首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Serum phosphate is an independent predictor of cardiovascular morbidity and mortality in patients with chronic kidney disease and the general population. There is accumulating evidence that phosphate promotes arterial stiffening through structural vascular alterations such as medial calcification, which are already apparent in the early stages of chronic kidney disease. AIM: To determine the effects of phosphate binding with sevelamer carbonate on left ventricular mass and function together with arterial stiffness in patients with stage 3 chronic kidney disease. METHODS/DESIGN: A single-centre, prospective, randomised, double-blind, placebo-controlled trial of 120 subjects with stage 3 chronic kidney disease recruited from University Hospitals Birmingham NHS Foundation Trust. Baseline investigations include transthoracic echocardiography and cardiac magnetic resonance imaging to assess ventricular mass, volumes and function, applanation tonometry to determine pulse wave velocity and pulse wave analysis as surrogate measures of arterial stiffness and dual energy x-ray absorptiometry scanning to determine bone density. During an open-label run in phase, subjects will receive 1600 mg sevelamer carbonate with meals for four weeks. They will then be randomised to either continue sevelamer carbonate or receive an identical placebo (60 subjects per arm) for the remaining 36 weeks. Four-weekly monitoring of serum electrolytes and bone biochemistry will be performed. All baseline investigations will be repeated at the end of the treatment period. The primary endpoint of the study is a reduction in left ventricular mass after 40 weeks of treatment. Secondary endpoints are: i) change in aortic compliance; ii) change in arterial stiffness; iii) change in arterial elastance; iv) change in left ventricular systolic and diastolic elastance; v) change in left ventricular function; and vi) change in bone density. TRIAL REGISTRATION: This trial is registered at ClinicalTrials.gov: NCT00806481 and Current Controlled Trials: ISRCTN35254279.  相似文献   

2.
The ventricular response to passive heat stress has predominantly been studied in the supine position. It is presently unclear how acute changes in venous return influence ventricular function during heat stress. To address this question, left ventricular (LV) systolic and diastolic function were studied in 17 healthy men (24.3 ± 4.0 yr; mean ± SD), using two-dimensional transthoracic echocardiography with Doppler ultrasound, during tilt-table positioning (supine, 30° head-up tilt, and 30° head-down tilt), under normothermic and passive heat stress (core temperature 0.8 ± 0.1°C above baseline) conditions. The supine heat stress LV volumetric and functional response was consistent with previous reports. Combining head-up tilt with heat stress reduced end-diastolic (25.2 ± 4.1%) and end-systolic (65.4 ± 10.5%) volume from baseline, whereas heart rate (37.7 ± 2.0%), ejection fraction (9.4 ± 2.4%), and LV elastance (37.7 ± 3.6%) increased, and stroke volume (-28.6 ± 9.4%) and early diastolic inflow (-17.5 ± 6.5%) and annular tissue (-35.6 ± 7.0%) velocities were reduced. Combining head-down tilt with heat stress restored end-diastolic volume, whereas LV elastance (16.8 ± 3.2%), ejection fraction (7.2 ± 2.1%), and systolic annular tissue velocities (22.4 ± 5.0%) remained elevated above baseline, and end-systolic volume was reduced (-15.3 ± 3.9%). Stroke volume and the early and late diastolic inflow and annular tissue velocities were unchanged from baseline. This investigation extends previous work by demonstrating increased LV systolic function with heat stress, under varied levels of venous return, and highlights the preload dependency of early diastolic function during passive heat stress.  相似文献   

3.
A model of the ejecting left ventricle is developed in which ventricular elastance as a function of time is optimized with respect to a simple performance index selected on an energetic basis. The model correctly predicts a number of well known experimental findings concerning the effects of preload and afterload conditions and varying system parameters on left ventricular pressure and elastance waveforms and on the ejection period. The results characterize ventricular systolic elastance as dependent on both end-diastolic volume and mean aortic pressure.  相似文献   

4.
Acute elevation of circulating lipids, such as the postprandial state, contributes to increased cardiovascular risk. However, the effect of acutely elevated triglycerides on arterial and left ventricular function is not completely understood. We aimed to assess whether an acute increase in triglycerides affects ventricular-vascular interaction. Fifteen healthy men (age, 49 ± 8 yr) underwent blinded, randomized infusion of saline and intravenous fat emulsion to acutely raise plasma triglycerides. All subjects underwent both randomization trials, in random order on two separate days. Ventricular-vascular interaction measures were recorded by tonometry (central blood pressure) and echocardiography (left ventricular volumes, strain, and strain rate) at baseline and after 1 h infusion. Net ventricular-vascular interaction was defined by the effective arterial elastance (E(A))-to-left ventricular end-systolic elastance (E(LV)) ratio (E(A)/E(LV)). When compared with saline, the infusion of intravenous fat emulsion increased triglycerides and free fatty acids (ΔP < 0.001 for both) and improved left ventricular contractility (ΔE(LV), end-systolic volume and strain rate; P < 0.05 for all). However, arterial function was unchanged (ΔE(A), brachial and central blood pressure; P > 0.05 for all). Overall, E(A)/E(LV) was decreased by an infusion of intravenous fat emulsion (P = 0.004) but not saline (P > 0.05, P = 0.001 for Δ between trials). We conclude that intravenous fat emulsion and acute elevation of blood lipids (including triglycerides and free fatty acids) alter ventricular-vascular interaction by increasing left ventricular contractility without affecting arterial load. These findings may have implications for cardiovascular responses to parenteral nutrition.  相似文献   

5.
In the recently published clinical study [Use of Nitroprusside in Left Ventricular Dysfunction and Obstructive Aortic Valve Disease (UNLOAD)], sodium nitroprusside (SNP) improved cardiac function in patients with severe aortic stenosis (AS) and left ventricular (LV) systolic dysfunction. We explored the possible mechanisms of these findings using a series of numerical simulations. A closed-loop lumped parameters model that consists of 24 differential equations relating pressure and flow throughout the circulation was used to analyze the effects of varying hemodynamic conditions in AS. Hemodynamic data from UNLOAD study subjects were used to construct the initial simulation. Systemic vascular resistance (SVR), heart rate, and aortic valve area were directly entered into the model while end-systolic and end-diastolic pressure-volume (P-V) relationships were adjusted using previously published data to match modeled and observed end-systolic and end-diastolic pressures and volumes. Initial simulation of SNP treatment by a reduction of SVR was not adequate. To obtain realistic model hemodynamics that reliably reproduce SNP treatment effects, we performed a series of simulations while simultaneously changing end-systolic elastance (E(es)), end-systolic volume at zero pressure (V(0)), and diastolic P-V shift. Our data indicate that either an E(es) increase or V(0) decrease is necessary to obtain realistic model hemodynamics. In five patients, we corroborated our findings by using the model to duplicate individual P-V loops obtained before and during SNP treatment. In conclusion, using a numerical model, we identified ventricular function parameters that are responsible for improved hemodynamics during SNP infusion in AS with LV dysfunction.  相似文献   

6.
OBJECTIVES: To investigate possible cardiac morphofunctional alterations observed in 26 Turner's syndrome (TS) patients on prolonged high-dose growth hormone (GH) therapy. STUDY DESIGN: We examined 26 TS subjects treated with rhGH (1 U/kg/week) for a mean period of 4.9 years (range 1-7.8) and 37 age-, weight- and height-matched healthy girls. Left ventricular volume, mass, systolic function, cardiac index, systemic vascular resistance and diastolic function were evaluated by two-dimensional and Doppler echocardiography. RESULTS: Heart rate and systolic blood pressure (BP) were higher in TS patients than in controls, while diastolic BP was lower. Left ventricular volumes, ejection fraction, mass index, M/V ratio and cardiac index did not differ significantly; systemic vascular resistance was slightly decreased. Left ventricular fractional shortening and mean velocity of circumferential shortening were slightly increased while end-systolic meridional stress was decreased in TS. Contractile state was normal in TS. Diastolic function assessment showed a shortening of isovolumetric relaxation and diastolic filling times with an increased atrial contribution and a normal pulmonary venous flow. CONCLUSION: Cardiac morphology in TS patients on GH therapy is similar to controls. The observed changes in left ventricular systolic and diastolic function should be interpreted as an adaptation to the higher heart rate and reduced peripheral vascular resistance induced by GH therapy.  相似文献   

7.
To determine the impact of greater infarct transmurality on changes in left ventricular remodeling and function after acute anterior myocardial infarction, serial topographic and functional parameters (two-dimensional echocardiograms) and hemodynamics over 6 weeks, and postmortem topography (planimetry) at 6 weeks, were measured in chronically instrumented dogs randomized to standard coronary artery ligation (group 1) or a modified lower ligation plus collateral obliteration to decrease collateral inflow and increase transmurality (group 2). At 6 weeks, postmortem scar size and collagen were similar in the two groups, but group 2 had greater transmurality associated with more necrosis relative to area at risk, Q waves, infarct expansion, thinning, regional bulging, and cavity dilatation. Over the 6 weeks, group 2 showed more early expansion, late thinning and regional bulging in the short axis, larger diastolic and systolic volumes, and more apical aneurysmal bulging in the long-axis, reflecting more topographic deterioration. More important, group 2 showed greater regional and global left ventricular dysfunction over 6 weeks, lower ejection fraction at 2 days with further decrease over 6 weeks, and more left ventricular thrombus, ventricular arrhythmias, and deaths. In addition, transmurality correlated with the severity of remodeling and dysfunction. The findings indicate that transmurality is a major determinant of remodeling and left ventricular dysfunction during healing after anterior infarction.  相似文献   

8.
We previously showed that beta2-microglobulin knockout mice treated with anti-asialoGM1 (beta2M/alphaAsGM1 mice) exhibit less hypothermia, reduced production of proinflammatory cytokines, less metabolic acidosis, and improved survival after cecal ligation and puncture (CLP) compared with wild-type mice. The present study was designed to assess hemodynamics and left ventricular contractility at 18 h after CLP. Arterial pressure was measured by carotid artery cannulation, and left ventricular pressure-volume loops were obtained by insertion of a 1.4-F conductance catheter into the left ventricle. Heart rate, stroke volume, and cardiac output were not significantly different between wild-type and beta2M/alphaAsGM1 mice after CLP. However, beta2M/alphaAsGM1 mice exhibited improved mean arterial pressure and systemic vascular resistance compared with wild-type mice. Myocardial function was also better preserved in beta2M/alphaAsGM1 mice as indicated by improved left ventricular pressure development over time, time-varying maximum elastance, endsystolic pressure-volume relationship, and preload recruitable stroke work. Overall, this study shows that cardiovascular collapse characterized by hypotension, myocardial depression, and low systemic vascular resistance occurs after CLP in wild-type mice. However, beta2M/alphaAsGM1 mice exhibit improved hemodynamics and cardiac contractile function after CLP that may account, in part, for our previously observed survival benefit.  相似文献   

9.
A new formula is proposed to calculate left ventricular ejection volume. It has been originated directly from Yeh equation, introducing two important factors: 1) left ventricular and diastolic diameter 2) ejection time adjusted according to heart rate. This new formula prove to give satisfactory results both as to stroke volume and cardiac output, thus allowing its possible clinical application.  相似文献   

10.
目的:探讨α-酮酸片(α-KA)对维持性血液透析(MHD)患者心脏功能和结构的影响。方法:观察30例α-酮酸片(商品名:开同)治疗组维持性血液透析患者与30例对照组患者,分别在治疗前及治疗6个月后超声心动图测定心脏结构指标:左房收缩末期内径(LADs)、左室舒张末期内径(LVEDd)、室间隔舒张末期厚度(IVSTd)、左室后壁舒张末期厚度(LVPWTd),左房内径指数(LAI)、左心室心肌重量指数(LVMI)、相对室壁厚度(RWT),心脏功能指标:左室射血分数(LVEF),左室短轴缩短率(FS),二尖瓣口舒张早期和晚期最大血流速度比(E/A)各项指标等检测,比较治疗前后各指标变化。结果:治疗组MHD患者心脏结构指标:左房收缩末期内径(LADs)、左室舒张末期内径(LVEDd)、室间隔舒张末期厚度(IVSTd)、左室后壁舒张末期厚度(LVPWTd),左房内径指数(LAI)、左心室心肌重量指数(LVMI)值均明显低于对照组,二者差异有显著性(P〈0.05),两组相对室壁厚度(RWT)相比没有明显的差异(P〉0.05)。心脏功能指标:左室射血分数(LVEF),左室短轴缩短率(FS),二尖瓣口舒张早期和晚期最大血流速度比(E/A)值较对照组明显增高(P〈0.05),有统计学意义。结论:α-酮酸片可以改善MHD患者的心脏结构和功能,其对MHD患者心血管并发症的预防和治疗有一定临床指导意义。  相似文献   

11.

Background  

Ventricular function has conventionally been characterized using indexes of systolic (contractile) or diastolic (relaxation/stiffness) function. Systolic indexes include maximum elastance or equivalently the end-systolic pressure volume relation and left ventricular ejection fraction. Diastolic indexes include the time constant of isovolumic relaxation - and the end-diastolic pressure-volume relation. Conceptualization of ventricular contraction/relaxation coupling presents a challenge when mechanical events of the cardiac cycle are depicted in conventional pressure, P, or volume, V, terms. Additional conceptual difficulty arises when ventricular/vascular coupling is considered using P, V variables.  相似文献   

12.

Background

Attenuated increases in ventricular stroke volume during exercise are common in type 2 diabetes and contribute to reduced aerobic capacity. The purpose of this study was to determine whether impaired ventricular filling or reduced systolic ejection were responsible for the attenuated stroke volume reserve in people with uncomplicated type 2 diabetes.

Methods

Peak aerobic capacity and total blood volume were measured in 17 people with diabetes and 16 non-diabetic controls with no evidence of cardiovascular disease. Left ventricular volumes and other systolic and diastolic functional parameters were measured with echocardiography at rest and during semi-recumbent cycle ergometry at 40 and 60% of maximal aerobic power and compared between groups.

Results

People with diabetes had reduced peak aerobic capacity and heart rate reserve, and worked at lower workloads than non-diabetic controls. Cardiac output, stroke volume and ejection fraction were not different at rest, but increased less in people with diabetes during exercise. Left ventricular end systolic volume was not different between groups in any condition but end diastolic volume, although not different at rest, was smaller in people with diabetes during exercise. Total blood volume was not different between the groups, and was only moderately associated with left ventricular volumes.

Conclusions

People with type 2 diabetes exhibit an attenuated increase in stroke volume during exercise attributed to an inability to maintain/increase left ventricular filling volumes at higher heart rates. This study is the first to determine the role of filling in the blunted cardiac reserve in adults with type 2 diabetes.
  相似文献   

13.
Stanford type A aortic dissection often rapidly leads to death from aortic rupture. We considered the possibility of introducing a passive counterpulsating damper into the dissected aorta in order to limit the physical stress associated with ventricular ejection and increase the diastolic aorto-ventricular pressure gradient. We conceived a damping device comprising an intravascular balloon connected to an adjustable external reservoir to regulate the air pressure inside the balloon, and performed a simulation study using a mechanical model of the cardiovascular system, mimicking aortic dissection. When the balloon was completely deflated, the behavior of the aortic pressure signal was typical of low-compliance aortic dissection, as characterized by an augmented maximum systolic value, accentuated diastolic decay, and a very low end-diastolic value. Balloon inflation (at incremental steps to 90 mmHg) progressively restored the aorto-ventricular pressure gradient and reduced peak systolic pressure values, leading to progressive improvements in the characteristics of the aortic pressure curve in terms of reduction in the maximum systolic value and slower diastolic decay. The proposed mechanism might exert beneficial effects at two levels: (1) directly, by reducing mechanical stress on the arterial wall; (2) indirectly, by allowing safer use of pharmaceutical agents (beta-blockers etc.). In vivo animal simulation studies are warranted to verify the effects of the device and optimize balloon shape and volume in a realistic pathophysiological setting.  相似文献   

14.
Optimal ventriculoaortic coupling includes tuning of elastic properties. The ratio of effective arterial elastance and left ventricular endsystolic elastance is often taken as a measure for mechanical and energetical efficiency. The present study determined the time course of ventricular and aortic volume elasticity (VE = dp/dV) throughout a complete heartbeat. This was achieved by using changes of eigenfrequency of two catheter-transducer systems under closed chest conditions in rabbits. Short-term VE modulation was studied by a baroreflex response, as induced by pressure changes applied to the carotid sinus. Long-term changes were studied in atherosclerotic rabbits (12 wk of high-cholesterol feeding). The time course and mean values of ventricular and aortic VE were changed by the baroreflex stimulus. Cholesterol feeding diminished the response. The degree of ventriculoaortic coupling, as quantified by VE(Aorta)/VE(Ventricle) ratio, varied during a single ejection period. The large span allows either maximal energetical efficiency or maximal stroke work. Although normal rabbits adjusted their ventriculoaortic coupling during baroreflex input, the cholesterol-fed rabbits failed to do so.  相似文献   

15.
In patients with aortic stenosis, the left ventricular afterload is determined by the degree of valvular obstruction and the systemic arterial system. We developed an explicit mathematical model formulated with a limited number of independent parameters that describes the interaction among the left ventricle, an aortic stenosis, and the arterial system. This ventricular-valvular-vascular (V(3)) model consists of the combination of the time-varying elastance model for the left ventricle, the instantaneous transvalvular pressure-flow relationship for the aortic valve, and the three-element windkessel representation of the vascular system. The objective of this study was to validate the V(3) model by using pressure-volume loop data obtained in six patients with severe aortic stenosis before and after aortic valve replacement. There was very good agreement between the estimated and the measured left ventricular and aortic pressure waveforms. The total relative error between estimated and measured pressures was on average (standard deviation) 7.5% (SD 2.3) and the equation of the corresponding regression line was y = 0.99x - 2.36 with a coefficient of determination r(2) = 0.98. There was also very good agreement between estimated and measured stroke volumes (y = 1.03x + 2.2, r(2) = 0.96, SEE = 2.8 ml). Hence, this mathematical V(3) model can be used to describe the hemodynamic interaction among the left ventricle, the aortic valve, and the systemic arterial system.  相似文献   

16.

Background

Mathematical modeling can be employed to overcome the practical difficulty of isolating the mechanisms responsible for clinical heart failure in the setting of normal left ventricular ejection fraction (HFNEF). In a human cardiovascular respiratory system (H-CRS) model we introduce three cases of left ventricular diastolic dysfunction (LVDD): (1) impaired left ventricular active relaxation (IR-type); (2) increased passive stiffness (restrictive or R-type); and (3) the combination of both (pseudo-normal or PN-type), to produce HFNEF. The effects of increasing systolic contractility are also considered. Model results showing ensuing heart failure and mechanisms involved are reported.

Methods

We employ our previously described H-CRS model with modified pulmonary compliances to better mimic normal pulmonary blood distribution. IR-type is modeled by changing the activation function of the left ventricle (LV), and R-type by increasing diastolic stiffness of the LV wall and septum. A 5th-order Cash-Karp Runge-Kutta numerical integration method solves the model differential equations.

Results

IR-type and R-type decrease LV stroke volume, cardiac output, ejection fraction (EF), and mean systemic arterial pressure. Heart rate, pulmonary pressures, pulmonary volumes, and pulmonary and systemic arterial-venous O2 and CO2 differences increase. IR-type decreases, but R-type increases the mitral E/A ratio. PN-type produces the well-described, pseudo-normal mitral inflow pattern. All three types of LVDD reduce right ventricular (RV) and LV EF, but the latter remains normal or near normal. Simulations show reduced EF is partly restored by an accompanying increase in systolic stiffness, a compensatory mechanism that may lead clinicians to miss the presence of HF if they only consider LVEF and other indices of LV function. Simulations using the H-CRS model indicate that changes in RV function might well be diagnostic. This study also highlights the importance of septal mechanics in LVDD.

Conclusion

The model demonstrates that abnormal LV diastolic performance alone can result in decreased LV and RV systolic performance, not previously appreciated, and contribute to the clinical syndrome of HF. Furthermore, alterations of RV diastolic performance are present and may be a hallmark of LV diastolic parameter changes that can be used for better clinical recognition of LV diastolic heart disease.  相似文献   

17.
Aldosterone has been implicated as one of the mediators of cardiovascular injury in various diseases. This study examines whether mineralocorticoid antagonism ameliorates or prevents the adverse cardiac effects of hypertension and aging. Male 22-wk-old spontaneously hypertensive rats (SHR) were divided into two groups, 15 rats in each. One group received no treatment; the other was given eplerenone ( approximately 100 mg.kg(-1).day(-1)). At the age of 54 wk, indexes of cardiovascular mass, systemic and regional hemodynamics, including coronary, left ventricular function, and myocardial collagen content, were determined in all rats. Hemodynamic studies were done in conscious rats. Arterial pressure was lowered only slightly in eplerenone-treated rats, and cardiac output and total peripheral resistance did not differ from control rats. Left and right ventricular and aortic mass indexes were unaffected by eplerenone; however, concentration of hydroxyproline in the right and left ventricle was decreased significantly (P < 0.05) by eplerenone. This was accompanied by an improvement in left ventricular diastolic function and coronary hemodynamics. In conclusion, long-term therapy with the mineralocorticoid receptor antagonist eplerenone ameliorated adverse cardiac effects of both hypertension and aging in SHR. Thus reduction in myocardial fibrosis, paralleled by improvements in left ventricular function and coronary hemodynamics, was observed in eplerenone-treated SHR.  相似文献   

18.
Recent studies have shown that the vasoactive peptide urotensin-II (U-II) exerts a wide range of action on the cardiovascular system of various species. In the present study, we determined the in vivo effects of U-II on basal hemodynamics and cardiac function in the anesthetized intact rat. Intravenous bolus injection of human U-II resulted in a dose-dependent decrease in mean arterial pressure and left ventricular systolic pressure. Cardiac contractility represented by +/-dP/dt was decreased after injection of U-II. However, there was no significant change in heart rate or diastolic pressure. The present study suggests that upregulation of myocardial U-II may contribute to impaired myocardial function in disease conditions such as congestive heart failure.  相似文献   

19.
Glaucoma is associated with an increased incidence of cardiovascular disease and risk factors. The aim of the study was to assess the left ventricular (LV) function in patients with pseudoexfoliation (PEX) glaucoma using doppler-echocardiographic examinations. Two-dimensional and pulsed Doppler echocardiography of transmitral flow was performed in 21 patients with (PEX) glaucoma and 24 controls. LV systolic contraction and ejection were assessed using the LV ejection fraction (EF) and fractional shortening (FS). LV diastolic filling assessed parameters were: early, fast diastolic filling (E wave), late diastolic filling (A wave), ratio E/A, velocity time integral E wave (VTIE) and A wave (VTIA), their ratio (VTIE /VTIA), pressure at the end of filling (LVEDP) and a pulmonary capillary wedge pressure (PCWP). A significant difference was found concerning LV filling flow parameters in E, E/A, VTIA and ratio VTIA/ VTIE. No significant difference was found in EF, FS, A, VTIE, LVEDP and PCWP tested parameters. Our study indicates the possibility of slightly impaired diastolic function of LV in patients with PEX glaucoma assessed by Doppler-echocardiographic examinations.  相似文献   

20.
The search for a parameter representing left ventricular relaxation from non-invasive and invasive diagnostic tools has been extensive, since heart failure (HF) with preserved ejection fraction (HF-pEF) is a global health problem. We explore here the feasibility using patient-specific cardiac computer modeling to capture diastolic parameters in patients suffering from different degrees of systolic HF. Fifty eight patients with idiopathic dilated cardiomyopathy have undergone thorough clinical evaluation, including cardiac magnetic resonance imaging (MRI), heart catheterization, echocardiography, and cardiac biomarker assessment. A previously-introduced framework for creating multi-scale patient-specific cardiac models has been applied on all these patients. Novel parameters, such as global stiffness factor and maximum left ventricular active stress, representing cardiac active and passive tissue properties have been computed for all patients. Invasive pressure measurements from heart catheterization were then used to evaluate ventricular relaxation using the time constant of isovolumic relaxation Tau (s). Parameters from heart catheterization and the multi-scale model have been evaluated and compared to patient clinical presentation. The model parameter global stiffness factor, representing diastolic passive tissue properties, is correlated signif-icantly across the patient population with s. This study shows that multi-modal cardiac models can successfully capture diastolic (dys) function, a prerequisite for future clinical trials on HF-pEF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号