首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have recently shown that a human CD4+ T cell line (CEM-SS) acquires the permissiveness to M-tropic strains and primary isolates of HIV-1 after transplantation into SCID mice. This permissiveness was associated with the acquisition of a memory (CD45RO+) phenotype as well as of a functional CCR5 coreceptor. In this study, we have used this model for invest-igating in vivo the relationships between HIV-1 infection, apoptosis and T cell differentiation. When an in vivo HIV-1 infection was performed, the CEM cell tumors grew to a lower extent than the uninfected controls. CEM cells explanted from uninfected SCID mice (ex vivo CEM) underwent a significant level of spontaneous apoptosis and proved to be CD45RO+, Fas+ and Fas-L+, while Bcl-2 expression was significantly reduced as compared to the parental cells. Acute HIV-1 infection markedly increased apoptosis of uninfected ex vivo CEM cells, through a Fas/Fas-L-mediated autocrine suicide/fratricide, while parental cells did not undergo apoptosis following viral infection. The susceptibility to apoptosis of ex vivo CEM cells infected with the NSI strain of HIV-1, was progressively lost during culture, in parallel with the loss of Fas-L and marked changes in the Bcl-2 cellular distribution. On the whole, these results are strongly reminiscent of a series of events possibly occurring during HIV-1 infection. After an initial depletion of bystander CD4+ memory T cells during acute infection, latently or chronically infected CD4+ T lymphocytes are progressively selected and are protected against spontaneous apoptosis through the development of an efficient survival program. Studies with human cells passaged into SCID mice may offer new opportunities for an in vivo investigation of the mechanisms involved in HIV-1 infection and CD4+ T cell depletion.  相似文献   

2.
To investigate the mechanism underlying one aspect of the cellular tropism of human immunodeficiency virus type 1 (HIV-1), we used a macrophage-tropic isolate, 89.6, and screened its ability to infect a number of continuous cell lines. HIV-1 (89.6) was able to replicate robustly in a T-cell/B-cell hybrid line, CEMx174, while it replicated modestly or not at all in either of its parents, one of which is the CD4-positive line CEM.3. Analysis by transfection of a molecular clone, a virus uptake assay, and polymerase chain reaction all provided strong evidence that the block to HIV-1(89.6) replication in the CEM.3 line lies at the level of cellular entry. These results were complemented by preparing a CD4-expressing derivative of the B-cell parent, 721.174, and demonstrating that it is permissive for productive HIV-1(89.6) replication. Given these experimental findings, we speculate that there exist cellular accessory factors which facilitate virus entry and infection in CD4-positive cells. Furthermore, these cellular accessory factors may be quite virus strain specific, since not all macrophage-tropic strains of HIV-1 were able to replicate in the CEMx174 hybrid cell line. This experimental model provides a system for the identification of one or more of these putative cellular accessory factors.  相似文献   

3.
D B?hm  S Nick  G Voss  G Hunsmann 《Cytometry》1992,13(3):259-266
The human monocytic cell line U-937 clone 2 and two T-cell lines CEM and MOLT-4 clone 8 were infected with HIV-2ben, a recent isolate of HIV-2. Infection and subsequent antigen expression on the cell surface was monitored by flow cytometry using a rabbit-anti-serum against tween-ether-treated HIV-2ben and a fluorescein-isothiocyanate-conjugated IgG against rabbit-IgG. The sensitivity of the three cell lines to infection with HIV-2ben correlated with the percentages of CD4-expressing cells but not with the levels of CD4-expression on the cell. The appearance of viral surface antigens preceded the formation of syncytia and correlated closely with the infecting virus dose. After 1-2 weeks in culture, 20-85% of the cells of each line expressed viral surface antigens. The variation depended on the cell type and cell culture conditions. The MOLT-4 clone 8 and the U-937 clone 2 cells died around 10 or 20 days, respectively, after HIV-2ben infection. Only HIV-2ben infected CEM cells grew permanently. Flow cytometry was an appropriate method to monitor the expression of viral proteins on the cell surface of HIV-infected cell lines. Flow cytometry proved to be more sensitive than determination of RT activity in supernatants of HIV-infected cells and more precise than light microscopy examinations.  相似文献   

4.
The HIV-1 Vif protein suppresses the inhibition of viral replication caused by the human antiretroviral factor APOBEC3G. As a result, HIV-1 mutants that do not express the Vif protein are replication incompetent in 'nonpermissive' cells, such as primary T cells and the T-cell line CEM, that express APOBEC3G. In contrast, Vif-defective HIV-1 replicates effectively in 'permissive' cell lines, such as a derivative of CEM termed CEM-SS, that do not express APOBEC3G. Here, we show that a second human protein, APOBEC3F, is also specifically packaged into HIV-1 virions and inhibits their infectivity. APOBEC3F binds the HIV-1 Vif protein specifically and Vif suppresses both the inhibition of virus infectivity caused by APOBEC3F and virion incorporation of APOBEC3F. Surprisingly, APOBEC3F and APOBEC3G are extensively coexpressed in nonpermissive human cells, including primary lymphocytes and the cell line CEM, where they form heterodimers. In contrast, both genes are quiescent in the permissive CEM derivative CEM-SS. Together, these data argue that HIV-1 Vif has evolved to suppress at least two distinct but related human antiretroviral DNA-editing enzymes.  相似文献   

5.
Applications of transdominant mutants of human immunodeficiency virus type 1 (HIV-1) regulatory proteins, especially Rev mutant, have been attempted for gene therapy against AIDS, because the Rev protein is essential for viral replication. We have previously reported that a mutant Rev protein (dRev) lacking its nucleolar targeting signal remained out of nuclei in expressed cells and strongly inhibited the function of Rev. To investigate the effects of dRev on HIV-1 replication, we established several dRev-expressing human cell lines with two different vector systems and examined virus production in these cells. An HIV-1-derived vector containing drev cDNA was constructed and introduced into CD4-positive HeLa cells and cells of the human T-cell line CCRF-CEM (CEM). In dRev-expressing HeLa cells, virus replication, syncytium formation, and cell death caused by HIV-1 infection were remarkably suppressed, and the same vector also conferred a resistant phenotype on CEM cells. The production was also suppressed in CEM cells containing the drev gene driven by a cytomegalovirus promoter. In addition, we found that dRev did not cause nucleolar dysfunction in a transient assay, in contrast to other transdominant mutants and wild-type Rev. Since dRev cannot migrate into the nuclei, it is expected not to interfere with nuclear/nucleolar functions of the host cell. We conclude that dRev is one promising candidate as an antiviral molecule for gene therapy against AIDS.  相似文献   

6.
7.
In this article, we show that passage in SCID mice rendered a human CD4+ T-cell line (CEM cells) highly susceptible to infection by macrophage-tropic (M-tropic) strains and primary clinical isolates of human immunodeficiency virus type 1 (HIV-1). This in vivo-acquired permissiveness of CEM cells was associated with the induction of a CD45RO+ phenotype as well as of some β-chemokine receptors. Regulated upon activation, normal T-cell expressed and secreted chemokine entirely inhibited the ability of M-tropic HIV-1 strains to infect these cells. These findings may lead to new approaches in investigating in vivo the capacity of different HIV strains to exploit chemokine receptors in relation to the dynamics of the activation and/or differentiation state of human CD4+ T cells.  相似文献   

8.
Previously, we and others have demonstrated a relation between the clinical course of human immunodeficiency virus type 1 (HIV-1) infection and biological properties of HIV-1 variants such as replication rate, syncytium-inducing (SI) capacity, and cytotropism. For the molecular analysis of the biological variability in these properties, we generated a panel of phenotypically distinct yet genetically highly homologous infectious molecular clones. These clones were derived from HIV-1 isolates, mostly recovered by direct clonal isolation, from a single individual in whom a transition from non-SI to SI isolates had been identified over time. Of 17 molecular clones tested, 8 were infectious. The clones exhibited differences in SI capacity and T-cell line tropism. Their phenotypes corresponded to those of their parental isolates, formally demonstrating that biological variability of HIV-1 isolates can be attributed to single molecular clones. With these clones we demonstrated that SI capacity and tropism for the H9 T-cell line, almost invariably coupled in primary HIV-1 isolates, are discernible properties. Also different requirements appeared to exist for H9 and Sup T1 cell line tropism. We obtained evidence that T-cell line tropism is not caused by differences in level of HIV-1 expression but most probably is restricted at the level of virus entry. Restriction mapping of four clones with divergent phenotypes revealed a high degree of nucleotide sequence homology (over 96.3%), indicating the usefulness of these clones for the tracking of genetic variability critical for differences in biological phenotype.  相似文献   

9.
The matrix domain of the human immunodeficiency virus type 1 (HIV-1) Gag protein contains a highly basic region near its amino terminus. It has been proposed that this basic domain, in conjunction with the HIV-1 accessory protein Vpr, is responsible for the localization of the HIV-1 preintegration complex to the nucleus in nondividing cells. It has also been postulated that the matrix basic domain assists in the targeting of the HIV-1 Gag precursor Pr55Gag to the plasma membrane during virus assembly. To evaluate the role of this highly basic sequence during infection of primary human monocyte-derived macrophages, single- and double-amino-acid-substitution mutations were introduced, and the effects on virus particle production, Gag protein processing, envelope glycoprotein incorporation into virus particles, and virus infectivity in the CEM(12D-7) T-cell line, peripheral blood mononuclear cells, and primary human monocyte-derived macrophages were analyzed. Although modest effects on virus particle production were observed with some of the mutants, none abolished infectivity in primary human monocyte-derived macrophages. In contrast with previously reported studies involving some of the same matrix basic domain mutants, infectivity in monocyte-derived macrophages was retained even when combined with a vpr mutation.  相似文献   

10.
11.
Jurkat T-cell clones, stably expressing the human immunodeficiency virus type 1 (HIV-1) Vpr protein, exhibited an impaired susceptibility to HIV-1 infection. A marked down-modulation of surface CD4 receptors was detected in Vpr-expressing clones with respect to control cells. Likewise, a reduced CD4 expression was also observed in parental Jurkat cells infected with wild-type but not with Vpr-mutant HIV-1. Notably, Vpr-expressing clones were fully susceptible to infection with a vesicular stomatitis virus G protein-pseudotyped HIV-1 virus, indicating that a block at the level of viral entry was responsible for the inhibition of viral replication. The effect exerted by Vpr on HIV replication and CD4 expression suggests that this protein can regulate both the establishment of a productive HIV-1 infection and CD4-mediated T-cell functions.  相似文献   

12.
Apoptosis is one of several mechanisms by which human immunodeficiency virus type 1 (HIV-1) exerts its cytopathic effects. CD4+ Jurkat T-cell lines overexpressing the adenovirus E1B 19K protein, a potent inhibitor of apoptosis, were used to examine the consequences of inhibition of apoptosis during acute and chronic HIV-1 infections. E1B 19K protein expression inhibited HIV-induced apoptosis, enhanced virus production, and established high levels of persistent viral infection. One E1B 19K-expressing line appeared to undergo HIV-induced death via a nonapoptotic mechanism, illustrating that HIV infection results in lymphocyte depletion through multiple pathways. Increased virus production associated with sustained cell viability suggests that therapeutic approaches involving inhibition of HIV-induced programmed cell death may be problematic.  相似文献   

13.
14.
15.
16.
17.
Replication of human immunodeficiency virus type 1 (HIV-1) in most primary cells and some immortalized T-cell lines depends on the activity of the viral infectivity factor (Vif). Vif has the ability to counteract a cellular inhibitor, recently identified as CEM15, that blocks infectivity of Vif-defective HIV-1 variants. CEM15 is identical to APOBEC3G and belongs to a family of proteins involved in RNA and DNA deamination. We cloned APOBEC3G from a human kidney cDNA library and confirmed that the protein acts as a potent inhibitor of HIV replication and is sensitive to the activity of Vif. We found that wild-type Vif inhibits packaging of APOBEC3G into virus particles in a dose-dependent manner. In contrast, biologically inactive variants carrying in-frame deletions in various regions of Vif or mutation of two highly conserved cysteine residues did not inhibit packaging of APOBEC3G. Interestingly, expression of APOBEC3G in the presence of wild-type Vif not only affected viral packaging but also reduced its intracellular expression level. This effect was not seen in the presence of biologically inactive Vif variants. Pulse-chase analyses did not reveal a significant difference in the stability of APOBEC3G in the presence or absence of Vif. However, in the presence of Vif, the rate of synthesis of APOBEC3G was slightly reduced. The reduction of intracellular APOBEC3G in the presence of Vif does not fully account for the Vif-induced reduction of virus-associated APOBEC3G, suggesting that Vif may function at several levels to prevent packaging of APOBEC3G into virus particles.  相似文献   

18.
19.
20.
Toward gene therapy for the treatment of human immunodeficiency virus type 1 (HIV-1) infections in AIDS, Moloney murine leukemia virus-derived retroviral vectors were engineered to allow constitutive and tat-inducible expression of an HIV-1 5' leader sequence-specific ribozyme (Rz1). These vectors were used to infect the human CD4+ lymphocyte-derived MT4 cell line. The stable MT4 transformants expressing an HIV-1 RNA-specific ribozyme, under the control of the herpes simplex virus thymidine kinase (tk) promoter, were found to be somewhat resistant to HIV-1 infection as virus production was delayed. In cells allowing ribozyme expression under control of the simian virus 40 or cytomegalovirus promoter, the rate of HIV-1 multiplication was slightly decreased, and virus production was delayed by about 14 days. The highest level of resistance to HIV-1 infection was observed in MT4 cells transformed with a vector containing a fusion tk-TAR (trans activation-responsive) promoter to allow ribozyme expression in a constitutive and tat-inducible manner; no HIV-1 production was observed 22 days after infection of these cells. These results indicate that retroviral vectors expressing HIV-1 RNA-specific ribozymes can be used to confer resistance to HIV-1 infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号