lolium perenne was higher in IG than LG sites. In contrast, the specific volume of Holcus lanatus, Poa trivialis and Arrhenatherum elatius were not significantly different between treatments. Soils sampled beneath grass tussocks of the last three species exhibited higher DEA, NEA and NEA/DEA ratio in IG than LG sites. For a given grazing regime, plant species did not affect significantly soil DEA, NEA and NEA/DEA ratio. The modification of plant species composition is thus not the primary factor driving changes in nitrification and denitrification in semi-natural grassland ecosystems experiencing long term intensive grazing. Factors such as trampling, N returned in animal excreta, and/or modification of N uptake and C exudation by frequently defoliated plants could be responsible for the enhanced microbial activities.  相似文献   

20.
Questions: Which environmental and management factors determine plant species composition in semi‐natural grasslands within a local study area? Are vegetation and explanatory factors scale‐dependent? Location: Semi‐natural grasslands in Lærdal, Sognog Fjordane County, western Norway. Methods: We recorded plant species composition and explanatory variables in six grassland sites using a hierarchically nested sampling design with three levels: plots randomly placed within blocks selected within sites. We evaluated vegetation‐environment relationships at all three levels by means of DCA ordination and split‐plot GLM analyses. Results: The most important complex gradient determining variation in grassland species composition showed a broad‐scale relationship with management. Soil moisture conditions were related to vegetation variation on block scale, whereas element concentrations in the soil were significantly related to variation in species composition on all spatial scales. Our results show that vegetation‐environment relationships are dependent on the scale of observation. We suggest that scale‐related (and therefore methodological) issues may explain the wide range of vegetation‐environment relationships reported in the literature, for semi‐natural grassland in particular but also for other ecosystems. Conclusions: Interpretation of the variation in species composition of semi‐natural grasslands requires consideration of the spatial scales on which important environmental variables vary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号