首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
DNA-mediated gene transfer (DMGT) was performed in DNA repair-proficient and UV-hypersensitive, repair-deficient Chinese hamster ovary (CHO) cell lines using the UV-irradiated thymidine kinase gene from herpes simplex virus (HSV-TK). Transformation frequencies in repair-deficient CHO cell lines declined relative to repair-proficient cells with increasing UV damage in transfected DNA; approximately 3-fold higher UV fluence was required to inactivate 50% of irradiated HSV-TK plasmid molecules in repair-proficient cells. In cotransfection experiments performed with pairs of HSV-TK plasmids containing linker insertion mutations in TK coding sequences, moderate UV damage in plasmid DNA enhanced the yield of TK+ transformants resulting from homologous recombination between HSV-TK sequences up to 4-fold. These results suggest that UV damage in DNA can stimulate transformation of mammalian cells dependent on intermolecular DNA homology.  相似文献   

2.
We have transfected two SV40-transformed human fibroblast cell lines with plasmids in which double-strand breaks have been introduced by restriction enzymes, within or near the selected gene. Restriction of pSV2gpt with KpnI, as previously shown by Cox et al. (1986), reduced the frequency of transfection more in the ionizing radiation-sensitive ataxia-telangiectasia line AT5BIVA than in the resistant line MRC5V1. When the related plasmid pSV2neo was restricted with SmaI, the reduction in transfection was less in the ataxia-telangiectasia than in the normal cell line. Under our conditions, the apparent defect in transfection of AT5BIVA by pSV2gpt appears to be a result of the unusual sensitivity of the repair-deficient recipient to the selective agent. Loss of potential transfectants is exacerbated when transient gene expression is reduced by restriction of the plasmid. We suggest that a reduction in yield of transfectants with restricted plasmid in ataxia-telangiectasia cells cannot readily be used as evidence of a defect in DNA repair. Our results are also relevant to standard transfection experiments, since they emphasize the importance of optimizing selection when transient expression may be reduced, to ensure that potential transfectants are not killed by the selection regime.  相似文献   

3.
Using a transient gene expression assay to measure host cell reactivation, the effects of cyclobutane dimer and noncyclobutane dimer uv photoproducts on expression of a reporter gene were examined in normal and repair-deficient Chinese hamster ovary (CHO) cell lines. Ultraviolet damage in plasmid pRSV beta gal DNA, containing the Escherichia coli beta-galactosidase gene, resulted in reduced reporter gene expression in both uv-hypersensitive mutant CHO cell lines UV5 and UV61 relative to wild-type, parental AA8 cells. However, the effects of uv irradiation of transfected plasmid DNA on gene activity were reduced in UV61, a mutant with normal (6-4) photoproduct repair, compared to UV5, which is deficient in (6-4) photoproduct repair; this reduction correlated with the intermediate uv-hypersensitivity of UV61. Selective removal of cyclobutane dimers by in vitro photoreactivation of uv-irradiated plasmid DNA prior to transfection substantially increased reporter gene activity in both uv-hypersensitive mutant cell lines. This increase was significantly greater in UV61 than in UV5, consistent with UV5 being deficient in repair of both (6-4) photoproducts and cyclobutane dimers. These results suggest that unrepaired (6-4) photoproducts in transfected pRSV beta gal plasmid DNA are responsible for a significant fraction of the reduction in transient gene expression observed in recipient uv-hypersensitive CHO cell mutants.  相似文献   

4.
We have investigated DNA-mediated transfer of aminopterin resistance conferred by plasmid and UV resistance conferred by genomic DNA to the Chinese hamster ovary (CHO) cell line UV-135, a UV-sensitive mutant defective in nucleotide excision repair. Plasmid pSV2gpt-CaPO4 coprecipitates induced aminopterin resistance with equal efficiency in the 6-thioguanine-resistant, aminopterin-sensitive, repair-proficient parental line AA8-4(tg-1) and in UV-135(tg-2). Genetic and molecular evidence for genomic DNA-mediated transformation of UV-135(tg-2) cells with a putative excision repair gene were obtained by demonstrating that: (i) UV resistance transformation is dependent upon and specific for genomic DNA from excision repair-competent CHO cells: (ii) UV and drug coresistant colonies are bona fide transferants as verified by hybridization and Southern blotting analysis of pSV2gpt sequences in their genomic DNAs: (iii) confirmed transferants exhibit partial to near normal UV resistances for colony formation: and (iv) UVr transferants have near normal levels of excision repair capacity. The overall frequency of drug and UV resistance cotransformation was 8 X 10(8) per cell plated. This frequency was ca. 200- to 500-fold greater than that expected from coincident but independent UVr reversion and plasmid gene transfer events. DNA transfer techniques with this CHO system will be useful for further analysis of the essential structural DNA sequences, gene cloning, and expression of functional excision repair genes.  相似文献   

5.
When pSV2-gpt or pSV2-neo plasmids are introduced into human cells by calcium phosphate coprecipitation, the yield of stable transformants (Gpt+ or Neo+) is increased by irradiating the respective plasmid DNA in vitro with UV (254 nm). To identify specific lesions that can increase the transforming activity of plasmids in human cells we examined pSV2 plasmids containing different types of damage. Of the lesions tested, cyclobutane pyrimidine dimers produced the greatest increase, and can nearly fully account for the effect of 254 nm UV on transformation. The enhancement of transformation produced by UV was not altered by the additional treatment of the plasmid DNA with T4 endonuclease V, an enzyme that nicks DNA specifically at pyrimidine dimers. Treatment of plasmid DNA with osmium tetroxide to produce thymine glycols, or with acid and heat to produce apurinic sites did not affect transformation frequency. The enhancement occurred in all the human cell lines tested, whether they contained or not sequences homologous to those in the plasmids, and was independent of the repair capacity of the recipient cells.  相似文献   

6.
The recombinant shuttle vector pSV2gpt was introduced into V79 Chinese hamster cells, and stable transformants expressing the Escherichia coli gpt gene were selected. Two transformants carrying tandem duplications of the plasmid at a single site were identified and fused to simian COS-1 cells. Plasmid DNA recovered from the heterokaryons was used to transform a Gpt- derivative of E. coli HB101, and the relative frequency of plasmids carrying a mutation in the gpt gene was determined. The high frequency of Gpt- plasmids (ca. 1%) was similar to that observed when plasmid was recovered from COS-1 cells which had been transfected with pSV2gpt. Most of the mutant plasmids had rearrangements in the region containing the gpt gene.  相似文献   

7.
Analyses of mutation in pSV2gpt-transformed CHO cells   总被引:3,自引:0,他引:3  
We have developed a system to study mutations which affect expression of the E. coli xanthine-guanine phosphoribosyl transferase (XPRT) gene (gpt) in hypoxanthine-guanine phosphoribosyl transferase-deficient (HPRT-) Chinese hamster ovary (CHO) cells that have been transformed by the plasmid pSV2gpt. Several gpt-transformed cell lines have been isolated and characterized with respect to integrated pSV2gpt sequences, expression of the gpt gene, and cytotoxic and mutagenic responses to UV light. While the gpt-transformed CHO and wild-type CHO-K1-BH4 cell lines have similar cytotoxic responses to UV light, the gpt-transformed cell lines respond differently from the parental CHO-K1-BH4 cell line in terms of mutation induction. As with CHO-K1-BH4 HPRT mutants, spontaneous or induced XPRT mutants derived from the gpt+ cell lines can be selected for 6-thioguanine resistance (TGr). Analysis of cell-free extracts from a number of these TGr clones indicates that the mutant phenotype is due to the absence of XPRT activity. One transformant, designated AS52, has previously been described in limited detail. Here we describe additional characteristics of this cell line, as well as several related transformants.  相似文献   

8.
The simian virus 40 (SV40)-pBR322 recombinant, pSV2, carrying the origin of SV40 replication and the gpt gene of Escherichia coli, has been stably introduced into Chinese hamster ovary hprt- cells. All gpt-transformed cell lines were found to contain one or more insertions of pSV2 sequences exclusively associated with high-molecular-weight DNA. Additional analyses showed that at least one integrated copy in each cell line retained an intact gpt gene and flanking SV40 sequences required for expression of xanthine-guanine phosphoribosyltransferase. Most cell lines contained pSV2 sequences which had integrated with partial sequence duplication. Upon fusion with COS-1 cells, a simian cell line permissive for autonomous pSV2 replication, most gpt-transformed cell lines produced low-molecular-weight DNA molecules related to pSV2. The majority of these replicating DNAs were indistinguishable from the original transfecting plasmid in both size and restriction enzyme cleavage pattern. In addition, the recovered DNA molecules were able to confer ampicillin resistance to E. coli and to transform mouse L cells and Gpt- E. coli to a Gpt+ phenotype. These studies indicate that all of the genetic information carried by this SV40-plasmid recombinant can be introduced into and retrieved from the genome of mammalian cells.  相似文献   

9.
Gene recombination in X-ray-sensitive hamster cells.   总被引:6,自引:0,他引:6       下载免费PDF全文
Recombination was measured in Chinese hamster ovary (CHO-K1) cells and in the X-ray-sensitive mutants xrs1 and xrs7, which show a defect in DNA double-strand break repair. To assay recombination, pairs of derivatives of the plasmid pSV2gpt were constructed with nonoverlapping deletions in the gpt gene region and cotransferred into the different cell types. Recombination efficiencies, measured as the transformation frequency with a pair of deletion plasmids relative to that with the complete pSV2gpt plasmid, were about 6% in both CHO-K1 and the xrs mutants for plasmids linearized at a site outside the gpt gene. However, these efficiencies were substantially enhanced by the introduction of a double-strand break into the homologous region of the gpt gene in one of a pair of deletion plasmids before cotransfer. This enhancement was apparently only about half as great for the xrs cells as for CHO-K1, but variation in the data was considerable. A much larger difference between CHO-K1 and the xrs mutants was found when the DNA concentration dependence of transformation was explored. While the transformation frequency of CHO-K1 increased linearly with DNA concentration, no such increase occurred with the xrs mutants irrespective of whether complete plasmids or pairs of deletion plasmids were transferred. The fraction of cells taking up DNA, assayed autoradiographically, was similar in all cell types. Therefore we suggest that while homologous recombination of plasmid molecules may not be substantially reduced in the xrs mutants,processes involved in the stable integration of plasmid DNA into genomic DNA are significantly impaired.  相似文献   

10.
We have employed the Chinese hamster ovary (CHO) UV-sensitive mutant cell lines, UV5 and UV20, to determine whether ionizing and ultraviolet irradiation enhance the efficiency of DNA-mediated gene transfer in cells deficient in excision repair. Confluent AA8 (wild type), UV5, and UV20 cells were transfected (via polybrene and dimethyl sulfoxide treatments) with the recombinant DNA plasmid, pSV2-gpt, trypsinized, irradiated with either X rays or ultraviolet in suspension, and then plated into flasks. After a 48-h expression time, cells were trypsinized, counted, and plated in XMAT media to select for pSV2-gpt transformation. We report that X-ray irradiation enhances gene transfer in wild-type AA8 and in both UV-sensitive cell lines. Ultraviolet irradiation enhances gene transfer in AA8 and UV20, but not in UV5. Since both UV20 and UV5 are deficient in excision repair, we suggest that ultraviolet-enhanced gene transfer may involve a postreplication repair mechanism deficient in UV5.  相似文献   

11.
The UV-sensitive Chinese hamster ovary (CHO) cell line UV5, which is defective in the incision step of nucleotide excision repair, was used to identify and clone a complementing human gene, ERCC2, and to study the repair process. Genomic DNA from a human-hamster hybrid cell line was sheared and cotransferred with pSV2gpt plasmid DNA into UV5 cells to obtain five primary transformants. Transfer of sheared DNA from one primary transformant resulted in a secondary transformant expressing both gpt and ERCC2. The human repair gene was identified with a probe for Alu-family repetitive sequences. For most primary, secondary, and cosmid transformants, survival after UV exposure showed a return to wild-type levels of resistance. The levels of UV-induced mutation at the aprt locus for secondary and cosmid transformants varied from 50 to 130% of the wild-type level. Measurements of the initial rate of UV-induced strand incision by alkaline elution indicated that, whereas the UV5 rate was 3% of the wild-type level, rates of cosmid-transformed lines were similar to that of the wild type, and the secondary transformant rate was about 165% of the wild-type rate. Analysis of overlapping cosmids determined that ERCC2 is between 15.5 and 20 kilobases and identified a closely linked gpt gene. Cosmids were obtained with functional copies of both ERCC2 and gpt. ERCC2 corrects only the first of the five CHO complementation groups of incision-defective mutants.  相似文献   

12.
Expression of the prokaryotic gene for chloramphenicol acetyltransferase (EC 2.3.1.28) (CAT) in primate cells transfected with X-irradiated plasmid pSV2CAT was determined in transient expression assays. CAT expression did not depend upon the presence of supercoiled plasmids, but relaxed circular forms were essential. X-ray conversion of relaxed circles to linear forms paralleled the loss of CAT expression, with identical D0's in the first part of dose-response curves. X-ray-induced loss of supercoiled forms was complete at much lower doses. The D0 for inactivation of CAT expression by X irradiation of the plasmids in 1 mM Tris buffer was 270 Gy; it was 13 Gy for plasmids irradiated in water. The D0's for conversion of pSV2CAT to relaxed circle forms were only one-seventh as large as the D0's for CAT inactivation after X-ray in water or in 1 mM Tris buffer. Expression of the CAT gene in some representative repair-deficient human fibroblasts transfected with X-irradiated pSV2CAT was less than in monkey CV-1 cells or cell lines from normal human subjects. These results demonstrate a novel means to study low levels of X-ray damage in DNA correlating specific X-ray damage in the DNA with expression of the gene in unirradiated primate cells.  相似文献   

13.
Transfection of mammalian cells with genomic DNA and cloned genes is now relatively routine. However, the vast majority of studies have used rodent cells as recipients. Here we describe efficient transfection of two human cell lines, the hypoxanthine guanine phosphoribosyltransferase (HPRT)-deficient HeLa line, D98/AH-2, and the adenine phosphoribosyltransferase (APRT)-deficient HT1080 line, HTD114. D98/AH-2 cells were transfected with the pSV2-gpt plasmid of Mulligan and Berg, which contains the E. coli xanthine-guanine phosphoribosyltransferase (gpt) gene, and Gpt + transfectants were selected in HAT medium. HTD114 cells were transfected with (1) genomic hamster DNA, and ouabain resistant transfectants were selected in 5 X 10(-7)M ouabain; (2) with hamster and mouse genomic DNA, and Aprt + cells were selected in AAA medium; (3) with plasmids containing either the cloned hamster or mouse APRT genes, and Aprt + cells were selected; and (4) with phage particles containing a cloned mouse APRT gene, and Aprt + cells were selected. Transfection efficiencies ranged from 0.25 to 1.5 X 10(3) transfectants per microgram DNA, and in certain cases secondary transfections were done. Foreign DNA in recipients was detected by blot hybridization, and the expression of foreign genes was detected by cell growth in selective media and the expression of enzymes characteristic of the species of the donor DNA. The majority of transfectants showed stable expression of the transgenome.  相似文献   

14.
cis-Diamminedichloroplatinum(II) (cis-DDP) has a broad clinical application as an effective anticancer drug. However, development of resistance to the cytotoxic effects is a limiting factor. In an attempt to understand the mechanism of resistance, we have employed a host cell reactivation assay of DNA repair using a cis-DDP-damaged plasmid vector. The efficiency of DNA repair was assayed by measuring the activity of an enzyme coded for by the plasmid vector. The plasmid expression vector pRSVcat contains the bacterial gene coding for chloramphenicol acetyltransferase (CAT) in a configuration which permits expression in mammalian cells. The plasmid was transfected into repair-proficient and -deficient Chinese hamster ovary cells, and CAT activity was subsequently measured in cell lysates. In the repair-deficient cells, one cis-DDP adduct per cat gene was sufficient to eliminate expression. An equivalent inhibition of CAT expression in the repair-proficient cells did not occur until about 8 times the amount of damage was introduced into the plasmid. These results implicate DNA intrastrand cross-links as the lesions responsible for the inhibition of CAT expression. This assay was used to investigate the potential role of DNA repair in mediating cis-DDP resistance in murine leukemia L1210 cells. The parent cell line L1210/0 resembled repair-deficient cells in that about one adduct per cat gene eliminated expression. In three resistant L1210 cell lines, 3-6-fold higher levels of damage were required to produce an equivalent inhibition. This did not correlate with the degree of resistance as these cells varied from 10- to 100-fold resistant.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Fibroblasts from patients with xeroderma pigmentosum (XP) complementation groups A, C, D, E, and G, as well as Bloom syndrome (BS) and Fanconi anemia (FA) have been transfected with a plasmid, pSV7, containing the early region of Simian virus 40 (SV40). All of the cultures exhibited cytologic changes characteristic of transformed cells and expressed T-antigen. They also contained integrated copies of DNA derived from the vector, and in several cases, extrachromosomally replicated DNA. Not all of the transfected cultures became immortalized. The transformed xeroderma pigmentosum (XP) cultures retained their UV-sensitive phenotype in all but one case. The BS and FA cell lines retained their characteristic phenotype. All of the cultures, except the BS cells, can be readily transfected with the plasmids, pSV2neo and pSV2gpt.  相似文献   

16.
The disadvantages of using human cultured cells for biochemical and genetic studies are their limited lifespan in vitro and their lack of chemical selection markers. These problems are now overcome by transfecting human cultured fibroblasts with the pSV3-gpt and pSV3-neo plasmid DNA which carry genes coding for the immortalizing SV40 large T-antigen and dominant selection markers. Transformed human fibroblasts were obtained at a frequency of about 10(-5) with both selection systems. These transformed cells showed a twofold increase in growth rate and three to tenfold increase in cell number at confluence. The improved growth characteristics were associated with the expression of the SV40 T-antigen detected with immunoprecipitation. These cell lines also changed from their usual spindle shapes to an epithelioid morphology characteristic of transformed cells. From 60 to 100% of the cells transfected with pSV3 plasmid DNA demonstrated numerical and structural abnormalities in their karyotypes. Cells transfected with DNA from a similar plasmid, pSV2-neo, which differed from the pSV3-neo plasmid only by missing the sequence encoding the complete early region of SV40, neither expressed T-antigen nor showed any change in morphology, improvement in growth characteristics or abnormalities in karyotype. However, they were still selectable with the aminoglycoside G-418. Therefore, by appropriate choice of vector plasmids, dominant selection markers and improved growth characteristics can be imparted separately or simultaneously to human fibroblasts. The morphological, biochemical and chromosomal changes resulting from such transformations must be recognized in using this approach for biochemical and genetic studies.  相似文献   

17.
H Kataoka  J Hall    P Karran 《The EMBO journal》1986,5(12):3195-3200
Dual expression vectors derived from pSV2gpt and encoding all or part of the Escherichia coli ada+ gene have been constructed. Following transformation into an E. coli ada strain or transfection and stable integration into the genome of Chinese hamster ovary (CHO) cells, plasmid vectors containing the whole ada+ gene conferred resistance to both killing and mutagenesis by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Thus, the bacterial DNA repair gene was functionally expressed in the mammalian cells. Plasmids containing an N-terminal fragment of the ada+ gene which encoded only one of the two methyltransferase activities of the Ada protein did not significantly protect E. coli or CHO cells against MNNG. These results are consistent with the central role of the intact ada+ gene in controlling the adaptive response to alkylating agents in E. coli. However, the data further suggest that some alkylation lesions in DNA, such as O6-methylguanine, may exert partly different biological effects in E. coli and mammalian cells.  相似文献   

18.
19.
20.
We have assessed the role of cellular transformation in ultraviolet (uv)-induced mutagenic events in human cells. To maintain uniformity of genetic background and to eliminate the effect of DNA repair, primary nontransformed lymphocytes (T-cells) and Epstein-Barr virus-transformed lymphocytes (B-cells) from one patient (XP12Be) with the DNA repair-deficient disorder xeroderma pigmentosum (group A) were transfected with the mutagenesis shuttle vector pZ189. Parallel control experiments were performed with primary, nontransformed lymphocytes from a normal individual and with a repair-proficient Epstein-Barr virus-transformed lymphocyte line (KR6058). pZ189 was treated with uv and introduced into the four cell lines by electroporation. Plasmid survival and mutations inactivating the marker supF suppressor tRNA gene in the recovered pZ189 were scored by transforming an indicator strain of Escherichia coli. Plasmid survival was reduced and mutation frequency elevated equally with both XP-A cell lines compared to both normal cell lines. Base sequence analysis of more than 250 independent plasmids showed that while the G:C----A:T base substitution mutation was found in at least 60% of plasmids with single or tandem mutations with all four cell lines, the frequency with the transformed XP-A (93%) cells was significantly higher (P less than 0.01) than that with the nontransformed XP-A cells (77%). In addition, with the transformed XP-A cells, there were significantly fewer plasmids with transversions and with mutations at a transversion hotspot (base pair 134) than with plasmids recovered from nontransformed XP-A cells. Interleukin-2 and phytohemagglutinin (used to maintain growth of the nontransformed lymphocytes) treatment of transformed XP12Be cells did not change overall plasmid survival or mutation frequency, but increased the transversion frequency and induced a mutational hotspot (at base pair 159), while another mutational hotspot (at base pair 123) disappeared. Thus we have demonstrated that in repair-deficient human cells, cellular transformation, while not affecting overall postuv plasmid survival and mutation frequency, does increase the susceptibility to G:C----A:T transition mutations, a type of mutation associated with uv-induced neoplasia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号