首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An increased occurrence of disease at various members of the honeybee brood (queen-bee, workers, and drones) settled in the beehive, become evident recently. It is already known that various factors, primary ecological, determine disease development. The aim of the study was to discover which diseases at apiaries corresponds to similar ecological conditions at different beehive types. Effects of the following factors were studied: beehive type and building material, type and descent of the queen-bee, variable of the environmental conditions. All honeybee broods, belonging to the European Apis mellifera carnica rase, used identical honeyfull plants pastures.  相似文献   

2.
The change of the location of the beehives on the diverse honeyfull pastures is the usual apiarists activity in the Republic of Croatia. The main reasons are the climatic and vegetation diversity, and richness of the floral composition, with numerous bee forage plants. Our study aimed to detect consequences of honeybee broods (Queen-bee of different lineage) moving, from one habitat to another at various type of beehives. The Alberti-Znidersic (AZ), Langstroth-Root (LR) and Dadant-Blatt (DB) beehive types, constructed of (lime-tree), have been used. After the bee forage on the Oilseed Rape in the beginning of April, the honeybee brood has been veterinary inspected (based on the Law of animal health protection in the Republic of Croatia) for varrosis, nosemosis and American foulbrood diseases. The same procedure was done after bee forage (False acacia) at the end of May. All of the honeybees belong to the European race Apis mellifera carnica. The results of the study pointed out that different beehive types and the Queen-bee lineage (natural and selected) affect development of disease inside the honeybee brood, during the relocation and change from one dominant bee forage plants to another. Certain allergy reactions occurring in people can be caused by the pollen of some honefull plants such as birch, grasses, ragweed, goldenrod and hazel. Such cases are also included in our investigations. Beekeepers and nature lovers sensitive to pollen allergens of some honeyfull plants should, in some calendar period, avoid ecological milieu with such plants.  相似文献   

3.
The effectiveness of two lures for trapping the small hive beetle, Aethina tumida, by means of in-hive traps was tested by field trials in apiaries located in Florida, Delaware, and Pennsylvania during 2003-2005. Both lures included a mixture (pollen dough) consisting of bee pollen and commercial pollen substitute formulated with or without glycerol and honey. Before it was used in the traps, the dough was conditioned either by the feeding of adult small hive beetles or by inoculation with the yeast Kodamaea ohmeri (NRRL Y-30722). Traps baited with conditioned dough captured significantly more beetles than unbaited traps, and traps positioned under the bottom board of a hive captured significantly more beetles than traps located at the top of a hive. In fact, baited in-hive bottom board traps nearly eliminated the beetles from colonies at a pollination site in Florida. However, when these honey bee colonies were moved to an apiary, trap catch increased markedly over time, indicating a resurgence of the beetle population produced by immigration of beetles from nearby hives or emerging from the soil. In tests at three Florida apiaries during 2006, yeast-inoculated dough baited bottom board traps captured significantly more beetles than unbaited traps, showing the effectiveness of yeast-inoculated dough as a lure and its potential as a tool in managing the small hive beetle.  相似文献   

4.
Introduced plants may be important foraging resources for honey bees and wild pollinators, but how often and why pollinators visit introduced plants across an entire plant community is not well understood. Understanding the importance of introduced plants for pollinators could help guide management of these plants and conservation of pollinator habitat. We assessed how floral abundance and pollinator preference influence pollinator visitation rate and diversity on 30 introduced versus 24 native plants in central New York. Honey bees visited introduced and native plants at similar rates regardless of floral abundance. In contrast, as floral abundance increased, wild pollinator visitation rate decreased more strongly for introduced plants than native plants. Introduced plants as a group and native plants as a group did not differ in bee diversity or preference, but honey bees and wild pollinators preferred different plant species. As a case study, we then focused on knapweed (Centaurea spp.), an introduced plant that was the most preferred plant by honey bees, and that beekeepers value as a late‐summer foraging resource. We compared the extent to which honey bees versus wild pollinators visited knapweed relative to coflowering plants, and we quantified knapweed pollen and nectar collection by honey bees across 22 New York apiaries. Honey bees visited knapweed more frequently than coflowering plants and at a similar rate as all wild pollinators combined. All apiaries contained knapweed pollen in nectar, 86% of apiaries contained knapweed pollen in bee bread, and knapweed was sometimes a main pollen or nectar source for honey bees in late summer. Our results suggest that because of diverging responses to floral abundance and preferences for different plants, honey bees and wild pollinators differ in their use of introduced plants. Depending on the plant and its abundance, removing an introduced plant may impact honey bees more than wild pollinators.  相似文献   

5.
In agriculture, honey bees play a critical role as commercial pollinators of crop monocultures which depend on insect pollination. Hence, the demise of honey bee colonies in Europe, USA, and Asia caused much concern and initiated many studies and research programmes aiming at elucidating the factors negatively affecting honey bee health and survival. Most of these studies look at individual factors related to colony losses. In contrast, we here present our data on the interaction of pathogens and parasites in honey bee colonies. We performed a longitudinal cohort study over 6 years by closely monitoring 220 honey bee colonies kept in 22 apiaries (ten randomly selected colonies per apiary). Observed winter colony losses varied between 4.8% and 22.4%; lost colonies were replaced to ensure a constant number of monitored colonies over the study period. Data on mite infestation levels, infection with viruses, Nosema apis and Nosema ceranae, and recorded outbreaks of chalkbrood were continuously collected. We now provide statistical evidence (i) that Varroa destructor infestation in summer is related to DWV infections in autumn, (ii) that V. destructor infestation in autumn is related to N. apis infection in the following spring, and most importantly (iii) that chalkbrood outbreaks in summer are related to N. ceranae infection in the preceding spring and to V. destructor infestation in the same season. These highly significant links between emerging parasites/pathogens and established pathogens need further experimental proof but they already illustrate the complexity of the host–pathogen-interactions in honey bee colonies.  相似文献   

6.
The incidence of nosemosis has increased in recent years due to an emerging infestation of Nosema ceranae in managed honey bee populations in much of the world. A real-time PCR assay was developed to facilitate detection and quantification of both Nosema apis and N. ceranae in both single bee and pooled samples. The assay is a multiplexed reaction in which both species are detected and quantified in a single reaction. The assay is highly sensitive and can detect single copies of the target sequence. Real-time PCR results were calibrated to spore counts generated by standard microscopy procedures. The assay was used to assess bees from commercial apiaries sampled in November 2008 and March 2009. Bees from each colony were pooled. A large amount of variation among colonies was evident, signifying the need to examine large numbers of colonies. Due to sampling constraints, a subset of colonies (from five apiaries) was sampled in both seasons. In November, N. apis levels were 1212 ± 148 spores/bee and N. ceranae levels were 51,073 ± 31,155 spores/bee. In March, no N. apis was detected, N. ceranae levels were 11,824 ± 6304 spores/bee. Changes in N. ceranae levels were evident among apiaries, some increasing and other decreasing. This demonstrates the need for thorough sampling of apiaries and the need for a rapid test for both detection and quantification of both Nosema spp. This assay provides the opportunity for detailed study of disease resistance, infection kinetics, and improvement of disease management practices for honey bees.  相似文献   

7.
One of the most important factors affecting the development of honey bee colonies is infectious diseases such as American foulbrood (AFB) caused by the spore forming Gram-positive bacterium Paenibacillus larvae. Colony inspections for AFB clinical symptoms are time consuming. Moreover, diseased cells in the early stages of the infection may easily be overlooked. In this study, we investigated whether it is possible to determine the sanitary status of a colony based on analyses of different materials collected from the hive. We analysed 237 bee samples and 67 honey samples originating from 71 colonies situated in 13 apiaries with clinical AFB occurrences. We tested whether a difference in spore load among bees inside the whole hive exists and which sample material related to its location inside the hive was the most appropriate for an early AFB diagnosis based on the culture method. Results indicated that diagnostics based on analysis of honey samples and bees collected at the hive entrance are of limited value as only 86% and 83%, respectively, of samples from AFB-symptomatic colonies were positive. Analysis of bee samples collected from the brood nest, honey chamber, and edge frame allowed the detection of all colonies showing AFB clinical symptoms. Microbiological analysis showed that more than one quarter of samples collected from colonies without AFB clinical symptoms were positive for P. larvae. Based on these results, we recommend investigating colonies by testing bee samples from the brood nest, edge frame or honey chamber for P. larvae spores.  相似文献   

8.
This investigation was conducted to test whether an upper hive entrance may result in reduced Aethina tumida Murray (Coleoptera: Nitidulidae) population buildup in newly established honey bee, Apis mellifera L., colonies over an 8-mo period. The upper hive entrance consisted of a 3.5-cm-i.d. polyvinyl chloride pipe positioned 20 cm above the hive bottom. Sixteen bee colonies were established using five-frame nucleus hives with a 0.9-kg (2-1b) package of bees with queen. Eight colonies were placed in each apiary, and each colony received one of two treatments: 1) conventional hive lower entrance and 2) modified upper hive entrance. This investigation was conducted in two distant apiaries where A. tumida had been a major problem to local beekeepers for a minimum of 2 yr. Results showed no overall differences between treatment effects on A. tumida counts over the test period, but there was a reduction in bee brood measured in colonies having an upper hive entrance. We conclude that the upper pipe entrance is not recommended in areas where A. tumida are well established and have become problematic. The expected reduction of brood in colonies as a result of using an upper hive entrance will lead to less productive units for honey production and pollination activities. Other control measures will be necessary to maintain tolerable levels of A. tumida in honey bee colonies at high pest densities.  相似文献   

9.
Parasites and pathogens are apparent key factors for the detrimental health of managed European honey bee subspecies, Apis mellifera. Apicultural trade is arguably the main factor for the almost global distribution of most honey bee diseases, thereby increasing chances for multiple infestations/infections of regions, apiaries, colonies and even individual bees. This imposes difficulties to evaluate the effects of pathogens in isolation, thereby creating demand to survey remote areas. Here, we conducted the first comprehensive survey for 14 honey bee pathogens in Mongolia (N = 3 regions, N = 9 locations, N = 151 colonies), where honey bee colonies depend on humans to overwinter. In Mongolia, honey bees, Apis spp., are not native and colonies of European A. mellifera subspecies have been introduced ~60 years ago. Despite the high detection power and large sample size across Mongolian regions with beekeeping, the mite Acarapis woodi, the bacteria Melissococcus plutonius and Paenibacillus larvae, the microsporidian Nosema apis, Acute bee paralysis virus, Kashmir bee virus, Israeli acute paralysis virus and Lake Sinai virus strain 2 were not detected, suggesting that they are either very rare or absent. The mite Varroa destructor, Nosema ceranae and four viruses (Sacbrood virus, Black queen cell virus, Deformed wing virus (DWV) and Chronic bee paralysis virus) were found with different prevalence. Despite the positive correlation between the prevalence of V. destructor mites and DWV, some areas had only mites, but not DWV, which is most likely due to the exceptional isolation of apiaries (up to 600 km). Phylogenetic analyses of the detected viruses reveal their clustering and European origin, thereby supporting the role of trade for pathogen spread and the isolation of Mongolia from South-Asian countries. In conclusion, this survey reveals the distinctive honey bee pathosphere of Mongolia, which offers opportunities for exciting future research.  相似文献   

10.
Knowledge of the distribution of Paenibacillus larvae spores, the causative agent of American foulbrood (AFB), among individual adult honey bees is crucial for determining the appropriate number of adult bees to include in apiary composite samples when screening for diseased colonies. To study spore distribution at the individual bee level, 500 honey bees were collected from different parts of eight clinically diseased colonies and individually analyzed for P. larvae. From the brood chamber and from the super, bees were randomly collected and individually put in Eppendorf vials. The samples were frozen as soon as possible after collection. Concurrently with sampling, each colony was visually inspected for clinical symptoms of AFB. The number of clinically diseased cells in the colony was visually estimated. All samples were cultured in the laboratory for P. larvae. The results demonstrate that the spores are not randomly distributed among the bees; some bees have much higher spore loads than others. It is also clear that as the proportion of contaminated bees increase, the number of spores from each positive bee also increases. The data also demonstrated a relationship between the number of clinically diseased cells and the proportion of positive bees in individual colonies. This relationship was used to develop a mathematical formula for estimating the minimum number of bees in a sample to detect clinical disease. The formula takes into account the size of the apiary and the degree of certainty with which one aims to discover clinical symptoms. Calculations using the formula suggest that adult bee samples at the colony level will detect light AFB infections with a high probability. However, the skewed spore distribution of the adult bees makes composite sampling at the apiary level more problematic, if the aim of the sampling is to locate lightly infected individual colonies within apiaries. The results suggest that false-negative culturing results from composite samples of adult bees from individual colonies with clinical symptoms of AFB are highly improbable. However, if single colonies have light infections in large apiaries, the dilution effect from uncontaminated bees from healthy colonies on the positive bees from diseased colonies may yield false-negative results at the apiary level.  相似文献   

11.
Earlier studies showed that Russian honey bees support slow growth of varroa mite population. We studied whether or not comb type influenced varroa reproduction in both Russian and Italian honey bees, and whether Russian bees produced comb which inhibited varroa reproduction. The major differences found in this study concerned honey bee type. Overall, the Russian honey bees had lower (2.44 ± 0.18%) levels of varroa infestation than Italian honey bees (7.20 ± 0.60%). This decreased infestation resulted in part from a reduced number of viable female offspring per foundress in the Russian (0.85 ± 0.04 female) compared to the Italian (1.23 ± 0.04 females) honey bee colonies. In addition, there was an effect by the comb built by the Russian honey bee colonies that reduced varroa reproduction. When comparing combs having Russian or Italian colony origins, Russian honey bee colonies had more non-reproducing foundress mites and fewer viable female offspring in Russian honey bee comb. This difference did not occur in Italian colonies. The age of comb in this study had mixed effects. Older comb produced similar responses for six of the seven varroa infestation parameters measured. In colonies of Italian honey bees, the older comb (2001 dark) had fewer (1.13 ± 0.07 females) viable female offspring per foundress than were found in the 2002 new (1.21 ± 0.06 females) and 1980s new (1.36 ± 0.08 females) combs. This difference did not occur with Russian honey bee colonies where the number of viable female offspring was low in all three types of combs. This study suggests that honey bee type largely influences growth of varroa mite population in a colony.  相似文献   

12.
Experimental work was conducted at two apiaries located in Irbid district and in Shuna North, Jordan, during the years 2004–2006. The aims of these investigations were to estimate the seasonal changes in the infestation rates of the bee louse (Braula sp.) and to develop an easy and rapid method of estimating the infestation rate on workers with bee Braula. Two major honey bee subspecies are reared in Jordan; Apis mellifera carnica and Apis mellifera syriaca were used in this study. The results showed that the infestation rate began to increase rapidly in May, reaching the season's maximum rate of 16.2%, 15.8% and 17.4% for A. m. carnica and 22.6%, 23.9% and 22.9% for A. m. syriaca in December of 2004, 2005 and 2006, respectively. The maximum adult numbers of bees were found in April and June, whereas the minimum for the year was in January in both honey bee subspecies colonies during the study period. The actual population of the bee louse could be estimated by counting the daily dropped lice and multiplying by a factor of 158. This factor is valid for the experimental colonies of both subspecies kept for 3 years under semi‐arid Mediterranean conditions.  相似文献   

13.
Greenhouse tomatoes, Lycopersicon esculentum Miller (Solanaceae), are autogamous, but facilitated pollination results in increased fruit size and set. Previous research examining honey bee pollination in greenhouse tomato crops established that fruit quality resulting from honey bee visitation is often comparable to bumble bees (Bombus spp.) and significantly better than in flowers that receive no facilitated pollination. However, management alternatives have not been studied to improve tomato fruit quality when honey bees are the only pollination option available for the high-value greenhouse industry. We investigated whether the quantity of brood (eggs, larvae, and pupae) in a honey bee colony in the winter and screening on greenhouse vents in the summer would encourage honey bee foraging on tomato flowers. We also established the influence of time of year on the potential for honey bees to be effective pollinating agents. We constructed small honey bee colonies full of naive forager bees with either two frames of brood ("brood colonies") or two empty frames ("no-brood") and compared total fruit set and the number of tomato seeds resulting from fruit potentially visited by honey bees in each of these treatments to bagged flowers that received no facilitated pollination. There was no significant difference in the quality of fruit resulting from honey bees from "brood" and "no-brood" colonies. However, these fruits produced significantly more seeds than bagged flowers restricted from facilitated pollination. Honey bees from brood and no-brood colonies also resulted in 98% fruit set compared with 80% fruit set in bagged flowers that received no facilitated pollination. During the summer, the number of seeds per fruit did not differ significantly between unbagged flowers potentially visited by honey bees in screened greenhouses and unscreened greenhouses and bagged flowers that received no facilitated pollination. However, time of year did have a significant influence on the quality of fruit produced by honey bees compared with flowers that received no facilitated pollination, because no difference in seed number was observed between the treatments after mid-April. The results from this study demonstrate that the management of brood levels and vent screening cannot be used to improve the quality of fruit resulting from honey bee pollination and that honey bees can be a feasible greenhouse pollination alternative only during the winter.  相似文献   

14.
European foulbrood (EFB) persists in England and Wales despite current treatment methods, all of which include feeding honey bee colonies with the antibiotic oxytetracycline (OTC). A large-scale field experiment was conducted to monitor a husbandry-based method, using comb replacement (known as Shook swarm), as a drug free EFB control option. The understanding of EFB epidemiology is limited, with little information on the presence of Melissococcus plutonius in disease free colonies. Additional samples were collected from diseased and disease free apiaries to identify symptomless infection. EFB reoccurrence was not significantly different between OTC and husbandry methods and real-time PCR data demonstrated that fewer Shook swarm treated colonies contained M. plutonius carryover to the Spring following treatment. Asymptomatic colonies from diseased apiaries showed an increased risk of testing positive for M. plutonius compared to asymptomatic colonies from disease free apiaries. The probability of a sample being symptomatic increased when a greater quantity of M. plutonius was detected in adult bees and larvae. The possibility of treating EFB as an apiary disease rather than a colony disease and the implications of a control strategy without antibiotics are discussed.  相似文献   

15.
China has the largest number of managed honey bee colonies, which produce the highest quantity of honey and royal jelly in the world; however, the presence of honey bee pathogens and parasites has never been rigorously identified in Chinese apiaries. We thus conducted a molecular survey of honey bee RNA viruses, Nosema microsporidia, protozoan parasites, and tracheal mites associated with nonnative Apis mellifera ligustica and native Apis cerana cerana colonies in China. We found the presence of black queen cell virus (BQCV), chronic bee paralysis virus (CBPV), deformed wing virus (DWV), Israeli acute paralysis virus (IAPV), and sacbrood virus (SBV), but not that of acute bee paralysis virus (ABPV) or Kashmir bee virus (KBV). DWV was the most prevalent in the tested samples. Phylogenies of Chinese viral isolates demonstrated that genetically heterogeneous populations of BQCV, CBPV, DWV, and A. cerana‐infecting SBV, and relatively homogenous populations of IAPV and A. meliifera‐infecting new strain of SBV with single origins, are spread in Chinese apiaries. Similar to previous observations in many countries, Nosema ceranae, but not Nosema apis, was prevalent in the tested samples. Crithidia mellificae, but not Apicystis bombi was found in five samples, including one A. c. cerana colony, demonstrating that C. mellificae is capable of infecting multiple honey bee species. Based on kinetoplast‐encoded cytochrome b sequences, the C. mellificae isolate from A. c. cerana represents a novel haplotype with 19 nucleotide differences from the Chinese and Japanese isolates from A. m. ligustica. This suggests that A. c. cerana is the native host for this specific haplotype. The tracheal mite, Acarapis woodi, was detected in one A. m. ligustica colony. Our results demonstrate that honey bee RNA viruses, N. ceranae, C. mellificae, and tracheal mites are present in Chinese apiaries, and some might be originated from native Asian honey bees.  相似文献   

16.
Iridovirus and microsporidian linked to honey bee colony decline   总被引:1,自引:0,他引:1  

Background

In 2010 Colony Collapse Disorder (CCD), again devastated honey bee colonies in the USA, indicating that the problem is neither diminishing nor has it been resolved. Many CCD investigations, using sensitive genome-based methods, have found small RNA bee viruses and the microsporidia, Nosema apis and N. ceranae in healthy and collapsing colonies alike with no single pathogen firmly linked to honey bee losses.

Methodology/Principal Findings

We used Mass spectrometry-based proteomics (MSP) to identify and quantify thousands of proteins from healthy and collapsing bee colonies. MSP revealed two unreported RNA viruses in North American honey bees, Varroa destructor-1 virus and Kakugo virus, and identified an invertebrate iridescent virus (IIV) (Iridoviridae) associated with CCD colonies. Prevalence of IIV significantly discriminated among strong, failing, and collapsed colonies. In addition, bees in failing colonies contained not only IIV, but also Nosema. Co-occurrence of these microbes consistently marked CCD in (1) bees from commercial apiaries sampled across the U.S. in 2006–2007, (2) bees sequentially sampled as the disorder progressed in an observation hive colony in 2008, and (3) bees from a recurrence of CCD in Florida in 2009. The pathogen pairing was not observed in samples from colonies with no history of CCD, namely bees from Australia and a large, non-migratory beekeeping business in Montana. Laboratory cage trials with a strain of IIV type 6 and Nosema ceranae confirmed that co-infection with these two pathogens was more lethal to bees than either pathogen alone.

Conclusions/Significance

These findings implicate co-infection by IIV and Nosema with honey bee colony decline, giving credence to older research pointing to IIV, interacting with Nosema and mites, as probable cause of bee losses in the USA, Europe, and Asia. We next need to characterize the IIV and Nosema that we detected and develop management practices to reduce honey bee losses.  相似文献   

17.
Honey bees are among the most effective pollinators that promote plant reproduction. Bees are highly active in the pollen collection season, which can lead to the transmission of selected pathogens between colonies. The clade Starmerella comprises yeasts that are isolated mainly from bees and their environment. When visiting plants, bees can come into contact with Starmerella spp. The aim of this study was to determine the prevalence and phylogenetic position of S. apis in bee colonies. Bee colonies were collected from nine apiaries in three regions. Ten colonies were sampled randomly from each apiary, and pooled samples were collected from the central part of the hive in each colony. A total of 90 (100%) bee colonies from nine apiaries were examined. Starmerella apis was detected in 31 (34.44%) samples, but related species were not identified. The 18S rRNA amplicon sequences of S. apis were compatible with the GenBank sequences of Starmerella spp. from India, Japan, Syria, Thailand, and the USA. The amplicon sequences of S. apis were also 99.06% homologous with the sequences deposited in GenBank under accession numbers JX515988 and NG067631 .This is the first study to perform a phylogenetic analysis of S. apis in Polish honey bees.  相似文献   

18.
19.

Background

The honey bee, Apis mellifera, is frequently used as a sentinel to monitor environmental pollution. In parallel, general weakening and unprecedented colony losses have been reported in Europe and the USA, and many factors are suspected to play a central role in these problems, including infection by pathogens, nutritional stress and pesticide poisoning. Honey bee, honey and pollen samples collected from eighteen apiaries of western France from four different landscape contexts during four different periods in 2008 and in 2009 were analyzed to evaluate the presence of pesticides and veterinary drug residues.

Methodology/Findings

A multi-residue analysis of 80 compounds was performed using a modified QuEChERS method, followed by GC-ToF and LC−MS/MS. The analysis revealed that 95.7%, 72.3% and 58.6% of the honey, honey bee and pollen samples, respectively, were contaminated by at least one compound. The frequency of detection was higher in the honey samples (n = 28) than in the pollen (n = 23) or honey bee (n = 20) samples, but the highest concentrations were found in pollen. Although most compounds were rarely found, some of the contaminants reached high concentrations that might lead to adverse effects on bee health. The three most frequent residues were the widely used fungicide carbendazim and two acaricides, amitraz and coumaphos, that are used by beekeepers to control Varroa destructor. Apiaries in rural-cultivated landscapes were more contaminated than those in other landscape contexts, but the differences were not significant. The contamination of the different matrices was shown to be higher in early spring than in all other periods.

Conclusions/Significance

Honey bees, honeys and pollens are appropriate sentinels for monitoring pesticide and veterinary drug environmental pollution. This study revealed the widespread occurrence of multiple residues in beehive matrices and suggests a potential issue with the effects of these residues alone or in combination on honey bee health.  相似文献   

20.
This study was conducted at the apiary of the Agricultural and Veterinary Training and Research Station of King Faisal University in the Al-Ahsa oasis of eastern Saudi Arabia. We performed a comparison between Carniolan (Apis mellifera carnica Pollmann) and Yemeni (Apis mellifera jemenitica Ruttner) honeybee races to determine the monthly fluctuations in foraging activity, pollen collection, colony growth and honey yield production under the environmental conditions of the Al-Ahsa oasis of eastern Saudi Arabia. We found three peaks in the flight activity of the two races, and the largest peaks occurred during September and October. Compared to Carniolan bee colonies, the performance of Yemeni bee colonies was superior in terms of stored pollen, worker and drone brood rearing, and the adult population size. The Carniolan bee colonies produced 27.77% and 27.50% more honey than the Yemeni bee colonies during the flow seasons of alfalfa and sidir, respectively, with an average increase of 27.64%. It could be concluded that the race of bees is an important factor affecting the activity and productivity of honeybee colonies. The Yemeni bee race produced more pollen, a larger brood and more bees, which exhibited a longer survival. The imported Carniolan bees can be reared in eastern Saudi Arabia, but the Yemeni bee race is still better.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号