首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
HIV-1 integrase (HIV-IN) is a well-validated antiviral drug target catalyzing a multistep reaction to incorporate the HIV-1 provirus into the genome of the host cell. Small molecule inhibitors of HIV-1 integrase that specifically target the strand transfer step have demonstrated efficacy in the suppression of virus propagation. However, only few specific strand transfer inhibitors have been identified to date, and the need to screen for novel compound scaffolds persists. Here, the authors describe 2 homogeneous time-resolved fluorescent resonance energy transfer-based assays for the measurement of HIV-1 integrase 3'-processing and strand transfer activities. Both assays were optimized for high-throughput screening formats, and a diverse library containing more than 1 million compounds was screened in 1536-well plates for HIV-IN strand transfer inhibitors. As a result, compounds were found that selectively affect the enzymatic strand transfer reaction over 3beta processing. Moreover, several bioactive molecules were identified that inhibited HIV-1 reporter virus infection in cellular model systems. In conclusion, the assays presented herein have proven their utility for the identification of mechanistically interesting and biologically active inhibitors of HIV-1 integrase that hold potential for further development into potent antiviral drugs.  相似文献   

2.
To identify parts of retroviral integrase that interact with cellular DNA, we tested patient-derived human immunodeficiency virus type 1 (HIV-1) integrases for alterations in the choice of nonviral target DNA sites. This strategy took advantage of the genetic diversity of HIV-1, which provided 75 integrase variants that differed by a small number of amino acids. Moreover, our hypothesis that biological pressures on the choice of nonviral sites would be minimal was validated when most of the proteins that catalyzed DNA joining exhibited altered target site preferences. Comparison of the sequences of proteins with the same preferences then guided mutagenesis of a laboratory integrase. The results showed that single amino acid substitutions at one particular residue yielded the same target site patterns as naturally occurring integrases that included these substitutions. Similar results were found with DNA joining reactions conducted with Mn(2+) or with Mg(2+) and were confirmed with a nonspecific alcoholysis assay. Other amino acid changes at this position also affected target site preferences. Thus, this novel approach has identified a residue in the central domain of HIV-1 integrase that interacts with or influences interactions with cellular DNA. The data also support a model in which integrase has distinct sites for viral and cellular DNA.  相似文献   

3.
The novel dinucleotide 5'-phosphate, [(L,D)-pIsodApdC], discovered in our laboratory, is a strong inhibitor of HIV-1 integrase for both the 3'-processing and the strand transfer steps. The rationale used in this molecular design was that residues immediately upstream of the dinucleotide cleavage site in the 3'-processing step might provide critical recognition/binding sites on integrase. The rationale for the second type of inhibitors was based on the elimination products (linear and cyclic dinucleotides) of 3'-processing. However, while the linear dinucleotide 5'-phosphate (pdGpdT) was active, its cyclic counterpart was inactive against both wild-type and mutant HIV integrase.  相似文献   

4.
Retroviral integrases (INs) interact with termini of retroviral DNA in the conserved 5'-C(A/G)T. For most integrases, modifications of critical moieties in the major and minor grooves of these sequences decrease 3'-processing. However, for human immunodeficiency virus type-2 (HTLV-2) IN, the replacement of the guanine with 6-methylguanine or hypoxanthine not only reduced 3'-processing, but also promoted cleavage at a second site. This novel cleavage activity required an upstream ACA, unique to the HTLV-2 U5 end. 3'-Processing assays with additional isosteric modifications at Gua and filter binding experiments revealed that the mechanism of the second site cleavage differed among the major groove, minor groove, and mismatch modifications. Importantly, the decrease in 3'-processing activity noted with the minor groove and mismatch modifications were attributed to a decrease in binding. Major groove modifications, however, decreased the level of 3'-processing, but did not affect binding. This suggests that integrase binds the viral end through the minor groove, but relies on major groove contacts for 3'-processing. Several modifications were also examined in strand transfer and disintegration substrates. HTLV-2 IN showed reduced activity with strand transfer and disintegration substrates containing major groove, but not minor groove modifications. This suggests major groove interactions at guanine also provide an important role in these reactions.  相似文献   

5.
We have examined the activities of HIV-1 integrase on substrates containing mismatches, composed of deoxyuridine at different positions in either the processed or nonprocessed strand of viral DNA, within and near the conserved CA dinucleotide of the U5 end of the HIV-1 LTR. Substitution in the processed strand of either the C or A of the CA dinucleotide or of the G 5' to the CA reduced strand transfer six-, three- and seven-fold respectively. 3'-processing was also reduced by substitution at the GC but not at the A. Substitution in the nonprocessed strand of the G nucleotide at the processing site abolished strand transfer while substitution of the T had no effect. DNA binding of HIV-1 integrase was not affected by deoxyuridine substitutions. Deoxyuridine substitution outside the trinucleotide remained compatible with enzyme activity. Enzymatically generated abasic sites were created at each mismatch to determine the effect of a missing base on integrase activity. Consistent with the deoxyuridine mismatch observations, 3'-processing and strand transfer were abolished when the abasic site was substituted for either of the nucleotides of the GCA trinucleotide. Integrase was, however, able to tolerate mismatches within this trinucleotide during the disintegration reaction. Taken together, these results suggest that base-mismatched or base-deleted substrates, which can be created by the proofreading-deficient HIV-1 RT, can be tolerated by HIV-1 integrase when located outside of the GCA trinucleotide at the U5 end of the LTR.  相似文献   

6.
The viral protein HIV-1 integrase is required for insertion of the viral genome into human chromosomes and for viral replication. Integration proceeds in two consecutive integrase-mediated reactions: 3'-processing and strand transfer. To investigate the DNA minor groove interactions of integrase relative to known sites of integrase action, we synthesized oligodeoxynucleotides containing single covalent adducts of known absolute configuration derived from trans-opening of benzo-[a]pyrene 7,8-diol 9,10-epoxide by the exocyclic 2-amino group of deoxyguanosine at specific positions in a duplex sequence corresponding to the terminus of the viral U5 DNA. Because the orientations of the hydrocarbon in the minor groove are known from NMR solution structures of duplex oligonucleotides containing these deoxyguanosine adducts, a detailed analysis of the relationship between the position of minor groove ligands and integrase interactions is possible. Adducts placed in the DNA minor groove two or three nucleotides from the 3'-processing site inhibited both 3'-processing and strand transfer. Inosine substitution showed that the guanine 2-amino group is required for efficient 3'-processing at one of these positions and for efficient strand transfer at the other. Mapping of the integration sites on both strands of the DNA substrates indicated that the adducts both inhibit strand transfer specifically at the minor groove bound sites and enhance integration at sites up to six nucleotides away from the adducts. These experiments demonstrate the importance of position-specific minor groove contacts for both the integrase-mediated 3'-processing and strand transfer reactions.  相似文献   

7.
Among all the HIV-1 integrase inhibitors, the beta-diketo acids (DKAs) represent a major lead in anti-HIV-1 integrase drug design. These derivatives inhibit the integration reaction in vitro with a strong specificity for the 3'-end joining step. They are also antiviral and inhibit integration in vivo. The aim of the present study has been to investigate the molecular interactions between DKAs and HIV-1 integrase. We have compared 5CITEP with one of the most potent DKAs reported by the Merck group (L-708,906) and found that 5CITEP inhibits 3'-processing at concentrations where L-708,906 is only active on strand transfer. We also report a novel bifunctional DKA derivative that inhibits 3'-processing even more effectively than 5CITEP. The interactions of these inhibitors with the viral DNA donor ends have been studied by performing experiments with oligonucleotides containing defined modifications. We propose that the bifunctional DKA derivative binds to both the acceptor and donor sites of HIV-1 integrase, whereas the monofunctional L-708,906 derivative binds selectively to the acceptor site.  相似文献   

8.
9.
The integrase protein from human immunodeficiency virus type 1 (HIV-1) has generally been reported to require Mn2+ for efficient in vitro activity. We have reexamined the divalent metal ion requirements of HIV-1 integrase and find that the protein is capable of promoting efficient 3' processing and DNA strand transfer with either Mn2+ or Mg2+. The metal ion preference depended upon the reaction conditions. HIV-1 integrase displayed significantly less nonspecific nuclease activity in reaction mixtures containing Mg2+ than it did under the previously described reaction conditions with mixtures containing Mn2+.  相似文献   

10.
Integrase of the human immunodeficiency virus type-1 (HIV-1) recognizes specific sequences located in the U3 and U5 regions at the ends of viral DNA. We synthesized DNA duplexes mimicking the U5 region and containing either 2'-aminonucleosides or non-nucleoside 1,3-propanediol insertions at the third and terminal positions and studied their interactions with HIV-1 integrase. Both modifications introduced a local structural distortion in the DNA double helix. Replacement of the terminal nucleosides by corresponding 2'-aminonucleosides had no significant effect on integrase activity. We used an integrase substrate bearing terminal 2'-aminonucleosides in both strands to synthesize a duplex with cross-linked strands. This duplex was then used to determine whether terminal base pair disruption is an obligatory step of retroviral DNA 3'-processing. Processing of the cross-linked analog of the integrase substrate yielded a product of the same length as 3'-processing of the wild-type substrate but the reaction efficiency was lower. Replacement of the third adenosine in the processed strand by a corresponding 2'-aminonucleoside did not affect integrase activity, whereas, its replacement by 1,3-propanediol completely inhibited 3'-processing. Both modifications of the complementary thymidine in the nonprocessed strand increased the initial rate of 3'-processing. The same effect was observed when both nucleosides, at the third position, were replaced by corresponding 2'-aminonucleosides. This indicates that the local duplex distortion facilitated the cleavage of the phosphodiester bond. Thus, a localized destabilization of the third A-T base pair is necessary for efficient 3'-processing, whereas 3'-end-fraying is important but not absolutely required.  相似文献   

11.
Human endogenous retrovirus K10 encodes a functional integrase.   总被引:3,自引:3,他引:0       下载免费PDF全文
We cloned a human endogenous retrovirus K1O DNA fragment encoding integrase and expressed it as a fusion protein with Escherichia coli maltose-binding protein. Integrase activities were measured in vitro by using a double-stranded oligonucleotide as a substrate mimicking viral long terminal repeats (LTR). The fusion protein was highly active for both terminal cleavage and strand transfer in the presence of Mn2+ on the K1O LTR substrate. It was also active on both Rous sarcoma virus and human immunodeficiency virus type 1 LTR substrates, whereas Rous sarcoma virus and human immunodeficiency virus type 1 integrases were active only on their corresponding LTR substrates. The results strongly suggest that K1O encodes a functional integrase with relaxed substrate specificity.  相似文献   

12.
Integration is essential for retroviral replication and gene therapy using retroviral vectors. Human immunodeficiency virus, type 1 (HIV-1), integrase specifically recognizes the terminal sequences of each long terminal repeat (LTR) and cleaves the 3'-end terminal dinucleotide 5'-GT. The exposed 3'-hydroxyl is then positioned for nucleophilic attack and subsequent strand transfer into another DNA duplex (target or chromosomal DNA). We report that both the terminal cytosine at the protruding 5'-end of the long terminal repeats (5'-C) and the integrase residue Gln-148 are critical for strand transfer. Proximity of the 5'-C and Gln-148 was demonstrated by disulfide cross-linking. Cross-linking is inhibited by the inhibitor 5CITEP 1-(5-chloroindol-3-yl)-3-hydroxy-3-(2H-tetrazol-5-yl)-propenone. We propose that strand transfer requires a conformational change of the integrase-viral (donor) DNA complex with formation of an H-bond between the N-3 of the 5'-C and the amine group of Gln-148. These findings have implications for the molecular mechanisms coupling 3'-processing and strand transfer as well as for the molecular pharmacology of integrase inhibitors.  相似文献   

13.
In this study, eight different HIV-1 integrase proteins containing mutations observed in strand transfer inhibitor-resistant viruses were expressed, purified, and used for detailed enzymatic analyses. All the variants examined were impaired for strand transfer activity compared with the wild type enzyme, with relative catalytic efficiencies (k(p)/K(m)) ranging from 0.6 to 50% of wild type. The origin of the reduced strand transfer efficiencies of the variant enzymes was predominantly because of poorer catalytic turnover (k(p)) values. However, smaller second-order effects were caused by up to 4-fold increases in K(m) values for target DNA utilization in some of the variants. All the variants were less efficient than the wild type enzyme in assembling on the viral long terminal repeat, as each variant required more protein than wild type to attain maximal activity. In addition, the variant integrases displayed up to 8-fold reductions in their catalytic efficiencies for 3'-processing. The Q148R variant was the most defective enzyme. The molecular basis for resistance of these enzymes was shown to be due to lower affinity binding of the strand transfer inhibitor to the integrase complex, a consequence of faster dissociation rates. In the case of the Q148R variant, the origin of reduced compound affinity lies in alterations to the active site that reduce the binding of a catalytically essential magnesium ion. Finally, except for T66I, variant viruses harboring the resistance-inducing substitutions were defective for viral integration.  相似文献   

14.
Human immunodeficiency virus type 1 integrase is one of three viral enzymes, and it realizes a key process of the viral replication cycle, i.e. viral DNA integration into infected cell genome. Integrase recognizes nucleotide sequences located at the ends of the viral DNA U3 and U5 LTRs and catalyzes 3'-processing and strand transfer reactions. To study the interactions between integrase and viral DNA at present work, we used modified integrase substrates mimicking the terminal U5 LTR sequence and containing non-nucleoside insertions in one or/and both strands. It is shown that the substrate modifications have no influence on the integrase binding rate, while the heterocyclic bases removal in the 5th and 6th substrate positions and in the 3rd position of the substrate processed strand distinctly inhibits the integrase catalytic activity. This fact demonstrates these bases significance for the active enzyme/substrate complex formation. On the contrary, modification of the 3rd position within substrate non-processed strand stimulates 3'-processing. Since heterocyclic base elimination results in disruption of the DNA complementary and staking interactions, this result shows that DNA double helix destabilization close to the cleaved bond promotes the 3'-processing.  相似文献   

15.
A series of 6-aryl-2,4-dioxo-5-hexenoic acids, were synthesized and tested against HIV-1 in cell-based assays and against recombinant HIV-1 integrase (rIN) in enzyme assays. Compound 8a showed potent antiretroviral activity (EC(50)=1.5 microM) and significant inhibition against rIN (strand transfer: IC(50)=7.9 microM; 3'-processing: IC(50)=7.0 microM). A preliminary molecular modeling study was carried out to compare the spatial conformation of 8a with those of L-731988 (4) and 5CITEP (7) in the IN core.  相似文献   

16.
We report molecular modeling and functional confirmation of Ole and HT binding to HIV-1 integrase. Docking simulations identified two binding regions for Ole within the integrase active site. Region I encompasses the conserved D64-D116-E152 motif, while region II involves the flexible loop region formed by amino acid residues 140-149. HT, on the other hand, binds to region II. Both Ole and HT exhibit favorable interactions with important amino acid residues through strong H-bonding and van der Waals contacts, predicting integrase inhibition. To test and confirm modeling predictions, we examined the effect of Ole and HT on HIV-1 integrase activities including 3'-processing, strand transfer, and disintegration. Ole and HT exhibit dose-dependent inhibition on all three activities, with EC(50)s in the nanomolar range. These studies demonstrate that molecular modeling of target-ligand interaction coupled with structural-activity analysis should facilitate the design and identification of innovative integrase inhibitors and other therapeutics.  相似文献   

17.
Integration of viral DNA into the host cell genome is a critical step in the life cycle of HIV. This essential reaction is catalyzed by integrase (IN) through two steps, 3'-processing and DNA strand transfer. Integrase is an attractive target for drug design because there is no known cellular analogue and integration is essential for successful replication of HIV. A computational three-dimensional (3-D) database search was used to identify novel HIV-1 integrase inhibitors. Starting from the previously identified Y3 (4-acetylamino-5-hydroxynaphthalene-2,7-disulfonic acid) binding site on the avian sarcoma virus integrase (ASV IN), a preliminary search of all compounds in the nonproprietary, open part of the National Cancer Institute 3-D database yielded a collection of 3100 compounds. A more rigorous scoring method was used to rescreen the 3100 compounds against both ASV IN and HIV-1 IN. Twenty-two of those compounds were selected for inhibition assays against HIV-1 IN. Thirteen of the 22 showed inhibitory activity against HIV-1 IN at concentrations less than 200 microM and three of them showed antiviral activities in HIV-1 infected CEM cells with effective concentrations (EC50) ranging from 0.8 to 200 microM. Analysis of the computer-generated binding modes of the active compounds to HIV-1 IN showed that simultaneous interaction with the Y3 site and the catalytic site is possible. In addition, interactions between the active compounds and the flexible loop involved in the binding of DNA by IN are indicated to occur. The structural details and the unique binding motif between the HIV-1 IN and its inhibitors identified in the present work may contribute to the future development of IN inhibitors.  相似文献   

18.
Wang T  Balakrishnan M  Jonsson CB 《Biochemistry》1999,38(12):3624-3632
The 3'-processing activities of HIV-1, HTLV-2, and M-MuLV integrases (INs) with their corresponding U5 end of the viral DNA molecule were examined to define functional group determinants of U5 terminus recognition and catalysis. Nucleotide analogues were incorporated into the U5 terminus to produce conservative modifications in the surface of the major and/or minor grooves to map the hydrogen-bonding contacts required for LTR-IN interaction. Specifically, the phylogenetically conserved CA (positions 4 and 3, respectively) and the 5'-proximal nucleotide (position 5) were replaced with base analogues in plus and/or minus strands. For each integrase, similar major and minor groove contacts were identified in the guanine and adenine of the conserved CA/GT. Overall, perturbances in the minor groove resulted in a greater decrease in 3'-processing activity than the major groove substitutions. Additionally for HIV-1 and HTLV-2 INs, we observed an increase in the 3'-processing activity with an O4-MeThy substitution at position 3 of the minus strand. O4-MeThy may act to destabilize Watson-Crick base pairing and in doing so provide these INs with a more favorable interaction with the adjacent scissile bond. At position 5, a substantial divergence among the three INs was noted in the functional groups required for 3'-processing activity, thereby supporting the role of this position in providing some level of substrate specificity.  相似文献   

19.
The specific activity of the human immunodeficiency virus, type 1 (HIV-1), integrase on the viral long terminal repeat requires the binding of the enzyme to certain sequences located in the U3 and U5 regions at the ends of viral DNA, but the determinants of this specific DNA-protein recognition are not yet completely understood. We synthesized DNA duplexes mimicking the U5 region and containing either 2'-modified nucleosides or 1,3-propanediol insertions and studied their interactions with HIV-1 integrase, using Mn2+ or Mg2+ ions as integrase cofactors. These DNA modifications had no strong effect on integrase binding to the substrate analogs but significantly affected 3'-end processing rate. The effects of nucleoside modifications at positions 5, 6, and especially 3 strongly depended on the cationic cofactor used. These effects were much more pronounced in the presence of Mg2+ than in the presence of Mn2+. Modifications of base pairs 7-9 affected 3'-end processing equally in the presence of both ions. Adenine from the 3rd bp is thought to form at least two hydrogen bonds with integrase that are crucial for specific DNA recognition. The complementary base, thymine, is not important for integrase activity. For other positions, our results suggest that integrase recognizes a fine structure of the sugar-phosphate backbone rather than heterocyclic bases. Integrase interactions with the unprocessed strand at positions 5-8 are more important than interactions with the processed strand for specific substrate recognition. Based on our results, we suggest a model for integrase interaction with the U5 substrate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号