首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A bioactive peptide of 8595 Da was purified from the cell free supernatant of Lactococcus garvieae subsp. bovis BSN307T. MALDI MS/MS peptide mapping and the data base search displayed no significant similarity to any reported antimicrobial peptide of LAB. This peptide at a dose concentration of 200 µg ml−1 inhibited the growth of both Gram-positive and Gram-negative bacteria by 58–89% and a dose of 500 µg ml−1 scavenged 50% of DPPH-free radicals generated. Interestingly, cytotoxicity assay demonstrated that 17 µg ml−1 of peptide selectively inhibited 50% proliferation of mammalian cancer cell lines HeLa and MCF-7 whereas normal H9c2 cells remained unaffected. Fluorescent microscopic analysis after DAPI nuclear staining of HeLa cells showed characteristics of apoptosis and activation of caspase-3 was ascertained by caspase-3 fluorescence assay.  相似文献   

2.
The immediate-early response gene 5 (IER5) was previously shown, using microarray analysis, to be upregulated by ionizing radiation. Here we further characterized the dose- and time-dependency of radiation-induced expression of IER5 at doses from 0.5 to 15 Gy by quantitative real-time PCR analyses in HeLa cells and human lymphoblastoid AHH-1 cells. A radiation-induced increase in the IER5 mRNA level was evident 2 h after irradiation with 2 Gy in both cell lines. In AHH-1 cells the expression reached a peak at 4 h and then quickly returned to the control level, while in HeLa cells the expression only remained increased for a short period of time at around 2 h after irradiation before returning to the control. After high-dose irradiation (10 Gy), the induction of the IER5 expression was lower and delayed in AHH-1 cells as compared with 2-Gy irradiated cells. In HeLa cells, at this dose, two peaks of increased expression were observed 2 h and 12–24 h post-irradiation, respectively. RNA interference technology was employed to silence the IER5 gene in HeLa cells. siRNA-mediated suppression of IER5 resulted in an increased proliferation of HeLa cells. Cell growth and survival analyses demonstrated that suppression of IER5 significantly increased the radioresistance of HeLa cells to radiation doses of up to 6 Gy, but barely affected the sensitivity of cells at 8 Gy. Moreover, suppression of IER5 potentiated radiation-induced arrest at the G2-M transition and led to an increase in the fraction of S phase cells. Taken together, we propose that the early radiation-induced expression of IER5 affects the radiosensitivity via disturbing radiation-induced cell cycle checkpoints.  相似文献   

3.
A reproducible protocol for clonal propagation of Spilanthes acmella has been established. Routinely, the cultures were established in spring (January–April) season because of the highest aseptic culture establishment and high frequency shoot proliferation. Incorporation of 5 μM N6-benzyladenine (BA) to Murashige and Skoog (MS) basal medium showed 100% bud-break and promoted multiple shoot proliferation in cultures. Interestingly, a higher concentration of BA (7–15 μM) promoted stunted shoots with pale leaves while a lower concentration (1–3 μM) resulted in shoots with long internodes and excessive adventitious root proliferation from all over their surface. For recurrent shoot multiplication, single node segments from in vitro-developed shoots were excised and cultured on MS + BA (5 μM) medium where 20.3-fold shoot multiplication was achieved every 5 weeks. Finally, these shoots were successfully rooted on half-strength MS medium (major salts reduced to half-strength) with 50 g l−1 sucrose, with a frequency of 100%. Transplantation survival of micropropagated plants was 88.9%. Additionally, accumulation of scopoletin, a phytoalexin, was revealed for the first time in the uninfected leaves of Spilanthes. Further, the quantitative estimation by HPLC with a fluorescence detector showed that the amounts of scopoletin content (0.10 μg g−1 DW) in the leaves of micropropagated plants are comparable to those of field-grown mother plants. The study thus signifies the effectiveness of in vitro methodology for true-to-type plant regeneration of Spilanthes and their later utility for biosynthesis and constant production of scopoletin throughout the year.  相似文献   

4.
The transient actions of gonadal steroids on the adult brain facilitate social behaviors, including reproduction. In male rodents, testosterone acts in the posterior medial amygdala (MeP) and medial preoptic area (MPOA) to promote mating. Adult neurogenesis occurs in both regions. The current study determined if testosterone and/or sexual behavior promote cell proliferation and survival in MeP and MPOA. Two experiments were conducted using the thymidine analog BrdU. First, gonad-intact and castrated male hamsters (n = 6/group) were compared 24 h or 7 weeks after BrdU. In MeP, testosterone-stimulated cell proliferation 24 h after BrdU (intact: 22.8 ± 3.9 cells/mm2, castrate: 13.2 ± 1.4 cells/mm2). Testosterone did not promote cell proliferation in MPOA. Seven weeks after BrdU, cell survival was sparse in both regions (MeP: 2.5 ± 0.6 and MPOA: 1.7 ± 0.2 cells/mm2), and was not enhanced by testosterone. In Experiment 2, gonad-intact sexually-experienced animals were mated weekly to determine if regular neural activation enhances cell survival 7 weeks after BrdU in MeP and MPOA. Weekly mating failed to increase cell survival in MeP (8.1 ± 1.6 vs. 9.9 ± 3.2 cells/mm2) or MPOA (3.9 ± 0.7 vs. 3.4 ± 0.3 cells/mm2). Furthermore, mating at the time of BrdU injection did not stimulate cell proliferation in MeP (8.9 ± 1.7 vs. 8.1 ± 1.6 cells/mm2) or MPOA (3.6 ± 0.5 vs. 3.9 ± 0.7 cells/mm2). Taken together, our results demonstrate a limited capacity for neurogenesis in the mating circuitry. Specifically, cell proliferation in MeP and MPOA are differentially influenced by testosterone, and the birth and survival of new cells in either region are not enhanced by reproductive activity.  相似文献   

5.
Summary The ability of a normal rat liver epithelial cell line with phenotypic characteristics of “oval” cells to grow in calcium-poor medium has been investigated. The growth of these cells could be arrested in medium containing 0.03 mM Ca2+, a concentration below which cell necrosis began to occur 24 h postexposure. With increasing calcium concentration, progressive cell proliferation was observed. Epithelial growth factor (EGF) (10 ng/ml) increased the survival and proliferation of cells in calcium-poor medium and the response was inversely correlated with the extracellular calcium concentration. In contrast, phenobarbital (0.2 to 2 mM), 12-0-tetradecanoylphorbol-13-acetate (0.01 to 1 μg/ml), or retinoic acid (0.001 to 0.1 μg/ml) depressed growth of cells in calcium-poor medium. The results confirm the ability of EGF to lower the calcium requirement for proliferation of normal cells, but such an effect does not seem to be a universal property of tumor promoters. This research was supported by National Institutes of Health Grant CA 29323.  相似文献   

6.
While heparin has been shown to eliminate cell aggregation in suspension adaptations of insect and HEK293 cells for virus-based cell cultures, the role of heparin in long period serum-free suspension adaptation of the anchorage-dependent Chinese hamster ovary (CHO) cell lines remains inconclusive. In this paper, we explore the potential application of heparin in suspension adaptation of CHO cell line which produces an anti-human chimeric antibody cHAb18. Heparin showed a concentration-dependent inhibition of CHO–TS28 cell-to-cell adhesion, with a significant inhibitory effect occurring when the concentration exceeded 250 μg/ml (P < 0.001). Heparin also exhibited a cell aggregation elimination role at all concentrations (P < 0.001). Furthermore, heparin promoted cell growth and antibody secretion, with the highest cell density ((99.83 ± 12.21) × 104 cells/ml, P = 0.034) and maximum antibody yield ((9.46 ± 0.94) mg/l, P < 0.001) both occurring at 250 μg/ml heparin. When agitated, cell aggregates were effectively dispersed by 250 μg/ml heparin and a single-cell suspension culture process was promoted. In suspension adapted CHO–TS28 cells, cell growth rates and specific antibody productivity were maintained; while antigen-binding activity improved slightly. Together, our results show that heparin may promote suspension adaptation of anchorage-depended CHO cells by resisting cell aggregation without reducing cell growth, antibody secretion, and antigen-binding activity.  相似文献   

7.
The occurrence of a Crabtree effect in HeLa cells was detected. Some properties of pyruvate kinase (PK) were also evaluated. Hexose phosphate, triose-phosphate and phosphoenolpyruvate (PEP) significantly decreased the oxygen consumption of digitonin-permeabilized HeLa cells, which were oxidizing succinate. The Crabtree effect promoted by PEP was concentration-dependent and was lowered by an increase of ADP concentration, suggesting a participation of PK. The dependence of fructose-1,6-bisphosphate (FDP) by HeLa cell PK was observed. The PK of HeLa cells was inhibited by L -alanine only in the absence of FDP, while in the presence of the metabolite, an increase in the activity was observed. PK was also inhibited in the presence of L -histidine and L -leucine, while L -serine promoted activation. L -Cysteine and L -phenylalanine also inhibited the PK of HeLa cells. This, together with the sigmoidal character in relation to substrate concentration, suggests the presence of the K-type of PK in HeLa cells. © 1998 John Wiley & Sons, Ltd.  相似文献   

8.
Recent molecular cloning studies have suggested the presence of at least two β4Gal transferase genes (β4GalT-V and β4GalT-VI) that may encode lactosylceramide synthase but whether they are functional in vivo and whether they mediate growth factor induced phenotypic change such as cell proliferation is not known. Our previous studies lead to the suggestion that various risk factors in atherosclerosis such as oxidized LDL, shear stress, nicotine, tumor necrosis factor-α converge upon LacCer synthase to induce critical phenotypic changes such as cell proliferation and cell adhesion [1]. However, whether platelet-derived growth factor also recruits LacCer synthase in mediating cell proliferation is not known. Here we have employed a Chinese hamster ovary mutant cell line Pro5Lec20 to determine whether this enzyme physiologically functions to mediate cell proliferation. We show that PDGF stimulates the activity of UDP galactose:glucosylceramide, β1,4galactosyltransferase. The activity of LacCer synthase increased about 2.5 fold within 2.5–5 min of incubation with PDGF in both wild type and Pro5Lec20 cells. Concomitantly, there was an increase in the generation of superoxide radicals, p44MAPK phosphorylation and cell proliferation in CHO cells. D-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP), a potent inhibitor of GlcCer synthase/LacCer synthase impaired PDGF mediated induction of LacCer synthase activity, superoxide generation, p44 MAPK activation and cell proliferation in Pro5Lec20 cells. PDGF-induced superoxide generation was also mitigated by the use of diphenylene iodonium; an inhibitor of NADPH oxidase activity that is required for superoxide generation. This inhibition was bypassed by the addition of lactosylceramide. Thus, β4GalT-V gene produces a bona fide LacCer synthase that can function in vivo to generate LacCer. Moreover, this enzyme alone can mediate PDGF induced activation of a signal transduction cascade involving superoxide generation, p44MAPK activation, phosphorylation of Akt and cell proliferation.  相似文献   

9.
Allium hirtifolim (Persian Shallot) belongs to Allium genus (Alliaceae family). We investigated the in vitro effects of chloroformic extract of A. hirtifolium and its Allicin on the proliferation of HeLa (cervical cancer), MCF7 (human, caucasion, breast, adenocarcinoma) and L929 (mouse, C3H/An, connective) cell lines. Our results showed that components of A. hirtifolium might inhibit proliferation of tumor cell lines. This inhibition in HeLa and MCF-7 cells was dose-dependent. The presence of Allicin was evaluated by TLC method in bulbs and the extract of A. hirtifolium was analyzed by HPLC. MTT test was performed 24, 48 and 72 h after cell culture. A significant decrease in cell lines was observed in HeLa and MCF-7 as compared to L929 cell lines. DNA fragmentation analysis revealed a large number of apoptotic cells in treated HeLa and MCF-7 cell groups, but no effects in L929 cells. Therefore A. hirtifolium might be a candidate for tumor suppression.  相似文献   

10.
Background  Superficial bladder cancers are usually managed with transurethral resection followed by the intravesical administration of Bacillus Calmette-Guerin which requires major histocompatibility complex (MHC) class I expression on cancer cells. Since cancer cells often loose MHC expression, a novel immunotherapy such as MHC-unrestricted γδ T cell therapy is desired. Objective  To clarify the relationship between the expression of MHC class I and clinicopathological features in bladder cancer patients, and investigate the effects of the administration of intravesical γδ T cells on bladder cancer. Methods  Samples from 123 patients who had undergone either transurethral resection or radical cystectomies were examined for MHC expression and the relationship between this and the clinicopathological features was analyzed statistically. The in vitro and in vivo effects of γδ T cells expanded by zoledronic acid (ZOL) against several types of cancer cell line and an orthotopic bladder cancer murine model which was pretreated with ZOL were investigated. Results  MHC-diminished superficial bladder cancer was significantly more progressive than MHC-conservative bladder cancer (= 0.047). In addition, there was a significant association between diminished MHC expression and poor disease free survival (= 0.041) and overall survival (= 0.018) after radical cystectomy. In vitro, all of the cell lines pretreated with 5-μM ZOL showed a marked increase in sensitivity to lysis by γδ T cells. Moreover, intravesical administration of γδ T cells with 5-μM ZOL significantly demonstrated antitumor activity against bladder cancer cells in the orthotopic murine model (< 0.001), resulting in prolonged survival. Conclusion  The present murine model provides a potentially interesting option to develop immunotherapy using γδ T cells for bladder cancer in human. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. T. Yuasa and K. Sato contributed equally to the study.  相似文献   

11.
Hypertonicity-induced cation channels (HICCs) are an effective mechanism of regulatory volume increase (RVI), which is a restoration process of cell volume after osmotic cell shrinkage, in HeLa cells. Since a reduction of cell size is a hallmark of programmed cell death, we tested whether a blockage of HICCs sensitizes HeLa cells to shrinkage-induced apoptosis by using proliferation assays, apoptosis assays, and patch-clamp recordings. Under control conditions, increasing osmolality up to 600 mosmol/kg-H2O had no detectable effect on either cell proliferation or apoptosis. With HICCs blocked by flufenamate and Gd3+, however, a significant reduction of proliferation and a stimulation of apoptosis were observed. Both effects exhibited virtually identical sensitivity profiles to osmotic stress as well as to flufenamate and Gd3+. Moreover, the observed concentration dependency of flufenamate and Gd3+ on proliferation and apoptosis was in excellent accordance with that on HICC inhibition. These results suggest that persistent cell shrinkage may function as a specific signal in the induction of apoptosis. In addition, they provide further evidence for the interplay of proliferation vs. apoptosis and the actual role that mechanisms of cell volume regulation do play in these processes.  相似文献   

12.
Polyamines are important for cell growth and proliferation and they are formed from arginine and ornithine via arginase and ornithine decarboxylase (ODC). Arginine may alternatively be metabolised to NO via NO synthase. Here we study if vascular smooth muscle cell proliferation can be reversed by polyamine synthesis inhibitors and investigate their mechanism of action. Cell proliferation was assessed in cultured vascular smooth muscle A7r5 cells and in endothelium-denuded rat arterial rings by measuring [3H]-thymidine incorporation and by cell counting. Cell cycle phase distribution was determined by flow cytometry and polyamines by HPLC. Protein expression was determined by Western blotting. The ODC inhibitor DFMO (1–10 mM) reduced polyamine concentration and attenuated proliferation in A7r5 cells and rat tail artery. DFMO accumulated cells in S phase of the cell cycle and reduced cyclin A expression. DFMO had no effect on cell viability and apoptosis as assessed by fluorescence microscopy. Polyamine concentration and cellular proliferation were not affected by the arginase inhibitor NOHA (100–200 μM) and the NO synthase inhibitor l-NAME (100 μM). Lack of effect of NOHA was reflected by absence of arginase expression. Polyamine synthesis inhibition attenuates vascular smooth muscle cell proliferation by reducing DNA synthesis and accumulation of cells in S phase, and may be a useful approach to prevent vascular smooth muscle cell proliferation in cardiovascular diseases.  相似文献   

13.
The role of the TSPO in metabolism of human osteoblasts is unknown. We hypothesized that human osteoblast metabolism may be modulated by the TSPO. Therefore we evaluated the presence of TSPO in human osteoblast-like cells and the effect of its synthetic ligand PK 11195 on these cells. The presence of TSPO was determined by [3H]PK 11195 binding using Scatchard analysis: Bmax 7682 fmol/mg, Kd 9.24 nM. PK 11195 did not affect significantly cell proliferation, cell death, cellular viability, maturation, [18F]-FDG incorporation and hexokinase 2 gene expression or protein levels. PK 11195 exerted a suppressive effect on VDAC1 and caused an increase in TSPO gene expression or protein levels. In parallel there was an increase in mitochondrial mass, mitochondrial ATP content and a reduction in ΔΨm collapse. Thus, it appears that PK11195 (10−5 M) stimulates mitochondrial activity in human osteoblast-like cells without affecting glycolytic activity and cell death.  相似文献   

14.
Endosymbiosis is an intriguing plant–animal interaction in the dinoflagellate–Cnidaria association. Throughout the life span of the majority of corals, the dinoflagellate Symbiodinium sp. is a common symbiont residing inside host gastrodermal cells. The mechanism of regulating the cell proliferation of host cells and their intracellular symbionts is critical for a stable endosymbiotic association. In the present study, the cell cycle of a cultured Symbiodinium sp. (clade B) isolated from the hermatypic coral Euphyllia glabrescens was investigated using flow cytometry. The results showed that the external light–dark (L:D) stimulation played a pivotal role in regulating the cell cycle process. The sequential light (40–100 μmol m−2 s−1 ~ 12 h) followed by dark (0 μmol m−2 s−1 ~ 12 h) treatment entrained a single cell cycle from the G1 to the S phase, and then to the G2/M phase, within 24 h. Blue light (~450 nm) alone mimicked regular white light, while lights of wavelengths in the red and infrared area of the spectrum had little or no effect in entraining the cell cycle. This diel pattern of the cell cycle was consistent with changes in cell motility, morphology, and photosynthetic efficiency (F v /F m ). Light treatment drove cells to enter the growing/DNA synthesis stage (i.e., G1 to S to G2/M), accompanied by increasing motility and photosynthetic efficiency. Inhibition of photosynthesis by 3-(3, 4-dichlorophenyl)-1, 1-dimethyl-urea (DCMU) treatment blocked the cell proliferation process. Dark treatment was required for the mitotic division stage, where cells return from G2/M to G1. Two different pools of adenylyl cyclase (AC) activities were shown to be involved in the growing/DNA synthesis and mitotic division states, respectively. Communicated by Biology Editor Dr Michael Lesser  相似文献   

15.
Proliferation and cellular aggregation are both crucial features for survival and self-renewal of primordial germ cells (PGCs). Adhesive proteins play pivotal roles in cell–cell adhesion and signal exchanges under the influence of cytokines, growth factors and bioactive metabolites such as retinoic acid (RA). In this study, proliferation-promoting effect of RA on chicken PGCs was investigated by revealing changes in adhesive proteins E-cadherin and α/β catenins. PGCs were isolated from the genital ridge of 4-day-old chicken embryos and cultured on embryonic fibroblast feeder. RA (10−7–10−5 M) increased PGCs aggregation and mRNA expression of E-cadherin and α/β-catenins. Furthermore, E-cadherin and β-catenin protein expression levels were increased by RA treatment. However, RA-elicited effect was significantly attenuated by a PKC inhibitor H7. In addition, the number and area of PGC colonies were increased by RA treatment at 10−7–10−5 M. Again, this increase was reduced by combined treatment of H7. The proliferating effect of RA on PGCs was further confirmed by increased mRNA expression of cyclins, CCND1 and CCNE1, and cyclin-dependent kinases 6 and 2, which are critical for G1–S progression in cell cycle. Moreover, flow cytometry analysis confirmed that RA-treated PGC populations displayed a significant increase in the proportion of S and G2 phase cells. Likewise, this stimulating action was hindered by combined H7 treatment. These results indicate that RA, as a bioactive metabolite of vitamin A, may promote PGC proliferation and increase intercellular aggregation of PGCs via E-cadherin and α/β-catenins expression through the PKC signaling pathway.  相似文献   

16.
The freshwater microalga Chlorella vulgaris was grown heterotrophically in fed-batch 50–600-L fermenters at 36°C, on aerated and mixed nutrient solution with urea as a nitrogen and glucose as a carbon and energy source. Cell density increased from the initial value 6.25 to 117.18 g DW L−1 in 32 h in the fermenter 50 L at a mean growth rate 3.52 g DW L−1 h−1. The DW increase in the fermenter 200 L was from 7.25 to 94.82 g DW L−1 in 26.5 h at a mean growth rate 3.37 g DW L−1 h−1. Mean specific growth rate μ was about 0.1 h−1 in the both fermenters, if nutrients and oxygen were adequately supplied. The DW increase in the fermenter 600 L was from 0.8 to 81.6 g DW L−1 in 66.5 h at a mean growth rate 1.22 g DW L−1 h−1 and μ = 0.07 h−1. A limitation of the cell growth rate in 600 L fermenter caused by a low dissolved oxygen concentration above cell densities higher than 10 g DW L−1) occurred. Specific growth rate decreased approximately linearly with increasing glucose concentration (25–80 g glucose L−1) at the beginning of cultivation and decreased with the time of cultivation. The cell yield was 0.55–0.69 g DW (g glucose)−1. The content of proteins, β-carotene, and chlorophylls in the cells steadily increased and starch content decreased, by keeping aerated and mixed culture another 12 h in fermenter after the cell growth was stopped due to glucose deficiency.  相似文献   

17.
The production of recombinant glycoproteins in Dictyostelium discoideum by conventional cell culture methods was limited by low cell density as well as low growth rate. In this work, cotton towel with a good adsorption capability for D. discoideum cells was used as the immobilization matrix in an external fibrous bed bioreactor (FBB) system. With batch cultures in the FBB, the concentration of immobilized cells in the cotton fiber carrier increased to 1.37 × 108 cells per milliliter after 110-h cultivation, which was about tenfold higher than the maximal cell density in the conventional free-cell culture. Correspondingly, a high concentration of soluble human Fas ligand (hFasL; 173.7 μg l−1) was achieved with a high productivity (23 μg l−1 h−1). The FBB system also maintained a high density of viable cells for hFasL production during repeated-batch cultures, achieving a productivity of 9∼10 μg l−1 h−1 in all three batches studied during 15 days. The repeated-batch culture using immobilized cells of D. discoideum in the FBB system thus provides a good method for long-term and high-level production of hFasL.  相似文献   

18.
The red-tide dinoflagellate Protoceratium reticulatum is shown to be protected against turbulence-associated damage by the use of the additives Pluronic F68 (PF68) and carboxymethyl cellulose (CMC) in the culture medium. Relative to agitated controls, these additives had a dose-dependent protective effect at concentrations of up to 0.4 and 0.5 g L−1 for CMC and F68, respectively. In static cultures, these additives inhibited growth directly or indirectly at a concentration of >0.5 g L−1. Compared to CMC, PF68 was a better protectant overall. Cell-specific production of yessotoxins was enhanced under elevated shear stress regimens so long as the turbulence intensity was insufficient to damage the cells outright. Shear-induced production of reactive oxygen species and direct effects of turbulence on the cell cycle contributed to the observed shear effects.  相似文献   

19.
Immunotherapy with the EGFR-specific mAb cetuximab is clinically effective in 10–20% of patients with squamous cell carcinoma of the head and neck (SCCHN). Little information is available about the mechanism(s) underlying patients’ differential clinical response to cetuximab-based immunotherapy, although this information may contribute to optimizing the design of cetuximab-based immunotherapy. Our understanding of these mechanisms would benefit from the characterization of the variables which influence the extent of cell dependent-lysis of SCCHN cells incubated with cetuximab in vitro. Therefore, in this study we have investigated the role of FcγR IIIa-158 genotype expressed by effector NK cells, cetuximab concentration, and EGFR expression level by SCCHN cells in the extent of their in vitro lysis and in the degree of NK cell activation. PBMC or purified CD56+ NK cells genotyped at IIIa codon 158 and SCCHN cell lines expressing different levels of EGFR have been used as effectors and targets, respectively, in antibody dependent cellular cytotoxicity (ADCC) assays. Furthermore, supernatants from ADCC assays were analyzed for cytokine and chemokine levels using multiplexed ELISA. We found that the extent of lysis of SCCHN cells was influenced by the EGFR expression level, cetuximab concentration, and FcγR polymorphism. Effector cells expressing the FcγR IIIa-158 VV allele were significantly (P < 0.0001) more effective than those expressing FcγR IIIa VF and VV alleles in mediating lysis of SCCHN cells expressed higher levels of the activation markers CD69 and CD107a, and secreted significantly (P < 0.05) larger amounts of inflammatory cytokines and chemokines. IL-2 or IL-15 treatment increased cetuximab-mediated ADCC by poor binding FcγR IIIa 158 FF expressing NK cells. The importance of the FcγR IIIa-158 polymorphism in cytotoxicity of SCCHN cells by NK cells supports a potential role for immune activation and may explain patient variability of cetuximab mediated clinical responses. Cellular and secreted immune profiles and FcγR genotypes from patients’ lymphocytes may provide clinically useful biomarkers of immune activation in cetuximab treated patients. An erratum to this article can be found at  相似文献   

20.
Recombinant Escherichia coli whole cells harboring Bacillus licheniformis l-arabinose isomerase (BLAI) were immobilized with alginate. The operational conditions for immobilization were optimized with response surface methodology. Optimal alginate concentration, Ca2+ concentration, and cell mass loading were 1.8% (w/v), 0.1 M, and 44.5 g L−1, respectively. The interactions between Ca2+ concentration, alginate concentration, and initial cell mass were significant. After immobilization of BLAI, cross-linking with 0.1% glutaraldehyde significantly reduced cell leakage. The half-life of immobilized whole cells was 150 days, which was 50-fold longer than that of free cells. In seven repeated batches for l-ribulose production, the productivity was as high as 56.7 g L−1 h−1 at 400 g L−1 substrate concentration. The immobilized cells retained 89% of the initial yield after 33 days of reaction. Immobilization of whole cells harboring BLAI, therefore, makes a suitable biocatalyst for the production of l-ribulose, particularly because of its high stability and low cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号