首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA-based immunizations have been used to determine the patterns of type 1 and type 2 cytokines that can be induced in vivo for Ag-specific CD4(+) and CD8(+) T cells. IL-4 was used as a signature cytokine for a type 2 T cell response and IFN-gamma as the signature cytokine for a type 1 response. Gene gun deliveries of secreted Ags were used to bias responses toward type 2 and saline injections of cell-associated Ags to bias responses toward type 1. The studies revealed that gene gun bombardments of DNAs expressing secreted Ags strongly biased responses toward type 2, inducing IL-4-producing CD8(+) as well as CD4(+) T cells. Saline injections of DNAs expressing cell-associated Ags strongly biased responses toward type 1, inducing IFN-gamma-producing CD8(+) and CD4(+) cells. A mixed type 1/type 2 response of IFN-gamma-producing CD8(+) T cells and IL-4-producing CD4(+) T cells was found for gene gun deliveries of cell-associated Ags. Saline injections of secreted Ags raised a weakly type 1-biased response characterized by only slightly higher frequencies of IFN-gamma- than IL-4-producing CD4(+) and CD8(+) T cells. Studies in B cell knockout and hen egg lysozyme Ig transgenic mice revealed that B cells were required for the generation of IL-4-producing CD8(+) T cells.  相似文献   

2.
DNA-raised antibody (Ab) responses have been compared for the dependence on CD4+ and CD8+ cells, the longevity of functional antigen (Ag) expression, and the nature of the Ag-presenting cell after intramuscular (i.m.) and gene gun inoculations. A plasmid expressing the hemagglutinin (HA) glycoprotein of influenza virus was used for immunizations of BALB/c mice. Intramuscular and gene gun-raised Abs had similar dependencies on CD4+ and CD8+ cells but different temporal patterns of functional Ag expression. The two methods of DNA immunization also appeared to have different frequencies or types of Ag-presenting cells in the draining lymph nodes and spleen. For both methods of DNA delivery, Ab was independent of CD8+ cells but dependent on CD4+ cells. The CD4 dependence occurred at priming but not booster immunizations and resulted in a 1-month delay in the Ab response. Temporal T-cell transfers from TCR+/+ mice into immunized TCR-/- mice revealed the persistence of DNA-expressed Ag for up to 1 month after both i.m. and gene gun inoculations. For gene gun, but not i.m. immunizations, approximately 90% of the functional Ag expression was lost by 1 week, consistent with the sloughing of the epidermal target site. Despite similar titers of raised Ab, Ag-presenting dendritic cells could be detected in the draining lymph nodes and spleen of gene gun- but not i.m. DNA-immunized mice. In the gene gun-immunized mice, Ag-presenting dendritic cells appeared in the draining lymph nodes before the spleen.  相似文献   

3.
Maternal antibody is the major form of protection from disease in early life when the neonatal immune system is still immature; however, the presence of maternal antibody also interferes with active immunization, placing infants at risk for severe bacterial and viral infection. We tested the ability of intramuscular and gene gun immunization with DNA expressing influenza virus hemagglutinin (HA) and nucleoprotein (NP) to raise protective humoral and cellular responses in the presence or absence of maternal antibody. Neonatal mice born to influenza virus-immune mothers raised full antibody responses to NP but failed to generate antibody responses to HA. In contrast, the presence of maternal antibody did not affect the generation of long-lived CD8(+) T-cell responses to both HA and NP. Thus, maternal antibody did not affect cell-mediated responses but did affect humoral responses, with the ability to limit the antibody response correlating with whether the DNA-expressed immunogen was localized in the plasma membrane or within the cell.  相似文献   

4.
For this study, we used DNA-based immunizations to elicit gamma interferon-producing (Tc1) or interleukin 4 (IL-4)-producing (Tc2) CD8 T cells to the influenza virus nucleoprotein. We examined the response of these cells to an intranasal viral challenge. Both the Tc2- and Tc1-biased responses were present in mice with predominantly IL-4-producing (Th2) CD4 T cells. After viral challenge, Tc1 cells underwent more efficient expansion than did Tc2 cells, and only Tc1 cells were detected at the site of infection. In contrast, the CD4 response remained IL-4 biased. However, only a limited number of CD4 cells appeared in the postchallenge lung, and these were strongly enriched for the Th1 phenotype. Thus, the type of memory T-cell response induced by DNA vaccination does not determine the type of response that will predominate at the site of an infection.  相似文献   

5.
We have shown that DNA encoding the anti-apoptotic protein Bcl-xL enhances E7-specific CD8+ T-cell responses and DNA encoding pro-apoptotic protein caspase-3 suppresses E7-specific CD8+ T-cell responses when co-administered intradermally via gene gun with DNA encoding human papillomavirus type 16 (HPV-16) E7 linked to the sorting signal of the lysosome-associated membrane protein type 1 (LAMP-1). E7 and LAMP-1 are linked to form the chimeric Sig/E7/LAMP-1 (SEL). Because co-administration does not ensure delivery of both constructs to a single cell, we used pVITRO, a mammalian expression vector with double promoters, to ensure expression of both molecules in the same cell. We vaccinated C57BL/6 mice with pVITRO-SEL-Bcl-xL, pVITRO-SEL-mtBcl-xL, pVITRO-SEL, or pVITRO-SEL-caspase-3 intradermally via gene gun and intramuscularly via injection. We demonstrated that vaccination with pVITRO achieved similar results to a co-administration strategy: that Bcl-xL enhanced the E7-specific CTL response and caspase-3 suppressed the E7-specific CTL response. In addition, we found intradermal vaccination elicited significantly higher numbers of E7-specific CD8+ T cells compared to intramuscular vaccination. Thus, intradermal vaccination with a pVITRO vector combining an anti-apoptotic strategy (Bcl-xL) and an intracellular targeting strategy (SEL) further enhances the E7-specific CD8+ T-cell response and guarantees co-expression of both encoded molecules in transfected cells.T.W.K. and C.-F.H. contributed equally to this work.  相似文献   

6.
Simian immunodeficiency virus DNA vaccine trial in macaques.   总被引:11,自引:7,他引:4       下载免费PDF全文
An experimental vaccine consisting of five DNA plasmids expressing different combinations and forms of simian immunodeficiency virus-macaque (SIVmac) proteins has been evaluated for the ability to protect against a highly pathogenic uncloned SIVmac251 challenge. One vaccine plasmid encoded nonreplicating SIVmac239 virus particles. The other four plasmids encoded secreted forms of the envelope glycoproteins of two T-cell-tropic relatives (SIVmac239 and SIVmac251) and one monocyte/macrophage-tropic relative (SIVmac316) of the uncloned challenge virus. Rhesus macaques were inoculated with DNA at 1 and 3, 11 and 13, and 21 and 23 weeks. Four macaques were inoculated intravenously, intramuscularly, and by gene gun inoculations. Three received only gene gun inoculations. Two control monkeys were inoculated with control plasmids by all three routes of inoculation. Neutralizing antibody titers of 1:216 to 1:768 were present in all of the vaccinated monkeys after the second cluster of inoculations. These titers were transient, were not boosted by the third cluster of inoculations, and had fallen to 1:24 to 1:72 by the time of challenge. Cytotoxic T-cell activity for Env was also raised in all of the vaccinated animals. The temporal appearance of cytotoxic T cells was similar to that of antibody. However, while antibody responses fell with time, cytotoxic T-cell responses persisted. The SIVmac251 challenge was administered intravenously at 2 weeks following the last immunization. The DNA immunizations did not prevent infection or protect against CD4+ cell loss. Long-term chronic levels of infection were similar in the vaccinated and control animals, with 1 in 10,000 to 1 in 100,000 peripheral blood cells carrying infectious virus. However, viral loads were reduced to the chronic level over a shorter period of time in the vaccinated groups (6 weeks) than in the control group (12 weeks). Thus, the DNA vaccine raised both neutralizing antibody and cytotoxic T-lymphocyte responses and provided some attenuation of the acute phase of infection, but it did not prevent the loss of CD4+ cells.  相似文献   

7.
Yin Y  Wu C  Song J  Wang J  Zhang E  Liu H  Yang D  Chen X  Lu M  Xu Y 《PloS one》2011,6(7):e22524

Background

Typically, DNA immunization via the intramuscular route induces specific, Th1-dominant immune responses. However, plasmids expressing viral proteins fused to cytotoxic T lymphocyte antigen 4 (CTLA-4) primed Th2-biased responses and were able to induced effective protection against viral challenge in the woodchuck model. Thus, we addressed the question in the mouse model how the Th1/Th2 bias of primed immune responses by a DNA vaccine influences hepatitis B virus (HBV) clearance.

Principal Findings

Plasmids expressing HBV core protein (HBcAg) or HBV e antigen and HBcAg fused to the extracellular domain of CTLA-4 (pCTLA-4-HBc), CD27, and full length CD40L were constructed. Immunizations of these DNA plasmids induced HBcAg-specific antibody and cytotoxic T-cell responses in mice, but with different characteristics regarding the titers and subtypes of specific antibodies and intensity of T-cell responses. The plasmid pHBc expressing HBcAg induced an IgG2a-dominant response while immunizations of pCTLA-4-HBc induced a balanced IgG1/IgG2a response. To assess the protective values of the immune responses of different characteristics, mice were pre-immunized with pCTLA-4-HBc and pHBc, and challenged by hydrodynamic injection (HI) of pAAV/HBV1.2. HBV surface antigen (HBsAg) and DNA in peripheral blood and HBcAg in liver tissue were cleared with significantly accelerated kinetics in both groups. The clearance of HBsAg was completed within 16 days in immunized mice while more than 50% of the control mice are still positive for HBsAg on day 22. Stronger HBcAg-specific T-cell responses were primed by pHBc correlating with a more rapid decline of HBcAg expression in liver tissue, while anti-HBs antibody response developed rapidly in the mice immunized with pCTLA-4-HBc, indicating that the Th1/Th2 bias of vaccine-primed immune responses influences the mode of viral clearance.

Conclusion

Viral clearance could be efficiently achieved by Th1/Th2-balanced immune response, with a small but significant shift in T-cell and B-cell immune responses.  相似文献   

8.
免疫共刺激分子OX40L对乙型肝炎核酸疫苗的免疫佐剂作用   总被引:1,自引:0,他引:1  
[目的]为了进一步增强HBV DNA疫苗的免疫反应,本研究将共刺激分子OX40L 作为HBV DNA疫苗的分子佐剂免疫小鼠,旨在探讨共刺激分子OX40L对HBV DNA疫苗诱导体液和细胞免疫应答的影响.[方法]我们将HBV DNA疫苗(pcDS2)单独或联合共刺激分子质粒pOX40L免疫C57BL/6小鼠;分别在第0,2,4周进行免疫,在第6周检测抗-HBs IgG、IgG1和IgG2a,T淋巴细胞增殖指数,细胞因子表达水平和体内细胞毒性T淋巴细胞杀伤作用(CTL)等免疫学指标.[结果]pceDS2联合pOX40L免疫组小鼠的抗-HBs水平显著提高,抗-HBs IgG亚类以IgG2a占优;免疫小鼠的T淋巴细胞体外经乙型肝炎表面抗原(HBsAg)刺激后,联合免疫组刺激指数(SI)明显高于pcDS2组;联合免疫组CD4 + T淋巴细胞的IL-4和IFN-γ表达水平及CD8 + T淋巴细胞的IFN-γ表达水平显著升高;DNA疫苗免疫的各组小鼠,HBsAg特异性体内CTL高于对照组,其中联合免疫组小鼠的体内CTL杀伤作用最强.[结论]共刺激分子OX40L不仅能增强HBV DNA疫苗诱导特异性体液免疫应答,还能增强特异性细胞免疫反应,尤其增强体内CTL的杀伤活性,为HBV DNA疫苗的研究奠定了基础.  相似文献   

9.
We previously showed that intramuscular saline DNA immunizations favor the development of an IgG2a-dominant Th1 immune response, whereas gene gun DNA immunizations stimulate the production of an IgG1-dominant Th2 immune response. Several studies have implicated immunostimulatory CpG sequences as the causative factor in the development of Th1 immune responses to saline DNA immunization. To determine whether the Th1 cytokine-inducing properties of CpG sequences in plasmid DNA (pDNA) were responsible for the induction of a Th1 immune response, in vitro methylated and untreated (nonmethylated) hemagglutinin-expressing pDNA were compared for immunogenicity. Methylation abrogated the immunostimulatory activity of pDNA for cultured splenocytes and significantly reduced antigen expression. However, methylation of pDNA was not associated with a change from the induction of IgG2a to IgG1. After immunization with the methylated plasmid, the magnitude of the immune response was reduced. However, the decline in the total antibody response matched the decline in antigen expression. The dose of DNA or the presence of lipopolysaccharide in pDNA likewise did not affect the preferential development of an IgG2a antibody response. Our findings reveal that high levels of CpG sequences are not required for raising IgG2a-predominant, Thl-biased immune responses to intramuscular injections of hemagglutinin-expressing DNA.  相似文献   

10.
For use in humans, human immunodeficiency virus (HIV) DNA vaccines may need to include immunostimulatory adjuvant molecules. CD40 ligand (CD40L), a member of the tumor necrosis factor (TNF) superfamily (TNFSF), is one candidate adjuvant, but it has been difficult to use because it is normally expressed as a trimeric membrane molecule. Soluble trimeric forms of CD40L have been produced, but in vitro data indicate that multimeric, many-trimer forms of soluble CD40L are more active. This multimerization requirement was evaluated in mice using plasmids that encoded either 1-trimer, 2-trimer, or 4-trimer soluble forms of CD40L. Fusion with the body of Acrp30 was used to produce the 2-trimer form, and fusion with the body of surfactant protein D was used to produce the 4-trimer form. Using plasmids for secreted HIV-1 antigens Gag and Env, soluble CD40L was active as an adjuvant in direct proportion to the valence of the trimers (1 < 2 < 4). These CD40L-augmented DNA vaccines elicited strong CD8(+) T-cell responses but did not elicit significant CD4(+) T-cell or antibody responses. To test the applicability of the multimeric fusion protein approach to other TNFSFs, a 4-trimer construct for the ligand of glucocorticoid-induced TNF family-related receptor (GITR) was also prepared. Multimeric soluble GITR ligand (GITRL) augmented the CD8(+) T-cell, CD4(+) T-cell, and antibody responses to DNA vaccination. In summary, multimeric CD40L and GITRL are new adjuvants for DNA vaccines. Plasmids for expressing multimeric TNFSF fusion proteins permit the rapid testing of TNFSF molecules in vivo.  相似文献   

11.
超抗原SEA增强小鼠对HBV DNA 疫苗的免疫反应   总被引:4,自引:0,他引:4  
观察超抗原SEA(D227A)的真核表达载体(pmSEA),对HBVDNA疫苗诱导Balbc小鼠(H2d)免疫应答的调节作用。肌内注射空载体pcDNA3、HBVDNA疫苗加pmSEA佐剂(pHBVS2S+pmSEA)或不加佐剂(pHBVS2S);ELISA法测定血清抗HBs;ELISPOT检测分泌IFNγ的脾淋巴细胞;4h51Cr释放法检测小鼠脾细胞CTL活性。HBVDNA佐剂组免疫小鼠抗HBsAg抗体滴度明显高于不加佐剂组,其IgG1IgG2a的比例不同于多肽免疫组,二者分别为0.282与10。HBVDNA佐剂组均能增强IgG1和IgG2a的产生,是不加佐剂组的1.36、1.73倍。佐剂组小鼠脾淋巴细胞IFNγ的分泌量是不加佐剂组2~3倍。CTL细胞杀伤活性(E:T=100)佐剂组与不加佐剂组分别为:69.77%±7.5%、42.81%±7.7%,差异显著(P<0.05)。HBVDNA疫苗具有较强的免疫原性,能够诱导机体产生特异性的抗体及CTL反应;pmSEA佐剂能够提高小鼠对DNA疫苗的免疫应答,有望成为DNA疫苗的免疫佐剂。  相似文献   

12.
Apoptotic bodies can be used to target delivery of DNA-expressed immunogens into professional antigen-presenting cells (APCs). Here we show that antigen-laden apoptotic bodies created by vectors co-expressing influenza virus hemagglutinin (HA) or nucleoprotein (NP) genes and mutant caspase genes markedly increased T-cell responses. Both CD8 and CD4 T-cell responses were affected. The adjuvant activity was restricted to partially inactivated caspases that allowed immunogen expression before the generation of apoptotic bodies. Active-site mutants of murine caspase 2 and an autocatalytic chimera of murine caspase 2 prodomain and human caspase 3 induced apoptosis that did not interfere with immunogen expression. The adjuvant activity also enhanced B-cell responses, but to a lesser extent than T-cell responses. The large increases in T-cell responses represent one of the strongest effects to date of a DNA adjuvant on cellular immunity.  相似文献   

13.
Nayak BP  Sailaja G  Jabbar AM 《Journal of virology》2003,77(20):10850-10861
DNA vaccines exploit the inherent abilities of professional antigen-presenting cells to prime the immune system and to elicit immunity against diverse pathogens. In this study, we explored the possibility of augmenting human immunodeficiency virus type 1 gp120-specific immune responses by a DNA vaccine coding for a fusion protein, CTLA4:gp120, in mice. In vitro binding studies revealed that secreted CTLA4:gp120 protein induced a mean florescence intensity shift, when incubated with Raji B cells, indicating its binding to B7 proteins on Raji B cells. Importantly, we instituted three different vaccination regimens to test the efficacy of DNA vaccines encoding gp120 and CTLA4:gp120 in the induction of both cellular (CD8(+)) and antibody responses. Each of the vaccination regimens incorporated a single intramuscular (i.m.) injection of the DNA vaccines to prime the immune system, followed by two booster injections. The i.m.-i.m.-i.m. regimen induced only modest levels of gp120-specific CD8(+) T cells, but the antibody response by CTLA4:gp120 DNA was nearly 16-fold higher than that induced by gp120 DNA. In contrast, using the i.m.-subcutaneous (s.c.)-i.m. regimen, it was found that gp120 and CTLA4:gp120 DNAs were capable of inducing significant levels of gp120-specific CD8(+) T cells (3.5 and 11%), with antibody titers showing a modest twofold increase for CTLA4:gp120 DNA. In the i.m.-gene gun (g.g.)-g.g. regimen, the mice immunized with gp120 and CTLA4:gp120 harbored gp120-specific CD8(+) T cells at frequencies of 0.9 and 2.9%, with the latter showing an eightfold increase in antibody titers. Thus, covalent antigen modification and the routes of genetic vaccination have the potential to modulate antigen-specific immune responses in mice.  相似文献   

14.
Costimulatory molecules play a central role in the development of cellular immunity. Understanding how costimulatory pathways can be directed to positively influence the immune response may be critical for the generation of an effective HIV vaccine. Here, we evaluated the ability of intravenous administration of a blocking monoclonal antibody (mAb) directed against the negative costimulatory molecule CTLA-4, and an agonist mAb directed against the positive costimulatory molecule 4-1BB, either alone or in combination, to augment intramuscular SIV DNA immunizations. We then tested the ability these of these responses to impact a high-dose SIVmac251 challenge. Following immunization, the groups infused with the anti-4-1BB mAb exhibited enhanced IFN-γ responses compared to the DNA vaccine only group. Interestingly, although CTLA-4 blockade alone did not enhance IFN-γ responses it did increase the proliferative capacity of the CD4+ and CD8+ T cells. The combination of both mAbs enhanced the magnitude of the polyfunctional CD8+ T cell response. Following challenge, the group that received both mAbs exhibited a significant, ∼2.0 log, decrease in plasma viral load compared to the naïve group the included complete suppression of viral load in some animals. Furthermore, the use of the CTLA-4 blocking antibody resulted in significantly higher viral loads during chronic infection compared to animals that received the 4-1BB mAb, likely due to the higher CD4+ T cell proliferative responses which were driven by this adjuvant following immunization. These novel studies show that these adjuvants induce differential modulation of immune responses, which have dramatically different consequences for control of SIV replication, suggesting important implications for HIV vaccine development.  相似文献   

15.
The effect of exogenous recombinant interleukin-2 (IL-2) or of antibody crosslinking on the activation of human T-cell subsets by IgG2a (OKT3/BMA030), IgG1 (Leu4 and UCHT1), or IgG2b (BMA031) anti-T3 antibodies (CD3) was investigated. In so-called nonresponder cultures as well as in monocyte-depleted cell cultures addition of IL-2 increased the CD3-induced activation and proliferation of T4 and T8 cell subsets. Relatively more T8 than T4 cells were stimulated by antibody binding and IL-2. Crosslinking the cell-bound CD3 antibodies by plastic bound goat anti-mouse antibodies activated both T-cell subsets optimally and increased the IL-2 production of the IgG1-CD3 stimulated cultures. The data show that T cells (T8 greater than T4) can be stimulated by CD3 antibody binding and IL-2, but that crosslinking the cell-bound CD3 antibodies is crucial for optimal T4 cell stimulation and IL-2 production.  相似文献   

16.
A study was made of the adjuvant effect of the mouse tumor necrosis factor alpha (mTNF alpha) on DNA immunization against the herpes simplex virus type 1 (HSV1). The HSV1 gD gene (pDNAgD) served as an immunogen; mTNF alpha or its gene cloned in an eukaryotic expression vector (pDNAmTNF) were used to modulate the immune response. Double immunization with pDNAgD led to a sixfold increase in the in vitro T-cell response, a high (1:2000) titer of anti-HSV1 antibodies (including virus-neutralizing antibodies), an increase in IgG2a/IgG1 (suggesting a shift of the immune response to the Th1 type), and no change in CD4/CD8 T-cell ratio. A single injection of mTNF alpha along with inactivated HSV1 allowed a twice higher antibody titer and a fourfold higher T-cell response as compared with immunization with HSV1 alone. Double immunization with both pDNAgD and pDNAmTNF increased the titer of anti-HSV1 antibodies and the T-cell response by factors of 8 and 1.5, respectively, as compared with immunization with pDNAgD alone. However, the protective effect was significantly lower with the two plasmids than with pDNAgD (73 vs. 100%). Thus, DNA immunization with pDNAgD induced both B- and T-cell responses and completely protected mice from a lethal doze of HSV1. The adjuvant properties of mTNF alpha and pDNAmTNF need further investigation.  相似文献   

17.
Macrolide antibiotics have unique immunomodulatory actions apart from their antimicrobial properties. We examined the effect of erythromycin (EM), a 14-member macrolide, on the immune response to a DNA vaccine that induces a T-helper-1 (Th1)-biased immune response through a Th1-promoting adjuvant effect of unmethylated CpG motifs within plasmid DNA. EM enhanced Th1 responses in plasmid DNA-immunized mice as measured by antigen-specific IgG2a antibody production, interferon-gamma production by antigen-specific CD4(+) T cells, and cytotoxic T lymphocyte responses. EM augmented the accessory cell activity of unmethylated CpG DNA-stimulated antigen-presenting cells (APCs), suggesting that EM enhances Th1 responses to a DNA vaccine, possibly through augmentation of accessory cell activity of APCs stimulated with CpG motifs within plasmid DNA.  相似文献   

18.
DNA vaccination is an effective means of eliciting strong antibody responses to a number of viral antigens. However, DNA immunization alone has not generated persistent, high-titer antibody and neutralizing antibody responses to human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env). We have previously reported that DNA-primed anti-Env antibody responses can be augmented by boosting with Env-expressing recombinant vaccinia viruses. We report here that recombinant Env protein provides a more effective boost of DNA-initiated antibody responses. In rabbits primed with Env-expressing plasmids, protein boosting increased titer, persistence, neutralizing activity, and avidity of anti-Env responses. While titers increased rapidly after boosting, avidity and neutralizing activity matured more slowly over a 6-month period following protein boosting. DNA priming and protein immunization with HIV-1 HXB-2 Env elicited neutralizing antibody for T cell line-adapted, but not primary isolate, viruses. The most effective neutralizing antibody responses were observed after priming with plasmids which expressed noninfectious virus-like particles. In contrast to immunizations with HIV-1 Env, DNA immunizations with the influenza virus hemagglutinin glycoprotein did not require a protein boost to achieve high-titer antibody with good avidity and persistence.  相似文献   

19.
Human immunodeficiency virus (HIV) can be transmitted through infected seminal fluid or vaginal or rectal secretions during heterosexual or homosexual intercourse. To prevent mucosal transmission and spread to the regional lymph nodes, an effective vaccine may need to stimulate immune responses at the genitourinary mucosa. In this study, we have developed a mucosal model of genital immunization in male rhesus macaques, by topical urethral immunization with recombinant simian immunodeficiency virus p27gag, expressed as a hybrid Ty virus-like particle (Ty-VLP) and covalently linked to cholera toxin B subunit. This treatment was augmented by oral immunization with the same vaccine but with added killed cholera vibrios. Polymeric secretory immunoglobulin A (sIgA) and IgG antibodies to p27 were induced in urethral secretions, urine, and seminal fluid. This raises the possibility that the antibodies may function as a primary mucosal defense barrier against SIV (HIV) infection. The regional lymph nodes which constitute the genital-associated lymphoid tissue contained p27-specific CD4+ proliferative and helper T cells for antibody synthesis by B cells, which may function as a secondary immune barrier to infection. Blood and splenic lymphocytes also showed p27-sensitized CD4+ T cells and B cells in addition to serum IgG and IgA p27-specific antibodies; this constitutes a third level of immunity against dissemination of the virus. A comparison of genito-oral with recto-oral and intramuscular routes of immunization suggests that only genito-oral immunization elicits specific sIgA and IgG antibodies in the urine, urethra, and seminal fluid. Both genito-oral and recto-oral immunizations induced T-cell and B-cell immune responses in regional lymph nodes, with preferential IgA antibody synthesis. The mucosal route of immunization may prevent not only virus transmission through the genital mucosa but also dissemination and latency of the virus in the draining lymph nodes.  相似文献   

20.
T-cell costimulation molecules B7-1 and B7-2 play an important role in activation of T cells to cytolytic effector function and production of cytokines. Interaction with B7 also causes T cells to upregulate surface molecules, such as CD40L, that effectively stimulate antibody responses in conjunction with cytokines. We have shown that mice lacking both B7-1 and B7-2 (B7KO mice), when infected intravaginally with virulent herpes simplex virus type 2 (HSV-2), developed more severe disease and higher mortality than their wild-type counterparts. We have now investigated the effects of B7 costimulation deficiency on induction of immune responses to HSV-2 infection of the genital tract. Fewer gamma interferon (IFN-gamma)-producing T cells were present in the genital lymph nodes of B7KO mice compared to wild-type mice, either acutely after primary infection or in recall responses. Less IFN-gamma and especially interleukin-10 were produced by B7KO mice, and cytolytic T-lymphocyte activity was also attenuated. Reduced expression of CD25 on CD4(+) T cells after infection of B7KO mice was consistent with deficits in T-cell activation to effector functions. Although HSV-specific immunoglobulin M (IgM) titers were comparable for both B7KO mice and wild-type mice, B7KO mice had significant deficits in HSV-specific serum IgG responses, with markedly reduced levels of IgG2a and IgG1. In addition, significantly less IgG was detected in the vaginal secretions of B7KO mice than in those from wild-type mice. CD4(+) T-cell expression of CD40L was depressed in B7KO mice in vivo and in vitro. Together with reduced cytokine production, these results suggest a mechanism for decreased IgG class switching or production. Thus, in the absence of B7 costimulation, na?ve T cells fail to undergo proper activation in response to HSV-2, which limits T-cell cytokine production, cytotoxic T lymphocyte activity, and provision of help for class-switched antibody responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号