首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The accessibility of yeast 5 S RNA to modification by diethyl pyrocarbonate was compared in the free 5 S RNA molecule, 60 S subunits and whole ribosomes. All the reactive sites in the free RNA were eliminated or suppressed in ribosomes but two sites. A51 and A64, remained accessible and a slight reactivity was observed at four new sites (G30, G49, G52 and A72). Nucleotide sequences that have been implicated in initiator transfer RNA binding or subunit interactions are not accessible.  相似文献   

2.
Letters to the editor: Accessibility of 5 S RNA in 50 S ribosomal subunits   总被引:5,自引:0,他引:5  
Only two sites in 5 S RNA react with Kethoxal in 50 S ribosomal subunits. These two sites, G13 and G41, have previously been found to be accessible in free 5 S RNA. Nucleotide sequences which have been suggested as possible binding sites for the T-ψ-C-G loop of tRNA are not accessible.  相似文献   

3.
4.
Isolation of a transcription complex for ribosomal 5S RNA   总被引:5,自引:1,他引:4       下载免费PDF全文
  相似文献   

5.
Structure of the yeast ribosomal 5 S RNA-binding protein YL3   总被引:4,自引:0,他引:4  
  相似文献   

6.
5 S RNA was isolated from Saccharomyces cerevisiae grown in the presence of 32P-phosphate and digested with nuclease S1, a single-strand specific nuclease. Two different procedures were employed to determine the sites of attack on the RNA. First, 5 S RNA was isolated from nuclease S1 digests, digested to completion with ribonuclease T1, and then 'fingerprinted' by two-dimensional electrophoresis. Quantitation of each of the characteristic RNAase T1-derived oligonucleotides was employed to determine the relative susceptibility of various regions of the molecule to nuclease S1. A second procedure to define nuclease S1-susceptible sites in the molecule employed polyacrylamide gel electrophoretic fractionation of nuclease S1 digests followed by identification of the nucleotide sequences of the released RNA fragments. Both procedures showed that the region of the molecule between residues 9 and 60 was most susceptible to nuclease S1, with preferential cleavage occurring between residues 12-25 and 50-60. These results are discussed in relation to a proposed model for the secondary structure of yeast 5 S RNA.  相似文献   

7.
The contribution of lysine and arginine residues to the formation of yeast ribonucleoprotein complex 5S RNA. protein YL3 has been investigated by determining the effects on complex formation of modification with chemical reagents specific for either lysine or arginine. Treatment of protein YL3 with acetic anhydride, malefic anhydride or phenylglyoxal is accompanied by loss of its capacity to bind to 5S RNA. This effect is accomplished by modification with phenylglyoxal of only 3 arginine residues per YL3 molecule. In contrast, a large number of protein YL3 amino groups [16] must be modified by acetic anhydride to prevent complex formation.  相似文献   

8.
Most of the ribosomal RNA genes of the yeast Saccharomyces cerevisiae are about 9 kilobases (kb) in size and encode both the 35S rRNA (processed to produce the 25S, 18S, and 5.8S species) and 5S rRNA. These genes are arranged in a single tandem array of 100 repeats. Below, we present evidence that at the centromere-distal end of this array is a tandem arrangement of a different type of rRNA gene. Each of these repeats is 3.6 kb in length and encodes a single 5S rRNA. The coding sequence of this gene is different from that of the "normal" 5S gene in three positions located at the 3' end of the gene.  相似文献   

9.
Assembly of a yeast 5 S RNA gene transcription complex   总被引:17,自引:0,他引:17  
  相似文献   

10.
The equilibrium and kinetics of thermal unfolding of yeast 5S ribosomal RNA have been studied by optical methods, in a low ionic strength environment without Mg2+, to follow the disruption of the secondary structure base pairs in the molecule. The equilibrium results demonstrated that all of the helical regions melted simultaneously, and the kinetics of the thermal unfolding were first order. These findings suggest the validity of the two-state approximation for the unfolding reaction under the present conditions. The total number of secondary structure base pairs estimated from our experiment was consistent with that contained in the conformational model based on the Raman spectrum rather than that in the one derived by the enzymic digestion method. Taking our results on the kinetic behavior of the thermal unfolding overall, we propose that the 5S RNA has a partly melted secondary structure under the solvent conditions used.  相似文献   

11.
The yeast Saccharomyces cerevisiae ribosomal protein L30 negatively autoregulates its production by binding to a helix-loop-helix structure formed in its pre-mRNA and its mRNA. A three-dimensional solution structure of the L30 protein in complex with its regulatory RNA has been solved using NMR spectroscopy. In the complex, the helix-loop-helix RNA adopts a sharply bent conformation at the internal loop region. Unusual RNA features include a purine stack, a reverse Hoogsteen base pair (G11anti-G56syn) and highly distorted backbones. The L30 protein is folded in a three-layer alpha/beta/alpha sandwich topology, and three loops at one end of the sandwich make base-specific contacts with the RNA internal loop. The protein-RNA binding interface is divided into two clusters, including hydrophobic and aromatic stacking interactions centering around G56, and base-specific hydrogen-bonding contacts to A57, G58 and G10-U60 wobble base pair. Both the protein and the RNA exhibit a partially induced fit for binding, where loops in the protein and the internal loop in the RNA become more ordered upon complex formation. The specific interactions formed between loops on L30 and the internal loop on the mRNA constitute a novel loop-loop recognition motif where an intimate RNA-protein interface is formed between regions on both molecules that lack regular secondary structure.  相似文献   

12.
Binding sites of rat liver 5S RNA to ribosomal protein L5   总被引:2,自引:0,他引:2  
The ribonucleoprotein complex consisting of 5S RNA and the protein L5 was prepared from the large subunit of rat liver ribosomes. The RNA in the complex was digested in situ with RNase A or RNase T1. The RNase-resistant RNA fragments bound to the protein were recovered and purified by 2D-PAGE, and their nucleotide sequences were determined in order to elucidate the binding sites of the RNA to the protein. The results showed that the fragments had arisen from the 5'-end region (residues 1-21), from the second hairpin loop (residues 77-102) and from the 3'-end region (residues 106-120). Harsher digestion trimmed these fragments to shorter fragments. It was concluded that the minimal interactive sequences of 5S RNA to the protein L5 were residues 13-21, residues 85-102, and residues 106-114. A part of the first hairpin loop, residues 41-52, was also suspected to interact with the protein. These protein-binding sites of rat liver 5S RNA were compared with those of Escherichia coli, Halobacterium cutirubrum and yeast, and their probable conservation from eubacteria to eukaryotes is discussed.  相似文献   

13.
14.
S Ohta  S Maruyama  K Nitta    S Sugai 《Nucleic acids research》1983,11(10):3363-3373
Equilibrium and kinetics of thermal melting of yeast 5S ribosomal RNA in aqueous NaCl with or without Mg2+ were investigated by differential thermal melting and temperature jump methods. Two peaks (1 and 2) and a shoulder were observed in each of melting curves at ionic strength I=0.002-0.5 and linearity between each of melting temperatures T1m and T2m and log I was found at I=0.01-0.5 in the Mg2+-free solution. The local structures were found to be stabilized considerably by Mg2+. The temperature jump measurements gave the kinetic melting curve of the structure 1 at I=0.03 without Mg2+ or with 0.5 mM Mg2+. The kinetic Tm coincided well with the corresponding static Tm. For the structure 1, various parameters were calculated from the kinetic data, which indicated a double helical character of the structure 1. In terms of the values of Tm, G-C content, and enthalpy change of the transition of the structure 1 or 2, appropriateness of each of the secondary structure models of eukaryotic 5S RNA proposed previously was discussed.  相似文献   

15.
16.
Nucleocytoplasmic transport of 5S ribosomal RNA in Xenopus oocytes occurs in the context of small, non-ribosomal RNPs. The complex with the zinc finger protein TFIIIA (7S RNP) is exported from the nucleus and stored in the cytoplasm, whereas the complex with the ribosomal protein L5 (5S RNP) shuttles between the nucleus and the cytoplasm. Nuclear import- and export-signals appear to reside within the protein moiety of these RNPs. Import of TFIIIA is inhibited by RNA binding, whereas nuclear transfer of L5 is not influenced by RNA binding. We propose that the export capacity of both, TFIIIA and L5, is regulated by the interaction with 5S ribosomal RNA.  相似文献   

17.
18.
Ribosomal protein (rp) S5 belongs to a family of ribosomal proteins that includes bacterial rpS7. rpS5 forms part of the exit (E) site on the 40S ribosomal subunit and is essential for yeast viability. Human rpS5 is 67% identical and 79% similar to Saccharomyces cerevisiae rpS5 but lacks a negatively charged (pI approximately 3.27) 21 amino acid long N-terminal extension that is present in fungi. Here we report that replacement of yeast rpS5 with its human homolog yielded a viable yeast strain with a 20%-25% decrease in growth rate. This replacement also resulted in a moderate increase in the heavy polyribosomal components in the mutant strain, suggesting either translation elongation or termination defects, and in a reduction in the polyribosomal association of the elongation factors eEF3 and eEF1A. In addition, the mutant strain was characterized by moderate increases in +1 and -1 programmed frameshifting and hyperaccurate recognition of the UAA stop codon. The activities of the cricket paralysis virus (CrPV) IRES and two mammalian cellular IRESs (CAT-1 and SNAT-2) were also increased in the mutant strain. Consistently, the rpS5 replacement led to enhanced direct interaction between the CrPV IRES and the mutant yeast ribosomes. Taken together, these data indicate that rpS5 plays an important role in maintaining the accuracy of translation in eukaryotes and suggest that the negatively charged N-terminal extension of yeast rpS5 might affect the ribosomal recruitment of specific mRNAs.  相似文献   

19.
The nucleotides in domain I of 18 S rRNA that are important for the binding of the essential yeast ribosomal protein YS11 are mainly in a kink-turn motif and the terminal loop of helix 11 (H11). In the atomic structure of the Thermus thermophilus 30 S subunit, 16 amino acids in S17, the homolog of YS11, are within hydrogen bonding distance of nucleotides in 16 S rRNA. The homologous or analogous 16 amino acids in YS11 were replaced with alanine; nine of the substitutions slowed the growth of yeast cells. The most severe effects were caused by mutations R103A, N106A, K133A, T134A, and K151A. The T. thermophilus analogs of Arg103, Asn106, Thr134, and Lys151 contact nucleotides in the kink-turn motif of 16 S rRNA, whereas Lys133 contacts nucleotides in the terminal loop of H11. These contacts are predominantly with backbone phosphate and sugar oxygens in regions that deviate from A-form geometry, suggesting that YS11 recognizes the shape of its rRNA-binding site rather than reading the sequence of nucleotides. The effect of the mutations on the binding of YS11 to a domain I fragment of 18 S rRNA accorded, in general, with their effect on growth. Mutations of seven YS11 amino acids (Ser77, Met80, Arg88, Tyr97, Pro130, Ser132, and Arg136) whose homologs or analogs in S17 are within hydrogen bonding distance of nucleotides in 16 S rRNA did not affect binding. Apparently, proximities alone do not define either the amino acids or the nucleotides that are important for recognition.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号