首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
To exit blood vessels, most (~80%) of the lumenally adhered monocytes and neutrophils crawl toward locations that support transmigration. Using intravital confocal microscopy of anesthetized mouse cremaster muscle, we separately examined the crawling and emigration patterns of monocytes and neutrophils in blood-perfused unstimulated or TNF-α-activated venules. Most of the interacting cells in microvessels are neutrophils; however, in unstimulated venules, a greater percentage of the total monocyte population is adherent compared with neutrophils (58.2 ± 6.1% versus 13.6 ± 0.9%, adhered/total interacting), and they crawl for significantly longer distances (147.3 ± 13.4 versus 61.8 ± 5.4 μm). Intriguingly, after TNF-α activation, monocytes crawled for significantly shorter distances (67.4 ± 9.6 μm), resembling neutrophil crawling. Using function-blocking Abs, we show that these different crawling patterns were due to CD11a/CD18 (LFA-1)- versus CD11b/CD18 (Mac-1)-mediated crawling. Blockade of either Mac-1 or LFA-1 revealed that both LFA-1 and Mac-1 contribute to monocyte crawling; however, the LFA-1-dependent crawling in unstimulated venules becomes Mac-1 dependent upon inflammation, likely due to increased expression of Mac-1. Mac-1 alone was responsible for neutrophil crawling in both unstimulated and TNF-α-activated venules. Consistent with the role of Mac-1 in crawling, Mac-1 block (compared with LFA-1) was also significantly more efficient in blocking TNF-α-induced extravasation of both monocytes and neutrophils in cremaster tissue and the peritoneal cavity. Thus, mechanisms underlying leukocyte crawling are important in regulating the inflammatory responses by regulating the numbers of leukocytes that transmigrate.  相似文献   

2.
The CD11/18 (LFA-1, Mac-1) molecules participate in neutrophil adhesion to cultured endothelium in vitro and are critical for effective neutrophil localization into inflamed tissues in vivo. More recently, the MEL-14 Ag, which was first defined as a lymphocyte homing receptor, has also been implicated in inflammatory neutrophil extravasation. Here we compare the regulation and function of these adhesion molecules on neutrophils during the in vivo inflammatory response. The MEL-14 Ag is expressed at high levels on bone marrow and peripheral blood neutrophils, but is lost on neutrophils isolated from the thioglycollate-inflamed peritoneal cavity. In contrast, Mac-1 is up-regulated on inflammatory neutrophils and little change is seen in the level of LFA-1 expression. In vitro activation of bone marrow neutrophils with PMA or leukotriene B4 results in a dose dependent increase in Mac-1 and decrease in MEL-14 Ag expression within 1 h after treatment, thus reflecting what is found during inflammation in vivo. Neutrophils activated in vitro or in vivo (MEL-14Low, Mac-1Hi) do not home to inflammatory sites in vivo, correlating with the loss of the MEL-14 Ag and the increased Mac-1 expression. Anti-LFA-1, anti-Mac-1, or MEL-14 antibody given i.v. suppress neutrophil accumulation within the inflamed peritoneum (38%, 30%, and 37% of medium control, respectively) without affecting the levels of circulating neutrophils. However, when FITC-labeled cells are precoated with the mAb and injected i.v., only MEL-14 inhibits extravasation into the inflamed peritoneum (25% of medium control). Finally, in ex vivo adhesion assays of neutrophil binding to high endothelial venules in inflamed-lymph node frozen sections MEL-14 inhibits greater than 90%. anti-LFA-1 20 to 30% and anti-Mac-1 less than 10% of the binding of bone marrow neutrophils to inflamed-lymph node high endothelial venules. These results confirm that both the MEL-14 antigen and Mac-1/LFA-1 are important in neutrophil localization to inflamed sites in vivo, but suggest that their roles in endothelial cell interactions are distinct.  相似文献   

3.
Relative contribution of LFA-1 and Mac-1 to neutrophil adhesion and migration.   总被引:29,自引:0,他引:29  
To differentiate the unique and overlapping functions of LFA-1 and Mac-1, LFA-1-deficient mice were developed by targeted homologous recombination in embryonic stem cells, and neutrophil function was compared in vitro and in vivo with Mac-1-deficient, CD18-deficient, and wild-type mice. LFA-1-deficient mice exhibit leukocytosis but do not develop spontaneous infections, in contrast to CD18-deficient mice. After zymosan-activated serum stimulation, LFA-1-deficient neutrophils demonstrated activation, evidenced by up-regulation of surface Mac-1, but did not show increased adhesion to purified ICAM-1 or endothelial cells, similar to CD18-deficient neutrophils. Adhesion of Mac-1-deficient neutrophils significantly increased with stimulation, although adhesion was lower than for wild-type neutrophils. Evaluation of the strength of adhesion through LFA-1, Mac-1, and CD18 indicated a marked reduction in firm attachment, with increasing shear stress in LFA-1-deficient neutrophils, similar to CD18-deficient neutrophils, and only a modest reduction in Mac-1-deficient neutrophils. Leukocyte influx in a subcutaneous air pouch in response to TNF-alpha was reduced by 67% and 59% in LFA-1- and CD18-deficient mice but increased by 198% in Mac-1-deficient mice. Genetic deficiencies demonstrate that both LFA-1 and Mac-1 contribute to adhesion of neutrophils to endothelial cells and ICAM-1, but adhesion through LFA-1 overshadows the contribution from Mac-1. Neutrophil extravasation in response to TNF-alpha in LFA-1-deficient mice dramatically decreased, whereas neutrophil extravasation in Mac-1-deficient mice markedly increased.  相似文献   

4.
Recent work has revealed an essential involvement of soluble CD40L (sCD40L) in inflammation and vascular disease. Activated platelets are the major source of sCD40L, which has been implicated in platelet and leukocyte activation, although its exact functional impact on leukocyte-platelet interactions and the underlying mechanisms remain undefined. We aimed to determine the impact and the mechanisms of sCD40L on neutrophils. We studied neutrophil interactions with activated, surface-adherent platelets as a model for leukocyte recruitment to the sites of injury. Our data show that CD40L contributes to neutrophil firm adhesion to and transmigration across activated surface-adherent platelets, possibly through two potential mechanisms. One involves the direct interaction of ligand-receptor (CD40L-CD40), i.e., platelet surface CD40L interaction with neutrophil CD40; another involves an indirect mechanism, i.e. soluble CD40L stimulates activation of the leukocyte-specific β2 integrin Mac-1 in neutrophils and thereby further promotes neutrophil adhesion and migration. Activation of the integrin Mac-1 is known to be critical for mediating neutrophil adhesion and migration. sCD40L activated Mac-1 in neutrophils and enhanced neutrophil-platelet interactions in wild-type neutrophils, but failed to elicit such responses in CD40-deficient neutrophils. Furthermore, our data show that the protein kinase C zeta (PKCζ) is critically required for sCD40L-induced Mac-1 activation and neutrophil adhesive function. sCD40L strongly stimulated the focal clustering of Mac-1 (CD11b) and the colocalization of Mac-1 with PKCζ in wild-type neutrophils, but had minimal effect in CD40-deficient neutrophils. Blocking PKCζ completely inhibited sCD40L-induced neutrophil firm adhesion. Moreover, sCD40L strongly stimulates neutrophil oxidative burst via CD40-dependent activation of PI3K/NF-KB, but independent of Mac-1 and PKCζ. These findings may contribute to a better understanding of the underlying mechanisms by which sCD40L/CD40 pathway contributes to inflammation and vascular diseases.  相似文献   

5.
Activated neutrophils display an array of physiological responses, including initiation of the oxidative burst, phagocytosis, and cell migration, that are associated with cellular adhesion. Under conditions that lead to cellular adhesion, we observed rapid tyrosine phosphorylation of an intracellular protein with an approximate relative molecular mass of 92 kDa (p92). Phosphorylation of p92 was inducible when Mac-1 was activated by phorbol 12-myristate 13-acetate, the beta(2)-specific activating antibody CBR LFA-1/2, or interleukin-8 (77 amino acids). In addition, tyrosine phosphorylation of p92 was dependent on engagement of Mac-1 with ligand. Several observations suggest that this event may be an important step in the signaling pathway initiated by Mac-1 binding. p92 phosphorylation was specifically blocked with antibodies to CD11b, the alpha-subunit of Mac-1, and was rapidly reversible on disengagement of the integrin ligand interaction. Integrin-stimulated phosphorylation of p92 created binding sites that were recognized in vitro by the SH2 domains of c-CrkII and Src. Our observations suggest that neutrophil adhesion mediated through the binding of the beta(2)-integrin Mac-1 initiates a signaling cascade that involves the activation of protein tyrosine kinases and leads to the regulation of protein-protein interactions via SH2 domains, a key process shared with growth factor signaling pathways.  相似文献   

6.
Firm adhesion ofrolling neutrophils on inflamed endothelium is dependent on2 (CD18)-integrins and activating stimuli. LFA-1 (CD11a/CD18) appears to be more important than Mac-1 (CD11b/CD18) inneutrophil emigration at inflammatory sites, but little is known of therelative binding characteristics of these two integrins underconditions thought to regulate firm adhesion. The present studyexamined the effect of chemoattractants on the kinetics of LFA-1 andMac-1 adhesion in human neutrophils. We found that subnanomolarconcentrations of interleukin-8, Gro-, and leukotriene B4 (LTB4) induced rapid and optimal rates ofLFA-1-dependent adhesion of neutrophils to intercellular adhesionmolecule (ICAM)-1-coated beads. These optimal rates of LFA-1 adhesionwere transient and decayed within 1 min after chemoattractantstimulation. Mac-1 adhesion was equally rapid initially but continuedto rise for 6 min after stimulation. A fourfold higher density ofICAM-1 on beads markedly increased the rate of binding to LFA-1 but did not change the early and narrow time window for the optimal rate ofadhesion. Using well-characterized monoclonal antibodies, we showedthat activation of LFA-1 and Mac-1 by Gro- was completely blocked byanti-CXC chemokine receptor R2, but activation of these integrins byinterleukin-8 was most effectively blocked by anti-CXC chemokinereceptor R1. The topographical distribution of beads also reflectedsignificant differences between LFA-1 and Mac-1. Beads bound to Mac-1translocated to the cell uropod within 4 min, but beads bound to LFA-1remained bound to the lamellipodial regions at the same time. Thesekinetic and topographical differences may indicate distinct functionalcontributions of LFA-1 and Mac-1 on neutrophils.

  相似文献   

7.
Adult cardiac myocytes express intercellular adhesion molecule (ICAM)-1 in response to cytokine stimulation. This allows stable adhesion of chemotactically stimulated but not unstimulated neutrophils. In the current study, we demonstrated that brief exposure of ICAM-1-expressing cardiac myocytes to H(2)O(2) promoted transient adhesive interactions between myocytes and neutrophils without added chemotactic factors. This transient adhesion differed in two ways from the stable adhesion promoted by exogenous chemotactic factors. It occurred more rapidly, peaking within 15 min, and it was dependent on leukocyte function-associated antigen (LFA)-1 (CD11a/CD18) on the neutrophil interacting with ICAM-1 on the myocyte. In contrast, chemotactic factor-induced adhesion peaked at 60 min and was dependent on Mac-1 (CD11b/CD18). The transient adhesion could be completely inhibited by platelet-activating factor (PAF)-receptor antagonists WEB-2086 and SDZ-64-412. These results indicate that canine neutrophils may utilize both LFA-1 and Mac-1 to adhere to adult cardiac myocytes, with LFA-1 triggered by a PAF-like activity induced in myocytes by H(2)O(2).  相似文献   

8.
Mice deficient in CD18, which lack all four CD11 integrins, have leukocytosis and increased susceptibility to bacterial infection. To determine the effect of deficiencies in LFA-1 (CD11a/CD18) or Mac-1 (CD11b/CD18) on host defense against systemic bacterial infection, knockout mice were inoculated i.p. with Streptococcus pneumoniae. Increased mortality occurred in both LFA-1(-/-) (15 of 17 vs 13 of 35 in wild type (WT), p < 0.01) and Mac-1(-/-) (17 of 34 vs 6 of 25, p < 0.01) mice. All deaths in LFA-1(-/-) mice occurred after 72 h, whereas most deaths in Mac-1(-/-) mice occurred within 24-48 h. At 24 h, 21 of 27 Mac-1(-/-) mice were bacteremic, vs 15 of 25 WT (p = 0.05); no difference was observed between LFA-1(-/-) and WT. Increased bacteria were recovered from Mac-1(-/-) spleens at 2 h (p = 0.03) and 6 h (p = 0.002) and from livers (p = 0.001) by 6 h. No difference was observed at 2 h in LFA-1(-/-) mice, but by 6 h increased bacteria were recovered from spleens (p = 0.008) and livers (p = 0.04). Baseline and peak leukocyte counts were similar between Mac-1(-/-) and WT, but elevated in LFA-1(-/-). At 8 h, peritoneal neutrophils were increased in Mac-1(-/-), but not significantly different in LFA-1(-/-). Histopathologically, at 24 h Mac-1(-/-) animals had bacteremia and lymphoid depletion, consistent with sepsis. LFA-1(-/-) mice had increased incidence of otitis media and meningitis/encephalitis vs WT at 72 and 96 h. Both Mac-1 and LFA-1 play important but distinct roles in host defense to S. pneumoniae.  相似文献   

9.
A lectin function within CD11b mediates both cytotoxic priming of Mac-1/complement receptor type 3 (CR3) by beta-glucan and the formation of transmembrane signaling complexes with GPI-anchored glycoproteins such as CD16b (FcgammaRIIIb). A requirement for GPI-anchored urokinase plasminogen activator receptor (uPAR; CD87) in neutrophil adhesion and diapedesis has been demonstrated with uPAR-knockout mice. In this study, neutrophil activation conditions generating high-affinity (H-AFN) or low-affinity (L-AFN) beta(2) integrin adhesion were explored. A role for the Mac-1/CR3 lectin domain and uPAR in mediating H-AFN or L-AFN adhesion was suggested by the inhibition of Mac-1/CR3-dependent adhesion to ICAM-1 or fibrinogen by beta-glucan or anti-uPAR. The formation of uPAR complexes with Mac-1/CR3 activated for L-AFN adhesion was demonstrated by fluorescence resonance energy transfer. Conversely, Jurkat cell LFA-1 H-AFN-adhesion to ICAM-1 was not associated with uPAR/LFA-1 complexes, any requirement for GPI-anchored glycoproteins, or inhibition by beta-glucan. A single CD11b lectin site for beta-glucan and uPAR was suggested because the binding of either beta-glucan or uPAR to Mac-1/CR3 selectively masked two CD11b epitopes adjacent to the transmembrane domain. Moreover, treatment with phosphatidylinositol-specific phospholipase C that removed GPI-anchored proteins increased CD11b-specific binding of (125)I-labeled beta-glucan by 3-fold and this was reversed with soluble recombinant uPAR. Conversely, neutrophil activation for generation of Mac-1/CR3/uPAR complexes inhibited CD11b-dependent binding of (125)I-labeled beta-glucan by 75%. These data indicate that the same lectin domain within CD11b regulates both the cytotoxic and adhesion functions of Mac-1/CR3.  相似文献   

10.
To address the question whether leukocyte integrins are able to generate signals activating neutrophil functions, we investigated the capability of mAbs against the common beta chain (CD18), or the distinct alpha chains of CR3, LFA-1, or gp150/95, to activate neutrophil respiratory burst. These investigations were performed with mAbs bound to protein A immobilized to tissue culture polystyrene. Neutrophils plated in wells coated with the anti-CD18 mAbs IB4 and 60.3 released H2O2; H2O2 release did not occur when neutrophils were plated in wells coated with an irrelevant, isotype-matched mAb (OKDR), or with mAbs against other molecules (CD16, beta 2-microglobulin) expressed on the neutrophil surface at the same density of CD18. Four different mAbs, OKM1, OKM9, OKM10, 60.1, which recognize distinct epitopes of CR3 were unable to trigger H2O2 or O2- release from neutrophils. However, mAbs against LFA-1 or gp150/95 triggered both H2O2 and O2- release from neutrophils. Stimulation of neutrophils respiratory burst by both anti-CD18, and anti-LFA-1 or gp150/95 mAbs was totally inhibited by the microfilaments disrupting agent, cytochalasin B, and by a permeable cAMP analogue. While the capability to activate neutrophil respiratory burst was restricted to anti-LFA-1 and gp150/95 mAbs, we observed that mAbs against all members of leukocyte integrins, including CR3, were able to trigger neutrophil spreading. These findings indicate that, in neutrophils, all three leukocyte integrins can generate signals activating spreading, but only LFA-1 and gp150/95 can generate signals involved in activation of the respiratory burst. This observation can be relevant to understand the mechanisms responsible for the activation of neutrophil respiratory burst by tumor necrosis factor-alpha, which has been shown to be strictly dependent on expression of leukocyte integrins (Nathan, C., S. Srimal, C. Farber, E. Sanchez, L. Kabbash, A. Asch, J. Gailit, and S. Wright. 1989. J. Cell Biol. 109:13411349.  相似文献   

11.
Neutrophils and T cells play an important role in host protection against pulmonary infection caused by Streptococcus pneumoniae. However, the role of the integrins in recruitment of these cells to infected lungs is not well understood. In this study we used the twin approaches of mAb blockade and gene-deficient mice to investigate the relative impact of specific integrins on cellular recruitment and bacterial loads following pneumococcal infection. We find that both Mac-1 (CD11b/CD18) and α(4)β(1) (CD49d/CD29) integrins, but surprisingly not LFA-1 (CD11a/CD18), contribute to two aspects of the response. In terms of recruitment from the circulation into lungs, neutrophils depend on Mac-1 and α(4)β(1), whereas the T cells are entirely dependent on α(4)β(1). Second, immunohistochemistry results indicate that adhesion also plays a role within infected lung tissue itself. There is widespread expression of ICAM-1 within lung tissue. Use of ICAM-1(-/-) mice revealed that neutrophils make use of this Mac-1 ligand, not for lung entry or for migration within lung tissue, but for combating the pneumococcal infection. In contrast to ICAM-1, there is restricted and constitutive expression of the α(4)β(1) ligand, VCAM-1, on the bronchioles, allowing direct access of the leukocytes to the airways via this integrin at an early stage of pneumococcal infection. Therefore, integrins Mac-1 and α(4)β(1) have a pivotal role in prevention of pneumococcal outgrowth during disease both in regulating neutrophil and T cell recruitment into infected lungs and by influencing their behavior within the lung tissue itself.  相似文献   

12.
《Luminescence》2003,18(5):278-282
Intensive exercise training decreases neutrophil functions in athletes. However, no studies to date have investigated the effect of irregular‐interval training, such as is associated with judo training programmes, on neutrophil functions. The purpose of this study was to examine such effects. Thirty‐seven male college judoists participated in this study. Neutrophil oxidative burst activity, phagocytic activity and expression of CD11b and CD16 per cell were measured by ?ow cytometry before and after judo training. Total neutrophil counts increased signi?cantly from 2.98 ± 0.82 to 7.95 ± 1.80 × 103/µL (p < 0.001). The proportion of neutrophils producing reactive oxygen species (ROS) was increased signi?cantly (p < 0.001). On the other hand, the phagocytic activity decreased after training, as shown by a decrease in the amount of ingested opsonized zymosan per cell (p < 0.001), possibly as a compensatory effect for the increased numbers of ROS‐producing neutrophils. Expression of CD11b and CD16 per cell decreased by 20% and 30%, respectively, after judo training. In conclusion, judo training induced a decrease in phagocytic activity through the lowered expression of CD11b and CD16 on the surface of neutrophils, and increased the oxidative burst activity of neutrophils. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
Certain microbial substances, e.g., LPS, can activate neutrophils or prime them to enhance their response to other activating agents, e.g., fMLP. We investigated the role of the Mycobacterium tuberculosis (MTB) 19-kDa lipoprotein in activation of human neutrophils. MTB 19-kDa lipoprotein initiated phenotypic changes characteristic of neutrophil activation, including down-regulation of CD62 ligand (L-selectin) and up-regulation of CD35 (CR1) and CD11b/CD18 (CR3, Mac-1). In addition, exposure of neutrophils to MTB 19-kDa lipoprotein enhanced the subsequent oxidative burst in response to fMLP as assessed by oxidation of dihydrorhodamine 123 (determined by flow cytometry). LPS also produced these effects with similar kinetics, but an oligodeoxynucleotide containing a CpG motif failed to induce any priming or activation response. Although the effects of LPS required the presence of serum, neutrophil activation by MTB 19-kDa lipoprotein occurred independently of serum factors, suggesting the involvement of different receptors and signaling mechanisms for LPS and MTB 19-kDa lipoprotein. Thus, MTB 19-kDa lipoprotein serves as a pathogen-associated molecular pattern that promotes neutrophil priming and activation.  相似文献   

14.
LFA-1 (CD11a/CD18) and Mac-1 (CD11b/CD18) are members of the beta2 integrins involved in leukocyte function during immune and inflammatory responses. We aimed to determine a minimized beta2 subunit that forms functional LFA-1 and Mac-1. Using a series of truncated beta2 variants, we showed that the subregion Q23-D300 of the beta2 subunit is sufficient to combine with the alphaL and alphaM subunits intracellularly. However, only the beta2 variants terminating after Q444 promote cell surface expression of LFA-1 and Mac-1. Thus, the major cysteine-rich region and the three highly conserved cysteine residues at positions 445, 447, and 449 of the beta2 subunit are not required for LFA-1 and Mac-1 surface expression. The surface-expressed LFA-1 variants are constitutively active with respect to ICAM-1 adhesion and these variants express the activation reporter epitope of the mAb 24. In contrast, surface-expressed Mac-1, both the wild type and variants, require 0. 5 mM MnCl2 for adhesion to denatured BSA. These results suggest that the role of the beta2 subunit in LFA-1- and Mac-1-mediated adhesion may be different.  相似文献   

15.
It has previously been shown that during degranulation Mac-1 (CD11b/CD18)--a glycoprotein that plays a central role in neutrophil adhesion-is up-regulated on PMN surfaces. It has been assumed that this quantitative change in adhesion Ag expression on the cell surface would in turn lead to increased cellular adhesiveness. In contrast, we found that at an incubation temperature of 16 degrees C, stimulated neutrophil adhesion to plastic tissue culture dishes in the presence of FMLP (2.5 x 10(-6) M), TNF (10 ng/ml), or PAF (1 x 10(-4) M) occurred without cellular degranulation or Mac-1 surface up-regulation as measured cytofluorometrically. As shown by functional inhibition studies employing monoclonal antibodies 60.3 (anti-CD18) and 60.1 (anti-CD11b), adhesion at 16 degrees C, where no CD11b/CD18 up-regulation was seen, is mediated by CD11b/CD18 just as it is at 37 degrees C, where degranulation and CD11b/CD18 up-regulation could be demonstrated. The physiologic importance of these findings was underscored by experiments done on endothelial monolayers, which showed that PMN association with endothelial cells is absolutely independent from the quantitative up-regulation of Mac-1 on PMN surfaces. When neutrophils were stimulated at 37 degrees C by endotoxin, an agent that does not induce aggregation (a form of intercellular adhesion), Mac-1 surface expression increased only after cells had become adherent, whereas cells held in suspension to prevent cell-substrate adhesion neither degranulated nor up-regulated their Mac-1 surface expression. Thus, not only is adherence independent of degranulation and Mac-1 cell surface up-regulation, but both degranulation and Mac-1 surface up-regulation appear to depend on the process of adhesion. Correspondingly, incubation of neutrophils with antibodies 60.1 and 60.3 inhibited not only adhesion of cells stimulated with FMLP at 37 degrees C but degranulation as well. These results indicate that Mac-1 influences degranulation as well as it controls adhesion not by its mere quantity on the cell surface, but rather by an yet undefined molecular modulation.  相似文献   

16.
Oxidative burst activity and the expression of adhesion molecules have been used as indicators of leukocyte activation status. The aim of the study was to delineate the relationship of oxidative burst activity and the expression of adhesion molecules in neutrophils and monocytes from a pool of healthy volunteers (n = 96). We also tested the potential role of gender and a racial background in the individual response differences. Basal and phorbol myristate acetate (PMA)-stimulated oxidative burst and CD11b expression were determined using dihydrorhodamine 123 and phycoerythrin (PE)-conjugated anti-CD11b monoclonal antibodies. PMA markedly increased CD11b expression and cellular oxidant content in neutrophils and monocytes in all samples. However, the responses showed considerable variability among individuals. A positive correlation was observed between the responsiveness of neutrophils and monocytes in their basal or PMA-stimulated CD11b expressions and PMA-stimulated oxidative burst activities. In contrast, no correlation was found between the level of adhesion molecule expression and cellular oxidant content in monocytes or neutrophils either under basal or under PMA-stimulated conditions. The reactivity of oxidative burst (i.e., PMA-stimulated over basal) was significantly lower in neutrophils from African American males compared with cells from African American females, white females, or white males. In contrast, reactivity of monocytes was significantly elevated in white males compared with all other groups. These findings indicate that leukocytes with a relatively high degree of adhesion molecule expression may display an average or decreased oxidative burst activity, and vice versa. Our findings also indicate that ethnic background may influence the oxidative burst activity in neutrophils and monocytes. This needs consideration in clinical studies utilizing healthy volunteers with mixed gender and ethnic backgrounds.  相似文献   

17.
The disulfide reducing agents dithioerythreitol and dithiothreitol, but not oxidized dithiothreitol, induced polymorphonuclear neutrophils to adhere to endothelial cells or to plastic. Adherence was inhibited by monoclonal antibodies 60.1 and 60.3, which are directed to functional epitopes on the CD11b and CD18 polypeptides of the neutrophil membrane adhesion complex (Mac-1, Mo1). The increased adherence induced by the sulfhydryl reducing agents was not accompanied by increased expression of CD11b/CD18. These studies demonstrate that a qualitative alteration in CD11b/CD18 is sufficient to promote neutrophil adherence.  相似文献   

18.
The glycosylphosphatidylinositol (GPI)-anchored neutrophil-specific receptor NB1 (CD177) presents the autoantigen proteinase 3 (PR3) on the membrane of a neutrophil subset. PR3-ANCA-activated neutrophils participate in small-vessel vasculitis. Since NB1 lacks an intracellular domain, we characterized components of the NB1 signaling complex that are pivotal for neutrophil activation. PR3-ANCA resulted in degranulation and superoxide production in the mNB1(pos)/PR3(high) neutrophils, but not in the mNB1(neg)/PR3(low) subset, whereas MPO-ANCA and fMLP caused similar responses. The NB1 signaling complex that was precipitated from plasma membranes contained the transmembrane receptor Mac-1 (CD11b/CD18) as shown by MS/MS analysis and immunoblotting. NB1 co-precipitation was less for CD11a and not detectable for CD11c. NB1 showed direct protein-protein interactions with both CD11b and CD11a by surface plasmon resonance analysis (SPR). However, when these integrins were presented as heterodimeric transmembrane proteins on transfected cells, only CD11b/CD18 (Mac-1)-transfected cells adhered to immobilized NB1 protein. This adhesion was inhibited by mAb against NB1, CD11b, and CD18. NB1, PR3, and Mac-1 were located within lipid rafts. In addition, confocal microscopy showed the strongest NB1 co-localization with CD11b and CD18 on the neutrophil. Stimulation with NB1-activating mAb triggered degranulation and superoxide production in mNB1(pos)/mPR3(high) neutrophils, and this effect was reduced using blocking antibodies to CD11b. CD11b blockade also inhibited PR3-ANCA-induced neutrophil activation, even when β2-integrin ligand-dependent signals were omitted. We establish the pivotal role of the NB1-Mac-1 receptor interaction for PR3-ANCA-mediated neutrophil activation.  相似文献   

19.
High-mobility group box 1 (HMGB1) is released extracellularly upon cell necrosis acting as a mediator in tissue injury and inflammation. However, the molecular mechanisms for the proinflammatory effect of HMGB1 are poorly understood. Here, we define a novel function of HMGB1 in promoting Mac-1-dependent neutrophil recruitment. HMGB1 administration induced rapid neutrophil recruitment in vivo. HMGB1-mediated recruitment was prevented in mice deficient in the beta2-integrin Mac-1 but not in those deficient in LFA-1. As observed by bone marrow chimera experiments, Mac-1-dependent neutrophil recruitment induced by HMGB1 required the presence of receptor for advanced glycation end products (RAGE) on neutrophils but not on endothelial cells. In vitro, HMGB1 enhanced the interaction between Mac-1 and RAGE. Consistently, HMGB1 activated Mac-1 as well as Mac-1-mediated adhesive and migratory functions of neutrophils in a RAGE-dependent manner. Moreover, HMGB1-induced activation of nuclear factor-kappaB in neutrophils required both Mac-1 and RAGE. Together, a novel HMGB1-dependent pathway for inflammatory cell recruitment and activation that requires the functional interplay between Mac-1 and RAGE is described here.  相似文献   

20.
We examined the relative contributions of LFA-1, Mac-1, and ICAM-3 to homotypic neutrophil adhesion over the time course of formyl peptide stimulation at shear rates ranging from 100 to 800 s-1. Isolated human neutrophils were sheared in a cone-plate viscometer and the kinetics of aggregate formation was measured by flow cytometry. The efficiency of cell adhesion was computed by fitting the aggregate formation rates with a model based on two-body collision theory. Neutrophil homotypic adhesion kinetics varied with shear rate and was most efficient at 800 s-1, where approximately 40% of the collisions resulted in adhesion. A panel of blocking Abs to LFA-1, Mac-1, and ICAM-3 was added to assess the relative contributions of these molecules. We report that 1) LFA-1 binds ICAM-3 as its primary ligand supporting homotypic adhesion, although the possibility of other ligands was also detected. 2) Mac-1 binding to an unidentified ligand supports homotypic adhesion with an efficiency comparable to LFA-1 at low shear rates of approximately 100 s-1. Above 300 s-1, however, Mac-1 and not LFA-1 were the predominant molecules supporting cell adhesion. This is in contrast to neutrophil adhesion to ICAM-1-transfected cells, where LFA-1 binds with a higher avidity than Mac-1 to ICAM-1. 3) Following stimulation, the capacity of LFA-1 to support aggregate formation decreases with time at a rate approximately 3-fold faster than that of Mac-1. The results suggest that the relative contributions of beta2 integrins and ICAM-3 to neutrophil adhesion is regulated by the magnitude of fluid shear and time of stimulus over a range of blood flow conditions typical of the venular microcirculation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号