首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Urease activation is critical to the virulence of many human and animal pathogens. Urease possesses multiple, nickel-containing active sites, and UreE, the only nickel-binding protein among the urease accessory proteins, activates urease by transporting nickel ions. We performed NMR experiments to investigate the solution structure and the nickel-binding properties of Bacillus pasteurii (Bp) UreE. The secondary structures and global folds of BpUreE were determined for its metal-free and nickel-bound forms. The results indicated that no major structural change of BpUreE arises from the nickel binding. In addition to the previously identified nickel-binding site (Gly(97)-Cys(103)), the C-terminal tail region (Lys(141)-His(147)) was confirmed for the first time to be involved in the nickel binding. The C-terminally conserved sequence ((144)GHQH(147)) was confirmed to have an inherent nickel-binding ability. Nickel addition to 1.6 mm subunit, a concentration where BpUreE predominantly forms a tetramer upon the nickel binding, induced a biphasic spectral change consistent with binding of up to at least three nickel ions per tetrameric unit. In contrast, nickel addition to 0.1 mm subunit, a concentration at which the protein is primarily a dimer, caused a monophasic spectral change consistent with more than 1 equivalent per dimeric unit. Combined with the equilibrium dialysis results, which indicated 2.5 nickel equivalents binding per dimer at a micromolar protein concentration, the nickel-binding stoichiometry of BpUreE at a physiological concentration could be three nickel ions per dimer. Altogether, the present results provide the first detailed structural data concerning the nickel-binding properties of intact, wild-type BpUreE in solution.  相似文献   

2.
The present study describes the cloning, isolation, and thorough biochemical characterization of UreE from Bacillus pasteurii, a novel protein putatively involved in the transport of Ni in the urease assembly process. A DNA fragment of the B. pasteurii urease operon, containing all four accessory genes (ureE, ureF, ureG, and ureD) required for the incorporation of Ni ions into the active site of urease, was cloned, sequenced, and analyzed. B. pasteurii ureE was cloned, and the UreE protein (BpUreE) was over-expressed and purified to homogeneity. The identity of the recombinant protein was determined by N- and C-terminal sequencing and by mass spectrometry. BpUreE has a chain length of 147 amino acids, and features a p I value of 4.7. As isolated, BpUreE contains one Zn(II) ion per dimer, while no Ni(II) is present, as shown by mass spectrometry and atomic absorption spectroscopy. BpUreE behaves as a dimer independently of the presence of Zn(II), as shown by gel filtration and mass spectrometry. Paramagnetic NMR spectroscopy on concentrated (2 mM) UreE solutions reveals a one Ni atom per tetramer stoichiometry, with the Ni(II) ion bound to histidines in an octahedral coordination environment. BpUreE has a high sequence similarity with UreE proteins isolated from different biological sources, while no sequence homology is observed with proteins belonging to different classes. In particular, BpUreE is most similar to UreE from Bacillus halodurans (55% identity). A multiple sequence alignment reveals the presence of four strictly conserved residues (Leu55, Gly97, Asn98, His100; BpUreE numbering), in addition to position 115, conservatively occupied by an Asp or a Glu residue. Several secondary structure elements, including a betaalphabetabetaalphabeta "ferredoxin-like" motif, are highly conserved throughout the UreE sequences.  相似文献   

3.
Klebsiella aerogenes UreE, one of four accessory proteins involved in urease metallocenter assembly, contains a histidine-rich C terminus (10 of the last 15 residues) that is likely to participate in metal ion coordination by this nickel-binding protein. To study the function of the histidine-rich region in urease activation, ureE in the urease gene cluster was mutated to result in synthesis of a truncated peptide, H144* UreE, lacking the final 15 residues. Urease activity in cells containing H144* UreE approached the activities for cells possessing the wild-type protein at nickel ion concentrations ranging from 0 to 1 mM in both nutrient-rich and minimal media. In contrast, clear reductions in urease activities were observed when two ureE deletion mutant strains were examined, especially at lower nickel ion concentrations. Surprisingly, the H144* UreE, like the wild-type protein, was readily purified with a nickel-nitrilotriacetic acid resin. Denaturing polyacrylamide gel electrophoretic analysis and N-terminal sequencing confirmed that the protein was a truncated UreE. Size exclusion chromatography indicated that the H144* UreE peptide associated into a homodimer, as known for the wild-type protein. The truncated protein was shown to cooperatively bind 1.9 +/- 0.2 Ni(II) ions as assessed by equilibrium dialysis measurements, compared with the 6.05 +/- 0.25 Ni ions per dimer reported previously for the native protein. These results demonstrate that the histidine-rich motif is not essential to UreE function and is not solely responsible for UreE nickel-binding ability. Rather, we propose that internal nickel binding sites of UreE participate in urease metallocenter assembly.  相似文献   

4.
The Helicobacter pylori ureE gene product was previously shown to be required for urease expression, but its characteristics and role have not been determined. The UreE protein has now been overexpressed in Escherichia coli, purified, and characterized, and three altered versions were expressed to address a nickel-sequestering role of UreE. Purified UreE formed a dimer in solution and was capable of binding one nickel ion per dimer. Introduction of an extra copy of ureE into the chromosome of mutants carrying mutations in the Ni maturation proteins HypA and HypB resulted in partial restoration of urease activity (up to 24% of the wild-type levels). Fusion proteins of UreE with increased ability to bind nickel were constructed by adding histidine-rich sequences (His-6 or His-10 to the C terminus and His-10 as a sandwich fusion) to the UreE protein. Each fusion protein was overexpressed in E. coli and purified, and its nickel-binding capacity and affinity were determined. Each construct was also expressed in wild-type H. pylori and in hypA and hypB mutant strains for determining in vivo urease activities. The urease activity was increased by introduction of all the engineered versions, with the greatest Ni-sequestering version (the His-6 version) also conferring the greatest urease activity on both the hypA and hypB mutants. The differences in urease activities were not due to differences in the amounts of urease peptides. Addition of His-6 to another expressed protein (triose phosphate isomerase) did not result in stimulation of urease, so urease activation is not related to the level of nonspecific protein-bound nickel. The results indicate a correlation between H. pylori urease activity and the nickel-sequestering ability of the UreE accessory protein.  相似文献   

5.
Bacillus pasteurii UreE (BpUreE) is a putative chaperone assisting the insertion of Ni(2+) ions in the active site of urease. The x-ray structure of the protein has been determined for two crystal forms, at 1.7 and 1.85 A resolution, using SIRAS phases derived from a Hg(2+)-derivative. BpUreE is composed of distinct N- and C-terminal domains, connected by a short flexible linker. The structure reveals the topology of an elongated homodimer, formed by interaction of the two C-terminal domains through hydrophobic interactions. A single Zn(2+) ion bound to four conserved His-100 residues, one from each monomer, connects two dimers resulting in a tetrameric BpUreE known to be formed in concentrated solutions. The Zn(2+) ion can be replaced by Ni(2+) as shown by anomalous difference maps obtained on a crystal of BpUreE soaked in a solution containing NiCl(2). A large hydrophobic patch surrounding the metal ion site is surface-exposed in the biologically relevant dimer. The BpUreE structure represents the first for this class of proteins and suggests a possible role for UreE in the urease nickel-center assembly.  相似文献   

6.
UreE is proposed to be a metallochaperone that delivers nickel ions to urease during activation of this bacterial virulence factor. Wild-type Klebsiella aerogenes UreE binds approximately six nickel ions per homodimer, whereas H144*UreE (a functional C-terminal truncated variant) was previously reported to bind two. We determined the structure of H144*UreE by multi-wavelength anomalous diffraction and refined it to 1.5 A resolution. The present structure reveals an Hsp40-like peptide-binding domain, an Atx1-like metal-binding domain, and a flexible C terminus. Three metal-binding sites per dimer, defined by structural analysis of Cu-H144*UreE, are on the opposite face of the Atx1-like domain than observed in the copper metallochaperone. One metal bridges the two subunits via the pair of His-96 residues, whereas the other two sites involve metal coordination by His-110 and His-112 within each subunit. In contrast to the copper metallochaperone mechanism involving thiol ligand exchanges between structurally similar chaperones and target proteins, we propose that the Hsp40-like module interacts with urease apoprotein and/or other urease accessory proteins, while the Atx1-like domain delivers histidyl-bound nickel to the urease active site.  相似文献   

7.
UreE is a metallo-chaperone assisting the incorporation of two adjacent Ni(2+) ions in the active site of urease. This study describes an attempt to distill general information on this protein using a computational post-genomic approach for the understanding of the structural details of the molecular function of UreE in nickel trafficking. The two crystal structures recently determined for UreE from Bacillus pasteurii (BpUreE) and Klebsiella aerogenes (KaUreE) were comparatively analyzed. This analysis provided insights into the protein structural and conformational features. A structural database of UreE proteins from a large number of different genomes was built using homology modeling. All available sequences of UreE were retrieved from protein and cDNA databases, and their structures were modeled on the crystal structures of BpUreE and KaUreE. A self-consistent iterative protocol was devised for multiple sequence alignment optimization involving secondary structure prediction and evaluation of the energy features of the obtained modeled structures. The quality of all models was tested using standard assessment procedures. The final optimized structure-based multiple alignment and the derived model structures provided insightful information on the evolutionary conservation of key residues in the protein sequence and surface patches presumably involved in protein recognition during the urease active site assembly.  相似文献   

8.
UreE is a homodimeric metallo-chaperone that assists the insertion of Ni(2+) ions in the active site of urease. The crystal structures of UreE from Bacillus pasteurii and Klebsiella aerogenes have been determined, but the details of the nickel-binding site were not elucidated due to solid-state effects that caused disorder in a key portion of the protein. A complementary approach to this problem is described here. Titrations of wild-type Bacillus pasteurii UreE (BpUreE) with Ni(2+), followed by metal ion quantitative analysis using inductively coupled plasma optical emission spectrometry (ICP-OES), established the binding of 2 Ni(2+) ions to the functional dimer, with an overall dissociation constant K(D) = 35 microM. To establish the nature, the number, and the geometry of the ligands around the Ni(2+) ions in BpUreE-Ni(2), X-ray absorption spectroscopy data were collected and analyzed using an approach that combines ab initio extended X-ray absorption fine structure (EXAFS) calculations with a systematic search of several possible coordination geometries, using the Simplex algorithm. This analysis indicated the presence of Ni(2+) ions in octahedral coordination geometry and an average of two histidine residues and four O/N ligands bound to each metal ion. The fit improved significantly with the incorporation, in the model, of a Ni-O-Ni moiety, suggesting the presence of a hydroxide-bridged dinuclear cluster in the Ni-loaded BpUreE. These results were interpreted using two possible models. One model involves the presence of two identical metal sites binding Ni(2+) with negative cooperativity, with each metal ion bound to the conserved His(100) as well as to either His(145) or His(147) from each monomer, residues found largely conserved at the C-terminal. The alternative model comprises the presence of two different binding sites featuring different affinity for Ni(2+). This latter model would involve the presence of a dinuclear metallic core, with one Ni(2+) ion bound to one His(100) from each monomer, and the second Ni(2+) ion bound to a pair of either His(145) or His(147). The arguments in favor of one model as compared to the other are discussed on the basis of the available biochemical data.  相似文献   

9.
Four accessory proteins (UreD, UreE, UreF, and UreG) are typically required to form the nickel-containing active site in the urease apoprotein (UreABC). Among the accessory proteins, UreD and UreF have been elusive targets for biochemical and structural characterization because they are not overproduced as soluble proteins. Using the best-studied urease system, in which the Klebsiella aerogenes genes are expressed in Escherichia coli, a translational fusion of ureE and ureF was generated. The UreEF fusion protein was overproduced as a soluble protein with a convenient tag involving the His-rich region of UreE. The fusion protein was able to form a UreD(EF)G-UreABC complex and to activate urease in vivo, and it interacted with UreD-UreABC in vitro to form a UreD(EF)-UreABC complex. While the UreF portion of UreEF is fully functional, the fusion significantly affected the role of the UreE portion by interrupting its dimerization and altering its metal binding properties compared to those of the wild-type UreE. Analysis of a series of UreEF deletion mutants revealed that the C terminus of UreF is required to form the UreD(EF)G-UreABC complex, while the N terminus of UreF is essential for activation of urease.  相似文献   

10.
The urease accessory protein encoded by ureE from Klebsiella aerogenes is proposed to deliver Ni(II) to the urease apoprotein during enzyme activation. Native UreE possesses a histidine-rich region at its carboxyl terminus that binds several equivalents of Ni(2+); however, a truncated form of this protein (H144*UreE) binds only 2 Ni(2+) per dimer and is functionally active (Brayman, T. G., and Hausinger, R. P. (1996) J. Bacteriol. 178, 5410-5416). The urease activation kinetics were studied in vivo by monitoring the development of urease activity upon adding Ni(2+) to spectinomycin-treated Escherichia coli cells that expressed the complete K. aerogenes urease gene cluster with altered forms of ureE. Site-specific alterations of H144*UreE decrease the rate of in vivo urease activation, with the most dramatic changes observed for the H96A, H110A, D111A, and H112A substitutions. Notably, urease activity in cells producing H96A/H144*UreE was lower than cells containing a ureE deletion. Prior studies had shown that H110A and H112A variants each bound a single Ni(2+) per dimer with elevated K(d) values compared with control H144*UreE, whereas the H96A and D111A variants bound 2 Ni(2+) per dimer with unperturbed K(d) values (Colpas, G. J., Brayman, T. G., Ming, L.-J., and Hausinger, R. P. (1999) Biochemistry 38, 4078-4088). To understand why cells containing the latter two proteins showed reduced rates of urease activation, we characterized their metal binding/dissociation kinetics and compared the results to those obtained for H144*UreE. The truncated protein was shown to sequentially bind two Ni(2+) with k(1) approximately 18 and k(2) approximately 100 M(-1) s(-1), and with dissociation rates k(-1) approximately 3 x 10(-3) and k(-2) approximately 10(-4) s(-1). Similar apparent rates of binding and dissociation were noted for the two mutant proteins, suggesting that altered H144*UreE interactions with Ni(2+) do not account for the changes in cellular urease activation. These conclusions are further supported by in vitro experiments demonstrating that addition of H144*UreE to urease apoprotein activation mixtures inhibited the rate and extent of urease formation. Our results highlight the importance of other urease accessory proteins in assisting UreE-dependent urease maturation.  相似文献   

11.
12.
脲酶能够催化尿素分解生成氨,在农业和医学领域中具有重要的意义。细菌脲酶蛋白包括结构蛋白(UreA、UreB和UreC)和辅助蛋白(UreD/UreH、UreE、UreF和UreG),它们在脲酶活化过程中各自具有独特的作用,结构蛋白形成脲酶活性中心,而辅助蛋白主要负责镍离子的传递。文中综述了细菌脲酶蛋白复合物的结构和功能,以及各蛋白之间如何相互作用完成其活化过程,以期为脲酶活性调控研究及脲酶抑制剂开发等提供理论指导。  相似文献   

13.
Klebsiella aerogenes UreE, a metallochaperone that delivers nickel ions during urease activation, consists of distinct "peptide-binding" and "metal-binding" domains and a His-rich C terminus. Deletion analyses revealed that the metal-binding domain alone is sufficient to facilitate urease activation. This domain was purified and shown to exhibit metal-binding properties similar to those of UreE lacking only the His-rich tail.  相似文献   

14.
The urease accessory protein encoded by ureE from Klebsiella aerogenes is proposed to bind intracellular Ni(II) for transfer to urease apoprotein. While native UreE possesses a histidine-rich region at its carboxyl terminus that binds several equivalents of Ni, the Ni-binding sites associated with urease activation are internal to the protein as shown by studies involving truncated H144UreE [Brayman and Hausinger (1996) J. Bacteriol. 178, 5410-5416]. Nine potential Ni-binding residues (five His, two Cys, one Asp, and one Tyr) within H144UreE were independently substituted by mutagenesis to determine their roles in metal binding and urease activation. In vivo effects of these substitutions on urease activity were measured in Escherichia coli strains containing the K. aerogenes urease gene cluster with the mutated ureE genes. Several mutational changes led to reductions in specific activity, with substitution of His96 producing urease activity below the level obtained from a ureE deletion mutant. The metal-binding properties of purified variant UreE proteins were characterized by a combination of equilibrium dialysis and UV/visible, EPR, and hyperfine-shifted 1H NMR spectroscopic methods. Ni binding was unaffected for most H144UreE variants, but mutant proteins substituted at His110 or His112 exhibited greatly reduced affinity for Ni and bound one, rather than two, metal ions per dimer. Cys79 was identified as the Cu ligand responsible for the previously observed charge-transfer transition at 370 nm, and His112 also was shown to be associated with this chromophoric site. NMR spectroscopy provided clear evidence that His96 and His110 serve as ligands to Ni or Co. The results from these and other studies, in combination with prior spectroscopic findings for metal-substituted UreE [Colpas et al. (1998) J. Biol. Inorg. Chem. 3, 150-160], allow us to propose that the homodimeric protein possesses two nonidentical metal-binding sites, each symmetrically located at the dimer interface. The first equivalent of added Ni or Co binds via His96 and His112 residues from each subunit of the dimer, and two other N or O donors. Asp111 either functions as a ligand or may affect this site by secondary interactions. The second equivalent of Ni or Co binds via the symmetric pair of His110 residues as well as four other N or O donors. In contrast, the first equivalent of Cu binds via the His110 pair and two other N/O donors, while the second equivalent of Cu binds via the His112 pair and at least one Cys79 residue. UreE sequence comparisons among urease-containing microorganisms reveal that residues His96 and Asp111, associated with the first site of Ni binding, are highly conserved, while the other targeted residues are missing in many cases. Our data are most compatible with one Ni-binding site per dimer being critical for UreE's function as a metallochaperone.  相似文献   

15.
Soriano A  Colpas GJ  Hausinger RP 《Biochemistry》2000,39(40):12435-12440
The activation of metal-containing enzymes often requires the participation of accessory proteins whose roles are poorly understood. In the case of Klebsiella aerogenes urease, a nickel-containing enzyme, metallocenter assembly requires UreD, UreF, and UreG acting as a protein chaperone complex and UreE serving as a nickel metallochaperone. Urease apoprotein within the UreD-UreF-UreG-urease apoprotein complex is activated to wild-type enzyme activity levels under physiologically relevant conditions (100 microM bicarbonate and 20 microM Ni2+) in a process that requires GTP and UreE. The GTP concentration needed for optimal activation is greatly reduced in the presence of UreE compared to that required in its absence. The amount of UreE provided is critical, with maximal activation observed at a concentration equal to that of Ni2+. On the basis of its ability to facilitate urease activation in the presence of chelators, UreE is proposed to play an active role in transferring Ni2+ to urease apoprotein. Studies involving site-directed variants of UreE provide evidence that His96 has a direct role in metal transfer. The results presented here parallel those obtained from previous in vivo studies, demonstrating the relevance of this in vitro system to the cellular metallocenter assembly process.  相似文献   

16.
SlyD (sensitive to lysis D) is a nickel metallochaperone involved in the maturation of [NiFe]-hydrogenases in Escherichia coli (E. coli) and specifically contributes to the nickel delivery step during enzyme biosynthesis. This protein contains a C-terminal metal-binding domain that is rich in potential metal-binding residues that enable SlyD to bind multiple nickel ions with high affinity. The SlyD homolog from Thermus thermophilus does not contain the extended cysteine- and histidine-rich C-terminal tail of the E. coli protein, yet it binds a single Ni(II) ion tightly. To investigate whether a single metal-binding motif can functionally replace the full-length domain, we generated a truncation of E. coli SlyD, SlyD155. Ni(II) binding to SlyD155 was investigated by using isothermal titration calorimetry, NMR and electrospray ionization mass spectrometry measurements. This in vitro characterization revealed that SlyD155 contains a single metal-binding motif with high affinity for nickel. Structural characterization by X-ray absorption spectroscopy and NMR indicated that nickel was coordinated in an octahedral geometry with at least two histidines as ligands. Heterodimerization between SlyD and another hydrogenase accessory protein, HypB, is essential for optimal hydrogenase maturation and was confirmed for SlyD155 via cross-linking experiments and NMR titrations, as were conserved chaperone and peptidyl-prolyl isomerase activities. Although these properties of SlyD are preserved in the truncated version, it does not modulate nickel binding to HypB in vitro or contribute to the maturation of [NiFe]-hydrogenases in vivo, unlike the full-length protein. This study highlights the importance of the unusual metal-binding domain of E. coli SlyD in hydrogenase biogenesis.  相似文献   

17.
Urease, the most efficient enzyme so far discovered, depends on the presence of nickel ions in the catalytic site for its activity. The transformation of inactive apo-urease into active holo-urease requires the insertion of two Ni(II) ions in the substrate binding site, a process that involves the interaction of four accessory proteins named UreD, UreF, UreG and UreE. This study, carried out using calorimetric and NMR-based structural analysis, is focused on the interaction between UreE and UreG from Sporosarcina pasteurii, a highly ureolytic bacterium. Isothermal calorimetric protein–protein titrations revealed the occurrence of a binding event between SpUreE and SpUreG, entailing two independent steps with positive cooperativity (Kd1 = 42 ± 9 μM; Kd2 = 1.7 ± 0.3 μM). This was interpreted as indicating the formation of the (UreE)2(UreG)2 hetero-oligomer upon binding of two UreG monomers onto the pre-formed UreE dimer. The molecular details of this interaction were elucidated using high-resolution NMR spectroscopy. The occurrence of SpUreE chemical shift perturbations upon addition of SpUreG was investigated and analyzed to establish the protein–protein interaction site. The latter appears to involve the Ni(II) binding site as well as mobile portions on the C-terminal and the N-terminal domains. Docking calculations based on the information obtained from NMR provided a structural basis for the protein–protein contact site. The high sequence and structural similarity within these protein classes suggests a generality of the interaction mode among homologous proteins. The implications of these results on the molecular details of the urease activation process are considered and analyzed.  相似文献   

18.
Proteus mirabilis urease, a nickel metalloenzyme, is essential for the virulence of this species in the urinary tract. Escherichia coli containing cloned structural genes ureA, ureB, and ureC and accessory genes ureD, ureE, ureF, and ureG displays urease activity when cultured in M9 minimal medium. To study the involvement of one of these accessory genes in the synthesis of active urease, deletion mutations were constructed. Cultures of a ureE deletion mutant did not produce an active urease in minimal medium. Urease activity, however, was partially restored by the addition of 5 microM NiCl2 to the medium. The predicted amino acid sequence of UreE, which concludes with seven histidine residues among the last eight C-terminal residues (His-His-His-His-Asp-His-His-His), suggested that UreE may act as a Ni2+ chelator for the urease operon. To exploit this potential metal-binding motif, we attempted to purify UreE from cytoplasmic extracts of E. coli containing cloned urease genes. Soluble protein was loaded onto a nickel-nitrilotriacetic acid column, a metal chelate resin with high affinity for polyhistidine tails, and bound protein was eluted with a 0 to 0.5 M imidazole gradient. A single polypeptide of 20-kDa apparent molecular size, as shown by sodium dodecyl sulfate-10 to 20% polyacrylamide gel electrophoresis, was eluted between 0.25 and 0.4 M imidazole. The N-terminal 10 amino acids of the eluted polypeptide exactly matched the deduced amino acid sequence of P. mirabilis UreE. The molecular size of the native protein was estimated on a Superdex 75 column to be 36 kDa, suggesting that the protein is a dimer. These data suggest that UreE is a Ni(2)+-binding protein that is necessary for synthesis of a catalytically active urease at low Ni(2+) concentrations.  相似文献   

19.
In vivo assembly of the Klebsiella aerogenes urease nickel metallocenter requires the presence of UreD, UreF, and UreG accessory proteins and is further facilitated by UreE. Prior studies had shown that urease apoprotein exists in an uncomplexed form as well as in a series of UreD-urease (I.-S. Park, M.B. Carr, and R.P. Hausinger, Proc. Natl. Acad. Sci. USA 91:3233-3237, 1994) and UreD-UreF-UreG-urease (I.-S. Park and R.P. Hausinger, J. Bacteriol. 177:1947-1951, 1995) apoprotein complexes. This study demonstrates the existence of a distinct series of complexes consisting of UreD, UreF, and urease apoprotein. These novel complexes exhibited activation properties that were distinct from urease and UreD-urease apoprotein complexes. Unlike the previously described species, the UreD-UreF-urease apoprotein complexes were resistant to inactivation by NiCl2. The bicarbonate concentration dependence for UreD-UreF-urease apoenzyme activation was significantly decreased compared with that of the urease and UreD-urease apoproteins. Western blot (immunoblot) analyses with polyclonal anti-urease and anti-UreD antibodies indicated that UreD is masked in the UreD-UreF-urease complexes, presumably by UreF. We propose that the binding of UreF modulates the UreD-urease apoprotein activation properties by excluding nickel ions from binding to the active site until after formation of the carbamylated lysine metallocenter ligand.  相似文献   

20.
Colonization of Helicobacter pylori in the acidic environment of the human stomach depends on the neutralizing activity of urease. Activation of apo-urease involves carboxylation of lysine 219 and insertion of two nickel ions. In H. pylori, this maturation process involves four urease accessory proteins as follows: UreE, UreF, UreG, and UreH. It is postulated that the apo-urease interacts with UreF, UreG, and UreH to form a pre-activation complex that undergoes GTP-dependent activation of urease. The crystal structure of the UreF-UreH complex reveals conformational changes in two distinct regions of UreF upon complex formation. First, the flexible C-terminal residues of UreF become ordered, forming an extra helix α10 and a loop structure stabilized by hydrogen bonds involving Arg-250. Second, the first turn of helix α2 uncoils to expose a conserved residue, Tyr-48. Substitution of R250A or Y48A in UreF abolishes the formation of the heterotrimeric complex of UreG-UreF-UreH and abolishes urease maturation. Our results suggest that the C-terminal residues and helix α2 of UreF are essential for the recruitment of UreG for the formation of the pre-activation complex. The molecular mass of the UreF-UreH complex determined by static light scattering was 116 ± 2.3 kDa, which is consistent with the quaternary structure of a dimer of heterodimers observed in the crystal structure. Taking advantage of the unique 2-fold symmetry observed in both the crystal structures of H. pylori urease and the UreF-UreH complex, we proposed a topology model of the pre-activation complex for urease maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号