首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The utilization of millimolar concentrations of [2-14C]acetone and the production of acetone from acetoacetate were studied in perfused livers from 48-h starved rats. We devised a procedure for determining, in a perfused liver system, the first-order rate constant for the decarboxylation of acetoacetate (0.29 +/- 0.09 h-1, S.E., n = 8). After perfusion of livers with [2-14C]acetone, labeled acetate was isolated from the perfusion medium and characterized as [1-14C]acetate. No radioactivity was found in lactate or 3-hydroxybutyrate. After 90 min of perfusion with [2-14C]acetone, the specific activity of acetate was 30 +/- 4% (n = 13) of the initial specific activity of acetone. We conclude that, in perfused livers from 2-day starved rats, acetone metabolism occurs for the most part via free acetate.  相似文献   

2.
In rabbit livers, it is not well known which segments of the hepatic vasculature are predominantly contracted by various vasoconstrictors. We determined effects of histamine, norepinephrine, and KCl on hepatic vascular resistance distribution in isolated rabbit livers perfused via the portal vein with 5% albumin-Krebs solution at a constant flow rate. Hepatic capillary pressure was measured by double vascular occlusion pressure (Pdo) and was used to determine portal (Rpv) and hepatic venous (Rhv) resistances. A bolus injection of either histamine or norepinephrine dose-dependently increased portal venous pressure but not Pdo, resulting in a dose-dependent increase in Rpv and no changes in Rhv. KCl (50 mM), when injected in anterogradely perfused livers, contracted the presinusoidal vessels selectively with liver weight loss. Although KCl significantly increased Rhv in retrogradely perfused livers, the increase in Rpv by 400% of baseline predominated over the increase in Rhv by 85% of baseline. In the retrogradely perfused livers, KCl produced an initial liver weight loss followed by a profound weight gain. We conclude that histamine and norepinephrine selectively contract the presinusoidal vessels. The results on KCl effects suggest that this selective presinusoidal constriction might be possibly due to predominant distribution of functionally active vascular smooth muscle in the presinusoidal vessels rather than the hepatic vein in rabbit livers.  相似文献   

3.
There is currently a severe shortage of liver grafts available for transplantation. Novel organ preservation techniques are needed to expand the pool of donor livers. Machine perfusion of donor liver grafts is an alternative to traditional cold storage of livers and holds much promise as a modality to expand the donor organ pool. We have recently described the potential benefit of subnormothermic machine perfusion of human livers. Machine perfused livers showed improving function and restoration of tissue ATP levels. Additionally, machine perfusion of liver grafts at subnormothermic temperatures allows for objective assessment of the functionality and suitability of a liver for transplantation. In these ways a great many livers that were previously discarded due to their suboptimal quality can be rescued via the restorative effects of machine perfusion and utilized for transplantation. Here we describe this technique of subnormothermic machine perfusion in detail. Human liver grafts allocated for research are perfused via the hepatic artery and portal vein with an acellular oxygenated perfusate at 21 °C.  相似文献   

4.
We examined expression of the c-myc oncogene in isolated perfused livers to elucidate the mechanisms involved in triggering the proliferation of hepatocytes after partial hepatectomy (PH). During perfusion with a 1:1 mixture of Dulbecco's modified Eagle's medium and the oxygen transport fluid FC-43, rat livers were two-thirds resected (PH), and further perfused for 1 1/2 hours at the physiological portal flow throughout the perfusion. Expression of c-myc in the perfused livers with PH(+) was ten times higher than in those with PH(?). Furthermore, expression of c-myc in the PH(?) livers perfused with a threefold volume of the physiological portal flow was 5–10 times higher than that in the livers perfused with the physiological portal flow. The perfusates that passed through the livers did not induce DNA synthesis of primary cultured hepatocytes. These results suggest that an increase in the portal flow volume may act as a trigger for hepatocyte proliferation after PH. © 1993 Wiley-Liss, Inc.  相似文献   

5.
Metabolism of high density lipoproteins by the perfused rabbit liver   总被引:2,自引:0,他引:2  
The role of the liver in the catabolism of high density lipoproteins (HDL) was examined in isolated perfused rabbit livers. Using 125I-labeled rabbit HDL the disappearance of labeled apolipoproteins from the perfusate was biphasic with 7% of the label removed after 20 min and a further 6% between 20 and 90 min. In contrast, with HDL labeled with [3H]cholesteryl esters 35% of label had been removed after 90 min. The effect of liver perfusion on HDL size and composition was further studied by recirculating rabbit HDL for 120 min. In control experiments HDL was incubated at 37 degrees C for 120 min with nonperfused media and with media that had been liver perfused. The added HDL was predominantly particles of 4.8-4.9-mm radius, and incubation with nonperfused and preperfused media produced no significant change in size. However, liver perfusion resulted in particles predominantly 4.2-4.3-mm radius. Hepatic perfusion also significantly reduced HDL cholesteryl ester composition as a percentage of lipoproteins mass from 13.3 +/- 2.2% in control incubations to 10.7 +/- 3.1% (p less than 0.001), and cholesteryl ester:protein mass ratio was reduced from 0.31 +/- 0.06 in control to 0.24 +/- 0.10 (p less than 0.001) after 120 min of liver perfusion. Thus interaction of rabbit HDL with rabbit liver results in smaller HDL particles significantly depleted of core cholesteryl esters.  相似文献   

6.
J T Flynn 《Prostaglandins》1987,33(2):287-299
Complement-mediated thromboxane production in the isolated, perfused rabbit liver has been shown to be calcium sensitive. The present study utilizes mepacrine, a phospholipase inhibitor, to investigate the involvement of phospholipases A and C in the mechanism of complement-induced arachidonate metabolism. Livers perfused in vitro in an open, nonrecirculating system were given either normal plasma or zymosan activated plasma at a rate of 1 ml/minute for 10 minutes. An additional group of livers was constantly perfused with 10 microM mepacrine while receiving the zymosan activated plasma infusion. Control group livers demonstrated a stable perfusion pressure, rate of release of lactic dehydrogenase and acid phosphatase, and stable rates of thromboxane and prostacyclin production for the entire experimental period. In contrast, treatment with zymosan-activated plasma resulted in significant increases in the rate of thromboxane B2 release at 1, 3 and 5 minutes of infusion when compared to the values of the control group. Neither prostacyclin release nor enzyme release changed significantly as a result of the zymosan-activated plasma administration. Treatment of the perfused livers with mepacrine abolished the complement-mediated production of thromboxane B2. In summary, this study has confirmed that plasma which has had its complement components activated by zymosan induces a transient, self-limiting production of thromboxane-like materials in the perfused rabbit liver. The mechanism of this stimulation is hypothetized to be a mepacrine-sensitive activation of phospholipase.  相似文献   

7.
In order to establish a long-term perfusion system a fluorocarbon emulsion was developed and employed for the perfusion of isolated rat liver up to 20 h. Its suitability for maintaining some specific organ functions was compared with that of a commonly used red cell-containing medium. All livers perfused with the fluorocarbon medium released phosphoglucose isomerase, glutamate-oxaloacetate transaminase and glutamate dehydrogenase almost linearly at a low basal rate, glutamate dehydrogenase release beginning after 5 h perfusion. In contrast to that, a certain percentage of the livers perfused with the red cell-containing medium showed an exponential enzyme release which was over two standard deviations above the mean of the livers perfused with fluorocarbon medium, the values being 25% for phosphoglucose isomerase, 38% for glutamate-oxaloacetate transmiinase and 87% for glutamate dehydrogenase after 10 h of perfusion. In each case the exponential release of phosphoglucose isomerase signaled the functional impairment of the preparation.Thus, defining those livers as “intact” only if their phosphoglucose isomerase release was within two standard deviations of the means of the fluorocarbon-perfused livers, the following liver functions were examined in fluorocarbon-perfused and, for comparison, in “intact” cell-perfused livers during a 10-h period: Metabolite state, galactose elimination from the perfusate, induction of tyrosine aminotransferase by dexamethasone, and gluconeogenesis from lactate and bile production. It was found that the fluorocarbon medium provided at least the same or an even better hepatic function than did the red cell-containing medium. However, while in red cell-perfused livers functional impairment always occurred at various percentages under the conditions mentioned above, this was never observed with the fluorocarbon medium.Electron microscopic examination of the livers perfused with the fluorocarbon medium showed no disturbance of the mitochondrial matrix and cristae after a 10 h perfusion. While within a large number of liver cells the ergastoplasm was seen in normal appearance, in other liver cells the cisternae of rough endoplasmic reticulum were vacuolated.Some important physicochemical data of the fluorocarbon medium such as O2 capacity, viscosity and particle size are reported, and the technique and the problems of its preparation are described. The advantages of the fluorocarbon medium for long as well as short term perfusion experiments are discussed.  相似文献   

8.
Complement-mediated thromboxane production in the isolated, perfused rabbit liver has been shown to be calcium sensitive. The present study utilizes mepacrine, a phospholipase inhibitor, to investigate the involvement of phospholipases A and C in the mechanism of complement-induced arachidonate metabolism. Livers perfused in an open, nonrecirculating system were given either normal plasma or zymosan activated plasma at a rate of 1 ml/minute for 10 minutes. An additional group of livers was constantly perfused with 10 μM mepacrine while receiving the zymosan activated plasma infusion. Control group livers demonstrated a stable perfusion pressure, rate of release of lactic dehydrogenase and acid phosphatase, and stable rates of thromboxane and prostacyclin production for the entire experimental period. In contrast, treatment with zymosan-activated plasma resulted in significant increases in the rate of thromboxane B2 release at 1, 3 and 5 minutes of infusion when compared to the values of the control group. Neither prostacyclin release nor enzyme release changed significantly as a result of the zymosan-activated plasma administration. Treatment of the perfused livers with mepacrine abolished the complement-mediated production of thromboxane B2. In summary, this study has confirmed that plasma which has had its complement components activated by zymosan induces a transient, self-limiting production of thromboxane-like materials in the perfused rabbit liver. The mechanism of this stimulation is hypothetized to be a mepacrine-sensitive activation of phospholipase.  相似文献   

9.
1. By perfusion of rat livers with 3mm-AMP in the perfusion medium we obtain increased intracellular concentrations of AMP. 2. These high intracellular concentrations of AMP lead to an increased output of glucose and urea into the perfusion medium. 3. The increased output of glucose in livers from fed rats is brought about primarily by an AMP-stimulated breakdown of liver glycogen. In livers from starved rats the increase in glucose output is not as great, reflecting the low contents of glycogen in livers from starved rats. 4. AMP inhibits gluconeogenesis from lactate in perfused livers. In the presence of high concentrations of lactate, however, the counteracting effects of AMP to increase glycogenolysis and to inhibit gluconeogenesis result in little change in the net glucose output. 5. The increased urea output is brought about by increased breakdown of amino acids that are present in the perfusion medium. In livers from starved rats the overall urea production is much higher, indicating increased catabolism of amino acids and other nitrogenous substrates in the absence of carbohydrate substrates. 6. AMP causes an inhibition of incorporation of labelled precursors into protein and nucleic acid. This may result from increased catabolism of precursors of proteins and nucleic acids as reflected by the more rapid breakdown of nitrogenous compounds. In support of this hypothesis, cell-free systems for amino acid incorporation isolated from livers perfused with and without AMP are equally capable of supporting protein synthesis. 7. The labelling pattern of RNA in perfused livers corresponds very closely to those found by pulse-labelling in vivo. AMP in no way alters the qualitative nature of the labelling patterns. 8. We consider these results as supporting evidence for the role of the concentration ratio of AMP to ATP in controlling the metabolic pathways that lead to the formation of ATP.  相似文献   

10.
B R Dobbs  D Lee 《Cryobiology》1979,16(5):461-467
Commercial bovine serum albumin was purified by gel filtration, in an attempt to extend the period during which isolated rat livers could be maintained in a viable condition while in a state of hypothermia, and to remove some of the variability of data obtained from livers perfused with different batches of BSA. A minor component, accounting for about 5% of the total protein, was removed and the remainder used to support isolated perfused rat livers.Perfusion of rat livers with purified albumin at a concentration of 62 g/liter achieved two results: one, an improvement in the biochemical performance of rat livers perfused at 35 °C; and two, an increase in the period of hypothermic perfusion from 12 to 24 hr during which the liver would remain viable, as indicated by the biochemical tests performed on rewarming to 35 °C.  相似文献   

11.
We have utilized the in situ perfused rat liver under nonrecirculating conditions to examine the effect of temperature on the metabolism and biliary secretion of [125I]-asialoorosomucid (ASOR). In this manner we were able to follow the fate of a single round of internalized ligand. In control livers perfused at 37 degrees C, approximately 50% of [125I]-ASOR injected into the portal vein was extracted on first pass. Five minutes after the injection, radioactivity, which had been extracted initially, began to appear in the hepatic venous effluent. Within 25 min, 50% of the initially extracted radioactivity was released into the perfusion medium; the bulk of this radioactivity (greater than 95%) was soluble in trichloroacetic acid. In livers perfused at temperatures slightly less than 37 degrees C (30-35 degrees C), first-pass extraction of [125I]-ASOR was similar to that observed at 37 degrees C. However, a severalfold decrease in the rate of release of radioactivity from the liver into the perfusion medium was noted at the lower perfusion temperatures; whereas greater than 50% of the initially extracted radioactivity was released within 30 min from livers perfused at 37 degrees C, only 5% was released at 30 degrees C. At the lower perfusion temperature, a larger proportion of the released radioactivity was acid precipitable (24% vs. 5%). Some radioactivity also was recovered in the bile; of the total amount of radioactivity released from the liver in 30 min at 37 degrees C, approximately 5% was directed into the bile. At lower temperatures of perfusion, a greater fraction of the radioactivity that was released from the liver was directed into the bile (20% at 30 degrees C vs. 5% at 37 degrees C). The data imply that the endosomal pathway to the lysosome is highly sensitive to slight reductions in temperature while the transcytotic route into bile is less sensitive. Lower temperatures might prolong the residence time of ASOR in the prelysosomal endosomal compartments, and thereby increase the likelihood that undegraded ligand will be returned to the blood or be missorted into bile.  相似文献   

12.
We examine here the delivery of gangliosides from the perfused rat liver into the perfusate. One hour after the administration of [3H]GM1 to recirculating perfused livers, almost 80% of the perfusate radioactive gangliosides were recovered associated to the HDL fraction. This fraction was relatively enriched in radioactive GD1a. The pattern of endogenous gangliosides from perfused livers, rat serum and perfusates were very different: GM3 was the main liver ganglioside, GM1 and GD1a were the most abundant in perfusates being GM3 almost absent; GM3, GM1 and GD1a were present in rat serum in similar proportions. Using a non-recirculating perfusion protocol, radioactive gangliosides were found in the HDL fraction since 15 minutes after the administration of [3H]GM1. These results suggest that rat liver supplies the perfusates with some gangliosides and that they are associated to HDL. These facts arise the possibility that the liver is one of the source of serum gangliosides.  相似文献   

13.
1. The livers of rats were perfused in situ with medium containing mixtures of amino acids in multiples of their concentration in normal rat plasma. The incorporation of labelled amino acid into protein of the liver and of the perfusing medium increased with increasing amino acid concentration. During 60min. perfusions, labelling of liver protein reached a plateau, and labelling of medium protein was inhibited when the initial concentration of the amino acid mixture was more than ten times the normal plasma value. 2. Examination of polysome profiles derived from livers perfused without amino acids in the medium showed that the number of large aggregates was decreased and the number of small aggregates, particularly monomers and dimers, was increased with time of perfusion. The addition of amino acids to the perfusion medium reversed this polysome shift to an extent that was dependent on the initial concentration of amino acids. Polysome profiles derived from livers perfused for 60min. with ten times the normal plasma concentration of amino acids were essentially the same as the polysome profiles of normal non-perfused livers. 3. The ability of ribosome preparations from perfused livers to incorporate amino acids into protein in vitro decreased with increasing time of perfusion when no amino acids were added to the medium, but increased as the concentration of amino acids in the perfusion medium was increased. 4. The ability of cell sap from perfused livers to support protein synthesis in vitro was not influenced by the amino acid concentration of the perfusion medium. 5. Livers were perfused for 60min. with medium containing amino acid mixtures at ten times the normal plasma concentration but deficient in one amino acid. Maximal incorporation of labelled amino acid into liver protein, the stability of the polysome profile and the ability of ribosome preparations to incorporate amino acids into protein were found to depend on the presence of 11 amino acids: arginine, asparagine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, threonine, tryptophan and valine. A mixture of these 11 amino acids, at ten times their normal plasma concentration, stimulated the incorporation of labelled amino acid into liver protein, stabilized the polysome profile and increased the ability of ribosome preparations to incorporate amino acids into protein to the same extent as the complete mixture. 6. It is concluded that the availability of certain amino acids plays an important role in the control of protein synthesis, possibly by stimulating the ability of ribosomes to become, and to remain, attached to messenger RNA.  相似文献   

14.
Studies were undertaken to determine the effect of arachidonic acid, the precursor of bisenoic prostanoic acid derivatives, on the response of the isolated, perfused rabbit liver to hypoxia. Two and one half hours of severe hypoxia resulted in significant increases in hepatic vascular perfusion pressure, tissue wet weight, and the rates of cellular loss of lactic dehydrogenase, malic dehydrogenase, and acid phosphatase into the perfusing medium. Hypoxia also increased the rate of hepatic PGF2 alpha production by 25% after 2 1/2 hours (p less than 0.05, hypoxia vs sham). The addition of arachidonic acid (0.1 microgram/g/min for 150 minutes) to the perfusion medium of hypoxic livers significantly attenuated the changes in perfusion pressure, tissue wet weight, and loss of cellular enzymes. Arachidonic acid administration increased the rate of PGF2 alpha production by 100% (p less than 0.05, sham vs hypoxia + arachidonic acid) within 30 min after hypoxia and maintained this rate for the duration of the study. These results demonstrate that hypoxia mediated prostaglandin F2 alpha synthesis in the rabbit liver can occur in the absence of neural and blood borne components and that significant activation of the arachidonic acid cascade via the administration of exogenous arachidonic acid has a salutary effect on hepatic hemodynamics and cellular integrity during hypoxia.  相似文献   

15.
Normothermic machine perfusion has previously been demonstrated to restore damaged warm ischemic livers to transplantable condition in animal models. However, the mechanisms of recovery are unclear, preventing rational optimization of perfusion systems and slowing clinical translation of machine perfusion. In this study, organ recovery time and major perfusate shortcomings were evaluated using a comprehensive metabolic analysis of organ function in perfusion prior to successful transplantation. Two groups, Fresh livers and livers subjected to 1 hr of warm ischemia (WI) received perfusion for a total preservation time of 6 hrs, followed by successful transplantation. 24 metabolic fluxes were directly measured and 38 stoichiometrically-related fluxes were estimated via a mass balance model of the major pathways of energy metabolism. This analysis revealed stable metabolism in Fresh livers throughout perfusion while identifying two distinct metabolic states in WI livers, separated at t = 2 hrs, coinciding with recovery of oxygen uptake rates to Fresh liver values. This finding strongly suggests successful organ resuscitation within 2 hrs of perfusion. Overall perfused livers regulated metabolism of perfusate substrates according to their metabolic needs, despite supraphysiological levels of some metabolites. This study establishes the first integrative metabolic basis for the dynamics of recovery during perfusion treatment of marginal livers. Our initial findings support enhanced oxygen delivery for both timely recovery and long-term sustenance. These results are expected to lead the optimization of the treatment protocols and perfusion media from a metabolic perspective, facilitating translation to clinical use.  相似文献   

16.
1. The influence of ethanol on the metabolism of perfused livers from normal rats and rats in various stages of development of dietary cirrhosis was studied. A choline-deficient, low-protein and high-fat diet was used. Results were obtained on oxygen consumption and carbon dioxide production, on glucose release and uptake by the liver and on changes in the concentrations of lactate and pyruvate and of β-hydroxybutyrate and acetoacetate in the perfusion medium. 2. Oxygen consumption and carbon dioxide production were lower in fatty and cirrhotic livers than in normal livers. Ethanol had no effect on the oxygen consumption of any of the various livers. After addition of ethanol to the perfusion medium carbon dioxide production ceased almost completely in normal livers. Only a slight decrease in the carbon dioxide production occurred in fatty and cirrhotic livers. 3. With every type of liver glucose was released from the liver into the perfusion medium during the initial control period. This release continued after the addition of ethanol to the perfusion medium in experiments with normal and fatty livers, whereas with cirrhotic livers a marked uptake of glucose from the medium was found. A simultaneous release of the glycolytic end products lactate and pyruvate into the medium occurred. 4. The production of ketone bodies was equal in normal and early fatty livers (6 weeks on the fat diet). It was smaller in late fatty livers (3–4 months on the fatty diet) and in cirrhotic livers. 5. The lactate/pyruvate concentration ratio in the perfusion medium increased from 11 to 67 with normal livers, from 12 to 16 with early fatty livers, from 13 to 26 with late fatty livers and from 21 to 55 with cirrhotic livers when the livers were perfused with a medium containing ethanol. The β-hydroxybutyrate/acetoacetate concentration ratio increased from 1·2 to 8·4 in normal livers, from 2·0 to 2·8 in early fatty livers, from 1·2 to 2·4 in late fatty livers and from 2·1 to 4·0 in cirrhotic livers when ethanol was added to the medium. 6. The effects of ethanol on liver metabolism during the development of dietary cirrhosis are discussed and related to human fatty liver and cirrhosis during chronic ethanol consumption.  相似文献   

17.
18.
The present study investigates the mechanism of zymosan-activated plasma (ZAP)-mediated eicosanoid production by the isolated, perfused rabbit liver and described ZAP-mediated eicosanoid stimulation in cultured hepatocytes. Perfused livers receiving untreated plasma demonstrated no significant changes in portal venous pressure or the rates of release of lactic dehydrogenase or acid phosphatase activity (indicators of cellular injury). The control group livers demonstrated stable rates of release for 6-keto PGF1 alpha and thromboxane B2 (TXB2). In contrast, the infusion of ZAP alone resulted in a rapid but transient release of TXB2 from the livers. No significant changes in perfusion pressure or enzyme release were observed following ZAP administration. Perfusion of livers with a calcium-free buffer decreased the basal rates of both 6-keto PGF1 alpha and TXB2 production and significantly, but not completely, attenuated the ZAP-mediated increase in hepatic TXB2 production. Perfusion of livers with nifedipine (3 microM) had no effect on ZAP-mediated TXB2 production in this model. Isolated hepatocytes responded to ZAP-treatment with significant increases in TXB2 production. These data suggest that activated fluid phase complement components induce thromboxane production by specific cells within the liver and that this stimulation is partially dependent upon the release of intracellular calcium but independent of complement-mediated cellular injury.  相似文献   

19.
Isolated rat liver perfusion system has been extensively used for metabolic and functional studies. Results derived from the application of this system may reflect true biochemical changes but they may also be associated with some structural changes. This study was undertaken to correlate the cytological changes and functional integrity of isolated rat liver perfused in vitro at normal physiological temperature (37 degrees C) and 30 degrees C, using a non-recirculating system. The livers were perfused for 3 hours with modified Ham's F10 culture medium supplemented with thyroxine hormone (T4). The hepatocyte structural integrity was studied by light microscopy, transmission and scanning electron microscopy. The triiodothyronine (T3) and T4 hormones in the perfusion medium and the effluent fractions were assessed by radioimmunoassay. The livers perfused at 30 degrees C remained morphologically intact at the ultrastructural level for 3 hours whilst at 37 degrees C, hepatocytes in the centrilobular zone exhibited marked structural alterations. The percentage of T4 uptake was significantly higher (P less than 0.01) in livers perfused at 30 degrees C (50.8 +/- 7.7% vs 38 +/- 7.7%, 37 degrees C), but the net T3 output (3.16 +/- 1.04 micrograms) and the conversion of T4 to T3 (4 +/- 0.62%) were significantly higher (P less than 0.001) in livers perfused at 37 degrees C in comparison to livers perfused at 30 degrees C (1.61 +/- 0.84 micrograms and 1.68 +/- 0.76%, respectively). In conclusion, at 30 degrees C the hepatic T4 uptake is not inhibited, but the rate of T4 to T3 conversion has decreased, additionally the livers remain morphologically well preserved throughout the experimental period.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The success of liver transplantation has resulted in a dramatic organ shortage. In most transplant regions 20-30% of patients on the waiting list for liver transplantation die without receiving an organ transplant or are delisted for disease progression. One strategy to increase the donor pool is the utilization of marginal grafts, such as fatty livers, grafts from older donors, or donation after cardiac death (DCD). The current preservation technique of cold static storage is only poorly tolerated by marginal livers resulting in significant organ damage. In addition, cold static organ storage does not allow graft assessment or repair prior to transplantation.These shortcomings of cold static preservation have triggered an interest in warm perfused organ preservation to reduce cold ischemic injury, assess liver grafts during preservation, and explore the opportunity to repair marginal livers prior to transplantation. The optimal pressure and flow conditions, perfusion temperature, composition of the perfusion solution and the need for an oxygen carrier has been controversial in the past.In spite of promising results in several animal studies, the complexity and the costs have prevented a broader clinical application so far. Recently, with enhanced technology and a better understanding of liver physiology during ex vivo perfusion the outcome of warm liver perfusion has improved and consistently good results can be achieved.This paper will provide information about liver retrieval, storage techniques, and isolated liver perfusion in pigs. We will illustrate a) the requirements to ensure sufficient oxygen supply to the organ, b) technical considerations about the perfusion machine and the perfusion solution, and c) biochemical aspects of isolated organs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号