首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L A Musmanno  J A Maley  J N Davidson 《Gene》1991,99(2):211-216
CAD is the multifunctional protein of higher eukaryotes which catalyzes the first three steps of pyrimidine biosynthesis. Its enzymatic activities exist as independent domains in the order: N terminus-carbamylphosphate synthetase II(CPSase)-dihydroorotase(DHOase)-aspartate transcarbamylase(ATCase)-C terminus. To functionally define the minimum hamster cDNA region required to encode an active DHOase, expression constructs were generated. Many such constructs complement Escherichia coli mutants defective not only in DHOase but also in ATCase. Constructs deleted for most of the sequence encoding the ATCase domain continue to complement E. coli mutants defective in DHOase. All of these smaller constructs also lack the region encoding CPSase. Therefore, a 'genetic cassette', containing information for neither the CPSase nor the ATCase domain, can direct the synthesis of a polypeptide with DHOase activity. Interestingly, inclusion of a portion of the DHOase-ATCase interdomain bridge appears to be required for optimum activity.  相似文献   

2.
3.
Aspartate transcarbamoylase (ATCase) was purified from Streptomyces griseus. The enzyme is a dodecamer with a molecular mass of approximately 450 kDa. The holoenzyme is a complex of ATCase and active dihydroorotase (DHOase) subunits. The ATCase and DHOase activities co-purify after gel filtration and ion-exchange chromatography. Denaturing gel electrophoresis separates the holoenzyme into a 38-kDa ATCase polypeptide and a 47-kDa DHOase polypeptide. The holoenzyme retained ATCase and DHOase activity after being heated to 65°C for 5 min, but after storage at 4°C for 24 hours lost ATCase activity. Previously, the Pseudomonas putida Class A ATCase was defined by Schurr et al. (J Bacteriol 177, 1751–1759) as requiring an inactive DHOase to be functional. Here, we show that an active DHOase is part of the dodecameric ATCase/DHOase complex in Streptomyces. To distinguish those Class A ATCases with active DHOases from those with degenerate DHOases, we suggest the subdivision, Class A1, for the former and Class A2 for the latter. Received: 23 December 1998 / Accepted: 4 June 1999  相似文献   

4.
The activities of the enzymes aspartate transcarbamylase (ATCase) and dihydroorotase (DHOase) were determined in adult females from a wild-type strain and from eight different alleles of the X-linked mutation rudimentary (r) of Drosophila melanogaster. The alleles chosen span the genetic map of the r locus. The characteristics of the DHOase-catalyzed reaction which converts carbamyl aspartate to dihydroorotate are briefly described. Of all of the r strains tested, only one, r 9, has wild-type levels of aspartate transcarbamylase and dihydroorotase activities. The other seven show either intermediate or very low levels of activity for both enzymes. The lowered ATCase and DHOase activities observed in mutants which do not map in the region of the structural gene for these enzymes are interpreted in light of recent evidence that ATCase and DHOase are part of a three-enzyme complex.This work was supported by the following grants: PHS HDO7918, BMS 74-19691, and a Basil O'Connor Starter Grant from the National Foundation-March of Dimes.  相似文献   

5.
Genetic rearrangements such as deletions or duplications of DNA sequences are rarely detected in the yeast Saccharomyces cerevisiae. We have developed a screening system using the URA2 gene coding for the bi-functional CPSase-ATCase (carbamyl phosphate synthetase — aspartate transcarbamylase) to select positively for these kinds of events. Nonsense mutations in the CPSase region cause a complete loss of the ATCase activity because of their strong polar effect. Thirty-seven ATCase+ revertants were isolated from a strain containing three nonsense mutations in the proximal CPSase region. Genetic and structural analysis of the URA2 locus in these strains allowed us to characterize two major classes of revertants. In the first, an entire copy of a Ty transposon was found to be inserted in the CPSase coding domain. This event, which represents a new form of Ty-mediated gene activation was further analysed by mapping the Ty integration site in 26 strains. In a second class of revertants, we observed chromosomal rearrangements and, in particular, duplication of the ATCase region and its integration in a new chromosomal environment in which this sequence becomes active.  相似文献   

6.
Summary The rudimentary locus (r; X-55.3) of Drosophila melanogaster is shown to contain the structural sequences for the enzymes CPSase, ATCase and DHOase. The enzyme concentration in adult flies is correlated with the number of r + copies in the genome. The expression of the locus follows the rules of the gene dosage compensation hypothesis when extracts of newly emerged males and females are compared.  相似文献   

7.
The presence of carbamoyl phosphate synthetase III (CPSase III), catalyzing the first step of the urea cycle in fish, in Atlantic halibut (Hippoglossus hippoglossus L.) yolk-sac larvae and adult white muscle has been established using gel filtration chromatography to separate the CPSase III from the pyrimidine-pathway related CPSase II. The results are consistent with the hypothesis that teleostean fish express urea cycle enzymes during early development and with recent observations of low levels of CPSase III in muscle tissue. The presence of CPSase III in crude extracts could not be established using sensitive assay conditions to discriminate between CPSase III and CPSase II. However, kinetic characterization after chromatographic separation identified each as typical CPSase II and CPSase III activities, respectively. The CPSase III was less sensitive to activation by N-acetyl- -glutamate and had a higher Km for ammonia than CPSase III found in other species. These results suggest that precise quantitation of low levels of CPSase III in the presence of CPSase II by assaying crude extracts may be difficult unless the enzymes are first separated and the kinetic properties of CPSase III are determined; the results indicate that assaying larval extracts of Atlantic halibut in the presence of uridine triphosphate results in CPSase activity that reflects mostly CPSase III and can, therefore, be used to measure changes in CPSase III activity.  相似文献   

8.
Summary The URA2 locus codes for a multifunctional enzyme complex carrying aspartate transcarbamylase (ATCase) and carbamyl phosphate synthetase (CPSase) activities. Three different types of ura2 mutants were tested in meiotic and mitotic recombination experiments: ura2A mutants devoid of ATCase activity, ura2C mutants devoid of CPSase activity and ura2B mutants devoid of both activities. All the ura2C mutations were found to be clustered at one end of the URA2 locus, called zone A, while the ura2C mutations were localized in a region at the other end, called zone C. All but two ura2B mutations (most of them suppressible) were distributed throughout zone C; the two ura2B exceptions which are small deletions, mapped in zone A. On the meiotic as well as on the mitotic map an intermediary or dead-space zone is located between zones A and C. No mutation has yet been found to map in this zone. The relative lengths of the three zones A, intermediary and C are 1:2–3:3–4, respectively.These data are consistent with the hypothesis that the URA2 locus consisting of at least two cistrons: C (CPSase) and A (ATCase), is transcribed into a single polycistronic message in the direction C to A. However, alternative hypotheses in reference to Peterson and MacLaughlin's observations (1973) are discussed.This paper is dedicated to the memory of our friend and colleague Huguette de Robichon-Szulmajster  相似文献   

9.
A new autosomal mutation, rudimental (ral), which causes rudimentary-shaped wings in Drosophila melanogaster, has been isolated following ethyl methanesulfonate (EMS) mutagenesis. The wing phenotype of rudimental is identical to that of the X-linked rudimentary (r) mutation, which affects the first three enzymes in the pyrimidine biosynthetic pathway. The autosomal mutant maps very close to ebony (3–70.7) at 70.42 on the right arm of chromosome 3. Analysis of the enzyme activities of orotate phosphoribosyltransferase (OPRTase) and orotidylate decarboxylase (ODCase) indicates that the rala26a allele has less than wild-type activity for both enzymes. This result is discussed in light of the fact that the OPRTase and ODCase activities are part of an enzyme complex, as are the carbamyl phosphate synthetase (CPSase), aspartate transcarbamylase (ATCase) and dihydroorotase (DHOase) activities, which are encoded by the complex rudimentary locus. We suggest that rudimental is also a complex locus.  相似文献   

10.
11.
Summary The X-linkedrudimentary (r) mutants ofDrosophila melanogaster are pyrimidine auxotrophs and require exogenous pyrimidines (Nørby, 1970; Falk, 1976). We have established a set ofrudimentary cell lines that are derived from embryos, homozygous for eitherr 1 orr 36. The enzymatic activities of the pyrimidine synthesizing enzymes were measured in the mutant lines. We have further investigated the nutritional requirements of the mutant cells in vitro by using a pyrimidine free culture medium.Ther 1 cell lines were found to express 3–7%dihydroorotase (DHOase) activity as compared to a wildtype cell line. Reducedaspartate transcarbamylase (ATCase) activity was measured in somer 1 cell lines whereas wildtypecarbamylphosphate synthetase (CPSase) activity is expressed in allr 1 cell lines. Ther 36 cell line expresses wildtype activity ofDHOase andCPSase. ATCase activity was found to be reduced to 10% of the wildtype activity.The mutant cell lines do not proliferate in pyrimidine free minimal medium and cell proliferation is obtained by the addition of crude RNA. Proliferation of ther 1 cells is restored by the supplementation of the minimal medium withdihydroorotate whereas proliferation of ther 36 cells is restored by supplementation with eitherdihydroorotate orcarbamylaspartate.The results demonstrate that therudimentary phenotypesr 1 andr 36 are expressed at the cellular level and that the two mutant cell types behave as cellular pyrimidine auxotrophs in vitro.  相似文献   

12.
Orotidine-5-monophosphate pyrophosphorylase (OMPppase, E.C. 2.4.2.10) and orotidylate decarboxylase (OMPdecase, E.C. 4.1.1.23) were purified from Serratia marcescens HY. These enzymes required physical association for maximal catalytic activities and formed a fragile complex with dihydroorotase (DHOase, E.C. 3.5.2.3.). OMPppase reversibly lost 50% of its activity upon separation from DHOase. The kinetic characteristics of OMPppase were modified by this separation. In the presence of DHOase, the K ms for PRPP and orotate were stoichiometric: 2.3×10–6 m and 2.6×10–6 m, respectively. Following separation, the K ms were significantly different: 1.3 × 10–6 m for PRPP and 4.1×10–6 m for orotate. OMPppase and OMPdecase could be reversibly separated by acrylamide gel electrophoresis, but the separation was accompanied by a loss of catalytic efficiency for both enzymes. DHOase readily associated into multiple molecular forms and could not be purified. The DHOase-OMPppase-OMPdecase interactions demonstrate that a weakly aggregated, multifunctional enzyme complex participates in the biosynthesis of pyrimidine nucleotides in S. marcescens. This unique association of nonsequential biosynthetic enzymes may represent a larger complex which provides a channeling or regulatory unit.This work was supported by grants from the National Science Foundation (NSF GB 5811) and the Office of Naval Research (Nonr 4413). One of us (J.W.) was a National Science Foundation Graduate Fellow.  相似文献   

13.
Aspartate transcarbamoylase (ATCase) and dihydroorotase (DHOase) catalyse the first two steps unique to pyrimidine synthesis. In many bacteria they form non-covalently bonded complexes. There are two types of DHOase, type I and type II which share a common ancestry. Type I is the more ancient form and is present in the complexes. In recently evolved bacteria the DHOase is defective and its function has been replaced by a type II DHOase which is separate from the complex. Deinococcus radiophilus diverges early on the phylogenetic tree and so might be expected to have an active type I DHOase. Purification of the 500 kDa ATCase–DHOase complex, by conventional techniques, showed it to possess an active DHOase.  相似文献   

14.
15.
The first two steps of the de novo pyrimidine biosynthetic pathway in Saccharomyces cerevisiae are catalyzed by a 240-kDa bifunctional protein encoded by the ura2 locus. Although the constituent enzymes, carbamoyl phosphate synthetase (CPSase) and aspartate transcarbamoylase (ATCase) function independently, there are interdomain interactions uniquely associated with the multifunctional protein. Both CPSase and ATCase are feedback inhibited by UTP. Moreover, the intermediate carbamoyl phosphate is channeled from the CPSase domain where it is synthesized to the ATCase domain where it is used in the synthesis of carbamoyl aspartate. To better understand these processes, a recombinant plasmid was constructed that encoded a protein lacking the amidotransferase domain and the amino half of the CPSase domain, a 100-kDa chain segment. The truncated complex consisted of the carboxyl half of the CPSase domain fused to the ATCase domain via the pDHO domain, an inactive dihydroorotase homologue that bridges the two functional domains in the native molecule. Not only was the "half CPSase" catalytically active, but it was regulated by UTP to the same extent as the parent molecule. In contrast, the ATCase domain was no longer sensitive to the nucleotide, suggesting that the two catalytic activities are controlled by distinct mechanisms. Most remarkably, isotope dilution and transient time measurements showed that the truncated complex channels carbamoyl phosphate. The overall CPSase-ATCase reaction is much less sensitive than the parent molecule to the ATCase bisubstrate analogue, N-phosphonacetyl-L-aspartate (PALA), providing evidence that the endogenously produced carbamoyl phosphate is sequestered and channeled to the ATCase active site.  相似文献   

16.
Genetic rearrangements such as deletions or duplications of DNA sequences are rarely detected in the yeast Saccharomyces cerevisiae. We have developed a screening system using the URA2 gene coding for the bi-functional CPSase-ATCase (carbamyl phosphate synthetase — aspartate transcarbamylase) to select positively for these kinds of events. Nonsense mutations in the CPSase region cause a complete loss of the ATCase activity because of their strong polar effect. Thirty-seven ATCase+ revertants were isolated from a strain containing three nonsense mutations in the proximal CPSase region. Genetic and structural analysis of the URA2 locus in these strains allowed us to characterize two major classes of revertants. In the first, an entire copy of a Ty transposon was found to be inserted in the CPSase coding domain. This event, which represents a new form of Ty-mediated gene activation was further analysed by mapping the Ty integration site in 26 strains. In a second class of revertants, we observed chromosomal rearrangements and, in particular, duplication of the ATCase region and its integration in a new chromosomal environment in which this sequence becomes active.  相似文献   

17.
Some metabolic pathways are nearly ubiquitous among organisms: the genes encoding the enzymes for such pathways must therefore be ancient and essential. De novo pyrimidine biosynthesis is an example of one such metabolic pathway. In animals a single protein called CAD
  • 1 Abbreviations: CAD, trifunctional protein catalyzing the first three steps of de novo pyrimidine biosynthesis in higher eukaryotes; CPS, carbamyl phosphate synthetase domain; CPSase, carbamyl phosphate synthetase activity; ATC, aspartate transcarbamylase domain; ATCase, aspartate transcarbamylase activity; DHO, dihydroorotase domain; DHOase, dihydroorotase activity; GLN, glutaminase subdomain or subunit of carbamyl phosphate synthetase, GL Nase, glutaminase activity; SYN, synthetase subdomain or subunit of carbamyl phosphate synthetase; SYNase, synthetase activity.
  • carries the first three steps of this pathway. The same three enzymes in prokaryotes are associated with separate proteins. The CAD gene appears to have evolved through a process of gene duplication and DNA rearrangement, leading to an in-frame gene fusion encoding a chimeric protein. A driving force for the creation of eukaryotic genes encoding multienzymatic proteins such as CAD may be the advantage of coordinate expression of enzymes catalyzing steps in a biosynthetic pathway. The analogous structure in bacteria is the operon. Differences in the translational mechanisms of eukaryotes and prokaryotes may have dictated the different strategies used by organisms to evolve coordinately regulated genes.  相似文献   

    18.
    CAD is a multidomain protein that catalyzes the first three steps in mammalian de novo pyrimidine biosynthesis. The 243-kDa polypeptide consists of four functional domains; glutamine amidotransferase (GLNase), carbamyl phosphate synthetase (CPSase), aspartate transcarbamylase (ATCase), and dihydroorotase (DHOase). Controlled proteolysis of hamster CAD was found to cleave the molecule into 18 fragments which successively accumulate and disappear during the course of digestion. Each fragment was isolated and partially sequenced to determine its location in the polypeptide chain. Proteolysis was found to usually occur at the junctions between the domains and sub-domains identified by sequence homology. All proteases of low to moderate specificity cleaved the molecule in a similar fashion. The rate of proteolysis widely varied and the interdomain regions were not always accessible to proteases. Each of the major functional domains is postulated to consist of subdomains. The duplicated halves of the CPSase domain (116 kDa) have a homologous structure consisting of 11-, 25-26-, and 21-22-kDa subdomains. Prolonged digestion cleaved the DHOase domain (36.6 kDa) into two stable species suggesting that this region is comprised of 11.5- and 15.0-kDa subdomains. Similarly, proteolysis of the 21-kDa catalytic subdomain of the GLNase domain (40 kDa) indicated a bilobal structure consisting of 12.3- and 8.5-kDa chain segments. The connecting region between the two ATCase subdomains (16.4 and 18 kDa) was not cleaved. Copurification of many of the domains showed that they remain associated by noncovalent interactions even after the connecting segments have been cleaved. The chain segments, the linkers, which connect the domains and subdomains were conserved in length but not in sequence, were predicted to be relatively hydrophilic and flexible but did not show a tendency to assume a particular secondary structure. These studies provide a more detailed map of the structural organization of the CAD polypeptide.  相似文献   

    19.
    Mammalian dihydroorotase (DHOase, EC 3.5.2.3) is part of a trifunctional protein, dihydroorotate synthetase which catalyzes the first three reactions of de novo pyrimidine biosynthesis. We have subcloned a portion of the cDNA from the plasmid pCAD142 and obtained a nucleotide sequence which extends 2.1 kb in the 5' direction from the sequence encoding the aspartate transcarbamoylase (ATCase) domain at the 3'-end of the cDNA. The DHOase and ATCase domains have been purified from an elastase digest of the trifunctional protein and subjected to amino acid (aa) sequencing from their N termini. The sequence of the N-terminal 24 aa of the DHOase domain has been obtained and aligned with the cDNA sequence. The C-terminal residues of the DHOase domain have been identified as Leu followed by Val which, when taken with partial sequences of the CNBr fragments of this domain, defines the coding sequence of the active, globular DHOase domain released by proteolysis. Prediction of protein secondary structure from the deduced aa sequence showed that the DHOase domain (Mr 37,751) is separated from the C-terminal ATCase domain (Mr 34,323) by a bridging sequence (Mr 12,532) consisting of multiple beta-turns.  相似文献   

    20.
    ABSTRACT. The pathway of de novo pyrimidine biosynthesis in the rodent parasitic protozoa Babesia rodhaini has been investigated. Specific activities of five of the six enzymes of the pathway were determined: aspartate transcarbamylase (ATCase: E.C. 2.1.3.2): dihydroorotase (DHOase: E.C. 3.5.2.3): dihydroorotate dehydrogenase (DHO-DHase: E.C. 1.3.3.1); orotate phosphoribosyltransferase (OPRTase: E.C. 2.4.2.10); and orotidine-5′-phosphate decarboxylase (ODCase: E.C. 4.1.1.23). Michaelis constants for ATCase, DHO-DHasc. OPRTase, and ODCase were determined in whole homogenates. Several substrate analogs were also investigated as inhibitors and inhibitor constants determined. N-(phosphonacetyl)-L-aspartate was shown to be an inhibitor of the ATCase with an apparent K, of 7μM. Dihydro-5-azaorotate inhibited the DHO-DHase (K, 16 μM) and 5-azaorotate (Ki, 21 μM) was an inhibitor of the OPRTase. The UMP analog, 6-aza-UMP (Ki, 0.3 μM) was a potent inhibitor of ODCase, while lower levels of inhibition were found with the product. UMP (Ki, 120 μM) and the purine nucleotide, XMP (K1, 95 μM). Additionally, menoctone, a ubiquinone analog, was shown to inhibit DHO-DHase.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号