首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel computational procedure for modeling possible locally driven folding pathways by stepwise elongations of the peptide chain was successfully applied to TC5b, a 20-residue miniprotein. Systematic exploration of the possible locally driven pathways showed that the Trp-cage structure of TC5b could be obtained by stepwise elongation starting from the noncentral local nucleation centers preexisting in the unfolded state of TC5b. The probable locally driven folding pathway starts with folding of alpha-helical fragment 4-9, followed by formation of the proper three-dimensional structure of fragment 4-12, and then 4-18. Accordingly, the Trp-cage-forming interactions emerge successively, first Trp(6)-Pro(12), then Trp(6)-Pro(18), and then Trp(6)-Tyr(3). The Trp-cage-like structures of TC5b found in this study by independent energy calculations are in excellent agreement with the NMR experimental data. The same procedure rationalizes the incomplete Trp-cage formation observed for two analogs of TC5b. Generally, the success of this novel approach is encouraging and provides some justification for the use of computational simulations of locally driven protein folding.  相似文献   

2.
Based on the membrane-modifying peptaibol trichocellin-A-I (1) from Trichoderma viride, we designed a vehicle for the cellular delivery of antisense oligodeoxynucleotides by attaching a (Lys)10 stretch to the C-terminus of 1. The resulting transporter peptide 2, prepared by solid-phase synthesis using Fmoc protocol in combination with amino acid fluorides, was found to be mainly alpha-helical in solution, in contrast to its precursors 1 and 3. The uptake of the complex formed between carrier 2 and a fluorescence-tagged oligonucleotide, i.e., 4, was studied at different charge ratios by confocal laser-scanning microscopy, using two different eukaryotic cell lines: mouse embryonal fibroblast (NIH3T3) and human lung carcinoma (A549) cells. Peptide 2 readily translocated 4 into the cytoplasms of NIH3T3 cells. However, the peptide/oligonucleotide complex was accumulated around the plasma membrane of the A549 cells.  相似文献   

3.
A growing class of proteins in biological processes has been found to be unfolded on isolation under normal solution conditions. We have used NMR spectroscopy to characterize the structural and dynamic properties of the unfolded and partially folded states of a 52-residue alanine-rich protein (Ala-14) at temperatures from -5 degrees C to 40 degrees C. At 40 degrees C, alanine residues in Ala-14 adopt phi and psi angles, consistent with a significant ensemble population of polyproline II conformation. Analysis of relaxation rates in the protein reveals that a series of residues, Gln 35-Ala 36-Ala 37-Lys 38-Asp 39-Asp 40-Ala 41-Ala 42, displays slow motional dynamics at both -5 degrees C and 40 degrees C. Temperature-dependent chemical shift changes indicate that this region is the site of helix initiation. The remaining N-terminal residues become increasingly dynamic as they extend from the nucleation site. The C terminus remains dynamic and changes less with temperature, indicating it is relatively unstructured. Ala-14 provides a high-resolution portrait of the unfolded state and the process of helix nucleation and propagation in the absence of tertiary contacts, information that bears on early events in protein folding.  相似文献   

4.
5.
6.
The feasibility of practically complete backbone and ILV methyl chemical shift assignments from a single [U-2H,15N,13C; Ile??1-{13CH3}; Leu,Val-{13CH3/12CD3}]-labeled protein sample of the truncated form of ligand-free Bst-Tyrosyl tRNA Synthetase (Bst-??YRS), a 319-residue predominantly helical homodimer, is established. Protonation of ILV residues at methyl positions does not appreciably detract from the quality of TROSY triple resonance data. The assignments are performed at 40?°C to improve the sensitivity of the measurements and alleviate the overlap of 1H?C15N correlations in the abundant ??-helical segments of the protein. A number of auxiliary approaches are used to assist in the assignment process: (1) selection of 1H?C15N amide correlations of certain residue types (Ala, Thr/Ser) that simplifies 2D 1H?C15N TROSY spectra, (2) straightforward identification of ILV residue types from the methyl-detected ??out-and-back?? HMCM(CG)CBCA experiment, and (3) strong sequential HN?CHN NOE connectivities in the helical regions. The two subunits of Bst-YRS were predicted earlier to exist in two different conformations in the absence of ligands. In agreement with our earlier findings (Godoy-Ruiz in J Am Chem Soc 133:19578?C195781, 2011), no evidence of dimer asymmetry has been observed in either amide- or methyl-detected experiments.  相似文献   

7.
The conformational space of the 20-residue membrane-bound portion of melittin has been investigated extensively with the conformational space annealing (CSA) method and the ECEPP/3 (Empirical Conformational Energy Program for Peptides) algorithm. Starting from random conformations, the CSA method finds that there are at least five different classes of conformations, within 4 kcal/mol, which have distinct backbone structures. We find that the lowest energy conformation of this peptide from previous investigations is not the global minimum-energy conformation (GMEC); but it belongs to the second lowest energy class of the five classes found here. In four independent runs, one conformation is found repeatedly as the lowest energy conformation of the peptide (two of the four lowest energy conformations are identical; the other two have essentially identical backbone conformations but slightly different side-chain conformations). We propose this conformation, whose energy is lower than that found previously by 1.9 kcal/mol, as the GMEC of the ECEPP/3 force field. The structure of the proposed GMEC is less helical and more compact than the previous one. It appears that the CSA method can find several classes of conformations of a 20-residue peptide starting from random conformations utilizing only its amino acid sequence information. The proposed GMEC has also been found with a modified electrostatically driven Monte Carlo method [D. R. Ripoll, A. Liwo, and H.A. Scheraga (1998) “New Developments of the Electrostatically Driven Monte Carlo Method: Test on the Membrane-Bound Portion of Melittin,” Biopolymers, Vol. 46, pp. 117–126]. © 1998 John Wiley & Sons, Inc. Biopoly 46: 103–115, 1998  相似文献   

8.
9.
Patented signal analytic algorithms applied to hydrophobically transformed, numerical amino acid sequences have previously been used to design short, protein-targeted, L or D retro-inverso peptides. These peptides have demonstrated allosteric and/or indirect agonist effects on a variety of G-protein and tyrosine kinase coupled membrane receptors with 30% to over 80% hit rates. Here we extend these approaches to a globular protein target. We designed eight peptide ligands targeting an ELISA antibody responsive protein, beta-galactosidase, betaGAL. Three of the eight 14mer peptides allosterically activated betaGAL with ELISA methodology. Using Bayesian statistics, this 38% hit rate would have occurred 2 x 10(-9) by chance. These peptides demonstrated binding site competitive or noncompetitive interactions, suggesting allosteric site multiplicity with respect to their betaGAL binding-mediated ELISA signal. Kinetic studies demonstrated the temperature dependence of the betaGAL peptide binding functions. Using the van't Hoff relation, we found evidence for enthalpy-entropy compensation. This relation is often found for hydrophobic interactions in aqueous media, and is consistent with the postulated hydrophobic series encoding underlying our protein-targeted, peptide design methods. It appears that our algorithmic, hydrophobic autocovariance eigenvector template approach to the design of allosteric peptides targeting membrane receptors may also be applicable to the design of peptide ligands targeting nonmembrane involved globular proteins.  相似文献   

10.
Designing supramolecular protein assemblies   总被引:3,自引:0,他引:3  
Many natural proteins self-assemble, either to fulfill their biological function or as part of a pathogenic process. Biological assembly phenomena such as amyloidogenesis, domain swapping and symmetric oligomerization are inspiring new strategies for designing proteins that self-assemble to form supramolecular complexes. Recent advances include the design of novel proteins that assemble into filaments, symmetric cages and regular arrays.  相似文献   

11.
Here our goal is to carry out nanotube design using naturally occurring protein building blocks. Inspection of the protein structural database reveals the richness of the conformations of proteins, their parts, and their chemistry. Given target functional protein nanotube geometry, our strategy involves scanning a library of candidate building blocks, combinatorially assembling them into the shape and testing its stability. Since self-assembly takes place on time scales not affordable for computations, here we propose a strategy for the very first step in protein nanotube design: we map the candidate building blocks onto a planar sheet and wrap the sheet around a cylinder with the target dimensions. We provide examples of three nanotubes, two peptide and one protein, in atomistic model detail for which there are experimental data. The nanotube models can be used to verify a nanostructure observed by low-resolution experiments, and to study the mechanism of tube formation.  相似文献   

12.
Ice nucleation protein (INP) from Gram-negative bacteria promotes the freezing of supercooled water. The central domain of INPs with 1034-1567 residues consists of 58-81 tandem repeats with the 16-residue consensus sequence of AxxxSxLTAGYGSTxT. This highly repetitive domain can also be represented by tandem repeats of 8-residues or 48-residues. In order to elucidate the structure of the tandem repeats, NMR measurements were made for three synthetic peptides including QTARKGSDLTTGYGSTS corresponding to a section of the repetitive domains in Xanthomonas campestris INP. One remarkable observation is a long-range NOE between the side chains of Tyr(i) and Ala(i-10) in the 17-residue peptide. Medium-range NOEs between the side chains of Tyr(i) and Leu(i-4), Thr(i-3) or Thr(i-2) were also observed. These side chain-side chain interactions can be ascribed to CH/π interaction. Structure calculation reveals that the 17-residue peptide forms a circular loop incorporating the 11-residue segment ARKGSDLTTGY.  相似文献   

13.
To study the effect of O-glycosylation on the conformational propensities of a peptide backbone, the 15-residue peptide PPAHGVTSAPDTRPA (PPA15) from the MUC1 protein core and its analogue PPA15(T7), glycosylated with alpha-N-acetylgalactosamine on Thr7, were prepared and investigated by NMR spectroscopy. The peptide contains both the GVTSAP sequence, which is an effective substrate for GalNAc-T1 and -T3 transferases, and the PDTRP fragment, which is a well-known immunodominant epitope recognized by several anti-MUC1 monoclonal antibodies. Useful structural results were obtained in water upon decreasing the temperature to 5-10 degrees C. The sugar attachment slightly affected the conformational equilibrium of the peptide backbone near the glycosylated Thr7 residue. The clustering of low-energy conformations for both PPA15 and PPA15(T7) within the GVTSAP and APDTRP fragments revealed structural similarities between glycosylated and nonglycosylated peptides. For the GVTSAP region, minor but distinct clusters formed by either PPA15 or PPA15(T7) conformers showed distinct structural propensities of the peptide backbone specific for either the nonglycosylated or the glycosylated peptide. The peptide backbone of the APDTRP fragment, which is a well-known immunodominant region, resembled an S-shaped bend. A similar structural motif was found in the GVTSAP fragment. The S-shaped structure of the peptide backbone is formed by consecutive inverse gamma-turn conformations partially stabilized by hydrogen bonding. A comparison of the solution structure of the APDTRP fragment with a crystal structure of the MUC1 peptide antigen bound to the breast tumor-specific antibody SM3 demonstrated significant structural similarities in the general shape.  相似文献   

14.
The proton resonances of the biologically active peptide parathyroid-hormone-related protein (residues 1-34) were assigned using one-dimensional spin-decoupling techniques, two-dimensional correlated spectroscopy and by comparing the spectra of the peptides 1-20, 1-25, 1-29, 7-34 and 15-34. The conformation of 1-34 was determined using one- and two-dimensional nuclear Overhauser enhancement spectroscopy in the rotating frame. Amide proton temperature coefficients, vicinal coupling constants and circular dichroic spectra helped reveal a surprisingly compact structure with residues 3-9 forming alpha-helix, type-I beta-turns between residues 10-13 and 16-19 and several interactions between the N-terminal residues and the C-terminal residues. Of these latter, the strongest appeared to be between Asp-10 and Phe-22. One peptide surface in the deduced model presents multiple positive charges, while the opposite surface has a hydrophobic character possibly functioning to exclude water from the binding interface and enhancing the binding constant.  相似文献   

15.
Hemoglobin, aldolase and glyceraldehyde 3-phosphate dehydrogenase are known to bind to the cytoplasmic domain of band 3 protein. Binding of glycolytic enzymes to band 3 protein is inhibited by its amino-terminal fragments. To precisely localize the sequence portion of band 3 protein to which hemoglobin binds and to see whether the same region of amino-acid sequence binds both hemoglobin and glycolytic enzymes, a simple, direct solid-phase binding assay was developed. Peptides generated from the 23-kDa fragment by trypsin, cyanogen bromide and mild acid hydrolysis were used as inhibitors to determine the minimal sequence structure involved in the binding of the 23-kDa fragment to hemoglobin. The shortest peptide which inhibits the binding of the 23-kDa fragment is an acid cleavage peptide containing the sequence positions 1 to 23. This sequence is unusual as 14 of its residues are negatively charged, it contains no basic residues and has its amino terminus blocked. Using aldolase, glyceraldehyde-3-phosphate dehydrogenase and hemoglobin as competitive inhibitors in the binding of 23-kDa fragment, the affinity of hemoglobin to this fragment appears several-fold weaker than that of both the enzymes. These findings demonstrate that glycolytic enzymes and hemoglobin bind competitively to the same polyanionic sequence region of band 3 protein.  相似文献   

16.
17.
Mastoparan, a 14-residue peptide, has been investigated with respect to its ability to form ion channels in planar lipid bilayers. In the presence of 0.3-3.0 microM mastoparan, two types of activity are seen. Type I activity is characterized by discrete channel openings, exhibiting multiple conductance levels in the range 15-700 pS. Type II activity is characterized by transient increases in bilayer conductance, up to a maximum of about 650 pS. Both type I and type II activities are voltage dependent. Channel activation occurs if the compartment containing mastoparan is held at a positive potential; channel inactivation if the same compartment is held at a negative potential. Channel formation is dependent on ionic strength; channel openings are only observed at KCl concentrations of 0.3 M or above. Furthermore, raising the concentration of KCl to 3.0 M stabilizes the open form of the channel. Mastoparan channels are weakly cation selective, PK/Cl approximately 2. A 12-residue analogue, des-Ile1,Asn2-mastoparan, preferentially forms type I channels. The ion channels formed by these short peptides may be modelled in terms of bundles of transmembrane alpha-helices.  相似文献   

18.
Formation of the Escherichia coli division septum is catalyzed by a number of essential proteins (named Fts) that assemble into a ring-like structure at the future division site. Many of these Fts proteins are intrinsic transmembrane proteins whose functions are largely unknown. In the present study, we attempted to identify a novel putative component(s) of the E. coli cell division machinery by searching for proteins that could interact with known Fts proteins. To do that, we used a bacterial two-hybrid system based on interaction-mediated reconstitution of a cyclic AMP (cAMP) signaling cascade to perform a library screening in order to find putative partners of E. coli cell division protein FtsL. Here we report the characterization of YmgF, a 72-residue integral membrane protein of unknown function that was found to associate with many E. coli cell division proteins and to localize to the E. coli division septum in an FtsZ-, FtsA-, FtsQ-, and FtsN-dependent manner. Although YmgF was previously shown to be not essential for cell viability, we found that when overexpressed, YmgF was able to overcome the thermosensitive phenotype of the ftsQ1(Ts) mutation and restore its viability under low-osmolarity conditions. Our results suggest that YmgF might be a novel component of the E. coli cell division machinery.  相似文献   

19.
The ProW protein, located in the inner membrane of Escherichia coli, has a very unusual topology with a 100-residue-long N-terminal tail protruding into the periplasmic space. We have studied the mechanism of membrane translocation of the periplasmic tail by analysing ProW-PhoA and ProW-Lep fusion proteins, both in wild-type cells and in cells with an impaired sec machinery. Our results show that the translocation efficiency is not affected by treatments that compromise the SecA and SecY functions, but that translocation is completely blocked by dissipation of the proton motive force or by the introduction of extra positively charged residues into the N-terminal tail. This suggests that the sec machinery can act properly only on domains located on the C-terminal side of a translocation signal, and that the N-terminal tail is driven through the membrane by a mechanism that involves the proton motive force.  相似文献   

20.
Satoh D  Shimizu K  Nakamura S  Terada T 《FEBS letters》2006,580(14):3422-3426
Chignolin is an artificial mini-protein composed of 10 residues (GYDPETGTWG) that has been shown to cooperatively fold into a beta-hairpin structure in water. We extensively explored the conformational space of chignolin using a 180-ns multicanonical molecular dynamics (MD) simulation and analyzed its folding free-energy landscape. In the MD trajectory, we found structures that satisfy 99% of the experimental restraints and are quite close to the experimentally determined structures with C(alpha) root-mean-square-deviations of less than 0.5 Angstroms. These structures formed a large cluster in the conformational space with the largest probability of existence, agreeing well with the experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号