首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Song Y  Azakami H  Shamima B  He J  Kato A 《FEBS letters》2002,512(1-3):213-217
Both glycosylated amyloidogenic lysozymes I55T/G49N and D66H/G49N were expressed in wild-type and calnexin-disrupted Saccharomyces cerevisiae. The secretion amounts of mutant I55T/G49N were almost similar in both wild-type and calnexin-disrupted S. cerevisiae. In contrast, the secretion of mutant D66H/G49N greatly increased in calnexin-disrupted S. cerevisiae, while the secretion was very low in the wild-type strain. In parallel, the induction level of the molecular chaperones BiP and PDI located in the endoplasmic reticulum (ER) was investigated when these glycosylated amyloidogenic lysozymes were expressed in wild-type and calnexin-disrupted S. cerevisiae. The mRNA concentrations of BiP and PDI were evidently increased when mutant lysozyme D66H/G49N was expressed in calnexin-disrupted S. cerevisiae, while they were not so increased when I55T/G49N mutant was expressed. This observation indicates that the conformation of mutant lysozyme D66H/G49N was less stable in the ER, thus leading to the higher-level expression of ER molecular chaperones via the unfolded protein response pathway. This suggests that glycosylated amyloidogenic lysozyme I55T/G49N may have a relatively stable conformation in the ER, thus releasing it from the quality control of calnexin compared with mutant lysozyme D66H/G49N.  相似文献   

2.
Disruption of the calnexin gene in Saccharomyces cerevisiae did not lead to gross effects on the levels of cell growth and secretion of wild-type hen egg white lysozymes (HEWL). To investigate the function of calnexin in relation to the secretion of glycoproteins, we expressed both stable and unstable mutant glycosylated lysozymes in calnexin-disrupted S. cerevisiae. The secreted amounts of stable mutant glycosylated lysozymes (G49N and S91T/G49N) were almost the same in both wild-type and calnexin-disrupted S. cerevisiae. In contrast, the secretion of unstable mutant glycosylated lysozymes (K13D/G49N, C76A/G49N, and D66H/G49N) greatly increased in calnexin-disrupted S. cerevisiae, although their secretion was very low in the wild-type strain. This indicates that calnexin may act in the quality control of glycoproteins. We further investigated the expression level of the mRNA of the molecular chaperones BiP and PDI, which play a major role in the protein folding process in the ER, when glycosylated lysozymes were expressed in wild-type and calnexin-disrupted S. cerevisiae. The mRNA concentrations of BiP and PDI were evidently increased when the glycosylated lysozymes were expressed in calnexin-disrupted S. cerevisiae. This observation indicates that BiP and PDI may be induced by the accumulation of unfolded glycosylated lysozymes due to the deletion of calnexin.  相似文献   

3.
On the basis of the molecular evolution of hen egg white, human, and turkey lysozymes, three replacements (Trp62 with Tyr, Asn37 with Gly, and Asp101 with Gly) were introduced into the active-site cleft of hen egg white lysozyme by site-directed mutagenesis. The replacement of Trp62 with Tyr led to enhanced bacteriolytic activity at pH 6.2 and a lower binding constant for chitotriose. The fluorescence spectral properties of this mutant hen egg white lysozyme were found to be similar to those of human lysozyme, which contains Tyr at position 62. The replacement of Asn37 with Gly had little effect on the enzymatic activity and binding constant for chitotriose. However, the combination of Asn37----Gly (N37G) replacement with Asp101----Gly (D101G) and Trp62----Tyr (W62Y) conversions enhanced bacteriolytic activity much more than each single mutation and restored hydrolytic activity toward glycol chitin. Consequently, the mutant lysozyme containing triple replacements (N37G, W62Y, and D101G) showed about 3-fold higher bacteriolytic activity than the wild-type hen lysozyme at pH 6.2, which is close to the optimum pH of the wild-type enzyme.  相似文献   

4.
Usui M  Shimizu T  Goto Y  Saito A  Kato A 《FEBS letters》2004,557(1-3):169-173
Various mutant lysozymes were constructed by genetic modification and secreted in yeast expression system to evaluate the changes in the antigenicity of hen egg lysozyme (HEL). Although Arg68, the most critical residue to antigenicity of HEL, was substituted with Gln, the binding of monoclonal antibodies (mAbs) with the mutant lysozyme did not critically reduce, remaining 60% of the binding with mAb. In contrast, glycosylated mutant lysozyme G49N whose glycine was substituted with asparagine dramatically reduced the binding with mAb. The oligomannosyl type of G49N lysozyme reduced binding with mAb to one-fifth, while the polymannosyl type of G49N lysozyme completely diminished the binding with mAb. This suggests that the site-specific glycosylation of lysozyme in the interfacial region of lysozyme-antibody complex is more effective to reduce the antigenicity than the mutation of single amino acid substitution in the interfacial region.  相似文献   

5.
Functional properties of glycosylated lysozyme secreted in Pichia pastoris   总被引:3,自引:0,他引:3  
Various mutant lysozymes having the N-glycosylation signal sequence, R21T (Asn(19)-Tyr(20)-Thr(21)), G49N (Asn(49)- Ser(50)-Thr(51)), R21T/G49N (Asn(19)-Tyr(20)-Thr(21)/Asn(49)-Ser(50)-Thr(51)), were secreted in the Pichia pastoris expression system. The secreted amounts of these mutant glycosylated lysozymes were almost the same as those of wild-type lysozyme (about 30 mg/liter). Glycosylation of the mutant lysozymes was confirmed by SDS-PAGE patterns, Endo-H treatment, TOF-MS analysis and chemical analysis. The composition of the carbohydrate chain attached to the single glycosylated lysozymes, R21T and G49N, was GlcNAc(2)Man(9-11), while that of the double glycosylated lysozyme, R21T/G49N, was GlcNAc(4)Man(27-32). The results of a CD analysis and lytic activity suggested that the conformation of the single glycosylated lysozymes had been conserved, while that of the double glycosylated lysozyme was less stable. The emulsifying properties of the lysozyme when glycosylated were greatly improved, being especially noteworthy in the double glycosylated lysozyme.  相似文献   

6.
The positively charged lysine at the C-terminals of three long α-helices (5-15, 25-35, and 88-99) was replaced with alanine (K13A, K33A, K97A) or aspartic acid (K13D, K33D, K97D) in hen lysozyme by genetic engineering. The denaturation transition point (Tm) and Gibbs energy change ΔG of the mutant lysozymes decreased remarkably, suggesting that the positive charge at the C-terminals of helices is involved in the stabilization of the helix dipole. On the other hand, the non-charged asparagine at the N-terminal of the long α-helices (25-35 and 88-99) was replaced with negatively charged aspartic acid (N27D and N93D). The Tm and ΔG of N27D increased, suggesting that the dipole moment of the N-terminal of the helices is diminished by replacement with negatively charged amino acid strengthening the stability of the helices. The stabilities of those hen egg white lysozymes mutated at the N- or C-terminal sites of the three long α-helices were related with their secretion amounts in yeast (Pichia pastoris). The secretion amounts of these mutant lysozymes in yeast were closely correlated with their stability.  相似文献   

7.
The positively charged lysine at the C-terminals of three long alpha-helices (5-15, 25-35, and 88-99) was replaced with alanine (K13A, K33A, K97A) or aspartic acid (K13D, K33D, K97D) in hen lysozyme by genetic engineering. The denaturation transition point (Tm) and Gibbs energy change Delta G of the mutant lysozymes decreased remarkably, suggesting that the positive charge at the C-terminals of helices is involved in the stabilization of the helix dipole. On the other hand, the non-charged asparagine at the N-terminal of the long alpha-helices (25-35 and 88-99) was replaced with negatively charged aspartic acid (N27D and N93D). The Tm and Delta G of N27D increased, suggesting that the dipole moment of the N-terminal of the helices is diminished by replacement with negatively charged amino acid strengthening the stability of the helices. The stabilities of those hen egg white lysozymes mutated at the N- or C-terminal sites of the three long alpha-helices were related with their secretion amounts in yeast (Pichia pastoris). The secretion amounts of these mutant lysozymes in yeast were closely correlated with their stability.  相似文献   

8.
To study the structure and function of reptile lysozymes, we have reported their purification, and in this study we have established the amino acid sequence of three egg white lysozymes in soft-shelled turtle eggs (SSTL A and SSTL B from Trionyx sinensis, ASTL from Amyda cartilaginea) by using the rapid peptide mapping method. The established amino acid sequence of SSTL A, SSTL B, and ASTL showed substitutions of 43, 42, and 44 residues respectively when compared with the HEWL (hen egg white lysozyme) sequence. In these reptile lysozymes, SSTL A had one substitution compared with SSTL B (Gly126Asp) and had an N-terminal extra Gly and 11 substitutions compared with ASTL. SSTL B had an N-terminal extra Gly and 10 residues different from ASTL. The sequence of SSTL B was identical to soft-shelled turtle lysozyme from STL (Trionyx sinensis japonicus). The Ile residue at position 93 of ASTL is the first report in all C-type lysozymes. Furthermore, amino acid substitutions (Phe34His, Arg45Tyr, Thr47Arg, and Arg114Tyr) were also found at subsites E and F when compared with HEWL. The time course using N-acetylglucosamine pentamer as a substrate exhibited a reduction of the rate constant of glycosidic cleavage and increase of binding free energy for subsites E and F, which proved the contribution for amino acids mentioned above for substrate binding at subsites E and F. Interestingly, the variable binding free energy values occurred on ASTL, may be contributed from substitutions at outside of subsites E and F.  相似文献   

9.
Various mutant lysozymes having the N-glycosylation signal sequence, R21T (Asn19-Tyr20-Thr21), G49N (Asn49- Ser50-Thr51), R21T/G49N (Asn19-Tyr20-Thr21/Asn49-Ser50-Thr51), were secreted in the Pichia pastoris expression system. The secreted amounts of these mutant glycosylated lysozymes were almost the same as those of wild-type lysozyme (about 30 mg/liter). Glycosylation of the mutant lysozymes was confirmed by SDS-PAGE patterns, Endo-H treatment, TOF-MS analysis and chemical analysis. The composition of the carbohydrate chain attached to the single glycosylated lysozymes, R21T and G49N, was GlcNAc2Man9-11, while that of the double glycosylated lysozyme, R21T/G49N, was GlcNAc4Man27-32. The results of a CD analysis and lytic activity suggested that the conformation of the single glycosylated lysozymes had been conserved, while that of the double glycosylated lysozyme was less stable. The emulsifying properties of the lysozyme when glycosylated were greatly improved, being especially noteworthy in the double glycosylated lysozyme.  相似文献   

10.
To collect folding information, we screened and analyzed the recombinant hen lysozyme mutants which were not secreted from yeast. As model mutants, Leu8Arg, Ala10Gly, and Met12Arg were prepared by site-directed mutagenesis and analyzed as to whether they were secreted from yeast or not. Consequently, Ala10Gly was found to be secreted from yeast, but Leu8Arg and Met12Arg were not. Next, these mutants were expressed in Escherichia coli and refolded in vitro. As a result, Ala10Gly folded as the wild-type did. Leu8Arg efficiently refolded in renaturation buffer containing glycerol. Met12Arg did not refold even in the presence of glycerol. These results show that the Ala10Gly mutation does not affect folding or stability, that Leu8Arg is too unstable to be secreted from yeast, and that Met12Arg may be very unstable or the mutation affects the folding pathway. We screened the mutants that were not secreted by yeast from a randomly mutated lysozyme library, and obtained Asp18His/Leu25Arg and Ala42Val/Ser50Ile/Leu56Gln. These two mutants were expressed in E. coli and then refolded in the presence of urea or glycerol. These mutants were refolded only in the presence of glycerol. Each single mutant of Asp18His/Leu25Arg and Ala42Val/Ser50Ile/Leu56Gln was independently prepared and folded in vitro. The results showed that Leu25Arg and Leu56Gln were the dominant mutations, respectively, which cause destabilization. These results show that the mutant lysozymes which were not secreted from yeast may be unstable or have a defect in the folding pathway. Thus, we established a screening system for selecting mutants which are unable to form a stable structure from random mutants.  相似文献   

11.
Mutant human lysozymes (Ile56Thr & Asp67His) have been reported to form amyloid deposits in the viscera. From the standpoint of understanding the mechanism of amyloid formation, we searched for conditions of amyloid formation in vitro using hen egg lysozyme, which has been extensively studied from a physicochemical standpoint. It was found that the circular dichroism spectra in the far-ultraviolet region of the hen egg lysozyme changed to those characteristic of a beta-structure from the native alpha-helix rich spectrum in 90% ethanol solution. When the concentration of protein was increased to 10 mg/mL, the protein solution formed a gel in the presence of 90% ethanol, and precipitated on further addition of 10 mM NaCl. The precipitates were examined by electron microscopy, their ability to bind Congo red, and X-ray diffraction to determine whether amyloid fibrils were formed in the precipitates. Electron micrographs displayed unbranched protofilament with a diameter of approximately 70 A. The peak point of the difference spectrum for the Congo red binding assay was 541 nm, which is characteristic of amyloid fibrils. The X-ray diffraction pattern showed a sharp and intense diffraction ring at 4.7 A, a reflection that arises from the interstrand spacing in beta-sheets. These results indicate that the precipitates of hen egg lysozyme are amyloid protofilament, and that the amyloid protofilament formation of hen egg lysozyme closely follows upon the destruction of the helical and tertiary structures.  相似文献   

12.
Asn46Asp/Asp52Ser or Asn46Glu/Asp52Ser hen egg white lysozyme (HEL) mutant was designed by introducing the substituted catalytic residue Asp46 or Glu46, respectively, based on Venerupis philippinarum (Vp) lysozyme structure as a representative of invertebrate‐type (i‐type) lyzozyme. These mutations restored the bell‐shaped pH‐dependency of the enzyme activity from the sigmoidal pH‐dependency observed for the Asp52Ser mutant. Furthermore both lysozyme mutants possessed retaining mechanisms like Vp lysozyme and HEL. The Asn46Glu/Asp52Ser mutant, which has a shorter distance between two catalytic residues, formed a glycosyl adduct in the reaction with the N‐acetylglucosamine oligomer. Furthermore, we found the accelerated turnover through its glycosyl adduct formation and decomposition. The turnover rate estimated from the glycosyl formation and decomposition rates was only 20% of the observed hydrolysis rate of the substrate. Based on these results, we discussed the catalytic mechanism of lysozymes.  相似文献   

13.
The binding constants of N-acetylglucosamine (G1cNAc) and its methyl alpha- and beta- glycosides to hen and turkey egg-white lysozymes [EC 3.2.1.17], in the latter of which Asp 101 is replaced by Gly, were determined at various pH values by measuring changes in the circular dichroic (DC) band at 295 nm. The binding of beta-methyl-G1cNAc to turkey and hen lysozymes perturbed the pK value of Glu 35 from 6.0 to 6.5, the pK value of Asp 52 from 3.5 to 3.9, and the pK value of Asp 66 from 1.3 to 0.7. In addition, perturbation of the pK value of Asp 101 from 4.4 to 4.0 was observed in the binding of this saccharide to hen lysozyme. The binding of alpha-methyl-GlcNAc to hen and turkey lysozymes perturbed the pK value of Glu 35 to the alkaline side by about 0.5 pH unit, the pK value of Asp 66 to the acidic side by about 0.5 pH unit, and the pK value (4.4) of an ionizable group to the acidic side by about 0.6 pH unit. The last ionizable group was tentatively assigned to Asp 48. The pK value of Asp 52 was not perturbed by the binding of this saccharide. The pH dependence curves for the binding of GlcNAc to hen and turkey lysozymes were very similar and it was suggested that Asp 48, in addition to Asp 66, Asp 52, and Glu 35, is perturbed by the binding of GlcNAc.  相似文献   

14.
Two lysozymes were purified from quail egg white by cation exchange column chromatography and analyzed for amino acid sequence. The enzymes showed the same pH optimum profile for lytic activity with broad pH optima (pH 5.0-8.0) but had difference in mobility on native-PAGE. The native-PAGE immunoblot showed one or two lysozymes present in individual egg whites. The established amino acid sequence of quail egg white lysozyme A (QEWL A) was the same as quail lysozyme reported by Kaneda et al. [Kaneda, M., Kato, I., Tominaga, N., Titani, K., Narita, K., 1969. The amino acid sequence of quail lysozyme. J. Biochem. (Tokyo). 66, 747-749] and had six amino acid substitutions at position 3 (Phe to Tyr), 19 (Asn to Lys), 21 (Arg to Gln), 102 (Gly to Val) 103 (Asn to His) and 121 (Gln to Asn) compared to hen egg white lysozyme. QEWL A and QEWL B showed one substitution, at the position 21, Gln replaced by Lys, plus an insertion of Leu between position 20 and 21, being the first report that QEWL B had 130 amino acids. The amino acid differences between two lysozymes did not seem to affect antigenic determinants detected by polyclonal anti-hen egg white lysozyme, but caused them to separate well from each other by ion exchange chromatography.  相似文献   

15.
To improve the performance of yeast surface-displayed Rhizomucor miehei lipase (RML) in the production of human milk fat substitute (HMFS), we mutated amino acids in the lipase substrate-binding pocket based on protein hydrophobicity, to improve esterification activity. Five mutants: Asn87Ile, Asn87Ile/Asp91Val, His108Leu/Lys109Ile, Asp256Ile/His257Leu, and His108Leu/Lys109Ile/Asp256Ile/His257Leu were obtained and their hydrolytic and esterification activities were assayed. Using Discovery Studio 3.1 to build models and calculate the binding energy between lipase and substrates, compared to wild-type, the mutant Asp256Ile/His257Leu was found to have significantly lower energy when oleic acid (3.97 KJ/mol decrease) and tripalmitin (7.55 KJ/mol decrease) were substrates. This result was in accordance with the esterification activity of Asp256Ile/His257Leu (2.37-fold of wild-type). The four mutants were also evaluated for the production of HMFS in organic solvent and in a solvent-free system. Asp256Ile/His257Leu had an oleic acid incorporation of 28.27% for catalyzing tripalmitin and oleic acid, and 53.18% for the reaction of palm oil with oleic acid. The efficiency of Asp256Ile/His257Leu was 1.82-fold and 1.65-fold that of the wild-type enzyme for the two reactions. The oleic acid incorporation of Asp256Ile/His257Leu was similar to commercial Lipozyme RM IM for palm oil acidolysis with oleic acid. Yeast surface-displayed RML mutant Asp256Ile/His257Leu is a potential, economically feasible catalyst for the production of structured lipids.  相似文献   

16.
We present the results of two 1.2 ns molecular dynamics (MD) unfolding simulations on hen egg lysozyme in water at 300K, performed using a new procedure called PEDC (Path Exploration With Distance Constraints). This procedure allows exploration of low energy structures as a function of increasing RMSD from the native structure, and offers especially the possibility of extensive exploration of the conformational space during the initial unfolding stages. The two independent MD simulations gave similar chronology of unfolding events: disruption of the active site, kinking of helix C, partial unfolding of the three-stranded beta-sheet to a two-stranded sheet (during which the helices A, B, and D remain to a great extent native), and finally unfolding of the beta-domain and partial unfolding of the alpha-domain in which hydrophobic clusters persist. We show particularly that the loss of hydrophobic contacts between the beta-sheet turn residues Leu55 and Ile56 and the hydrobic patch of the alpha-domain destabilizes the beta-domain and leads to its unfolding, suggesting that the correct embedding of these residues in the alpha-beta interface may constitute the rate limiting step in folding. These results are in accord with experimental observations on the folding/unfolding behavior of hen egg lysozyme at room temperature. They would also explain the loss of stability and the tendency to aggregation observed for the mutant Leu55Thr, and the slow refolding kinetics observed in the analogous amyloidogenic variant of human lysozyme.  相似文献   

17.
In response to osmotic stress, proline is accumulated in many bacterial and plant cells as an osmoprotectant. The yeast Saccharomyces cerevisiae induces trehalose or glycerol synthesis but does not increase intracellular proline levels during various stresses. Using a proline-accumulating mutant, we previously found that proline protects yeast cells from damage by freezing, oxidative, or ethanol stress. This mutant was recently shown to carry an allele of PRO1 which encodes the Asp154Asn mutant gamma-glutamyl kinase (GK), the first enzyme of the proline biosynthetic pathway. Here, enzymatic analysis of recombinant proteins revealed that the GK activity of S. cerevisiae is subject to feedback inhibition by proline. The Asp154Asn mutant was less sensitive to feedback inhibition than wild-type GK, leading to proline accumulation. To improve the enzymatic properties of GK, PCR random mutagenesis in PRO1 was employed. The mutagenized plasmid library was introduced into an S. cerevisiae non-proline-utilizing strain, and proline-overproducing mutants were selected on minimal medium containing the toxic proline analogue azetidine-2-carboxylic acid. We successfully isolated several mutant GKs that, due to extreme desensitization to inhibition, enhanced the ability to synthesize proline better than the Asp154Asn mutant. The amino acid changes were localized at the region between positions 142 and 154, probably on the molecular surface, suggesting that this region is involved in allosteric regulation. Furthermore, we found that yeast cells expressing Ile150Thr and Asn142Asp/Ile166Val mutant GKs were more tolerant to freezing stress than cells expressing the Asp154Asn mutant.  相似文献   

18.
The binding constants of alpha- and beta-GlcNAc to hen and turkey lysozymes [EC 3.2.1.17] were determined at various pH's using the method proposed by Ikeda and Hamaguchi (1975) J. Biochem. 77, 1-16). The pH dependence of the binding of beta-GlcNAc to hen lysozyme was essentially the same as that for turkey lysozyme. The pH dependence curves of the binding constants of beta-GlcNAc to hen and turkey lysozymes were interpreted in terms of the participation of Glu 35 (pK 6.0), Asp 52 (pK 3.5), Asp 48 (pK 4.5), and Asp 66 (pK 1.5). The binding constants of alpha-GlcNAc to hen and turkey lysozymes were the same below pH 3.5 but were different above this pH. The main participant residues in the binding of alpha-GlcNAc were Glu 35, Asp 48, and Asp 66 for hen lysozyme and Glu 35 and Asp 66 for turkey lysozyme. The results obtained here were well explained by the following assumptions: (1) above about pH 4, alpha-GlcNAc binds to hen lysozyme in both alpha- and beta-modes, which correspond to the binding orientation of alpha-GlcNAc and that of beta-GlcNAc, respectively, as determined by X-ray crystallographic studies, but it binds predominantly in the beta-mode below about pH 4, (2) beta-GlcNAc binds to hen and turkey lysozymes predominantly in the beta-mode above about pH 4 and in both alpha- and beta-modes below pH 4, and (3) alpha-GlcNAc binds to turkey lysozyme predominantly in the beta-mode over the whole pH range studied.  相似文献   

19.
To understand the mechanism of amyloid fibril formation of a protein, we examined wild-type and three mutant human lysozymes containing both amyloidogenic and non-amyloidogenic proteins: I56T (amyloidogenic); EAEA, which has four additional residues (Glu-Ala-Glu-Ala-) at the N-terminus located on a beta-structure; and EAEA-I56T, which is an I56T mutant of EAEA. All formed amyloid-like fibrils through an in the increase contents of alpha-helix with increasing concentration of ethanol. The order of propensity for amyloid-like fibril formation in highly concentrated ethanol solution is EAEA-I56T > EAEA > I56T > wild-type. This order is almost the reverse of the order of conformational stability of these proteins, wild-type > EAEA > I56T > EAEA-I56T. The important views in this work are as follows. (i) Artificially modified proteins formed amyloid fibrils in vitro. This means that amyloid formation is a generic property of polypeptide chains. (ii) The amyloidogenic mutation Ile56 to Thr caused the destabilization and promoted fibril formation in the wild-type and EAEA human lysozymes, indicating that instability facilitates amyloid formation. (iii) The mutant protein EAEA human lysozyme had higher propensity for fibril formation than the amyloidogenic mutant protein, indicating that amyloid formation is controlled not only by stability but also by other factors. In this case, appending polypeptide chains to a beta-structure accelerated amyloid formation.  相似文献   

20.
The oxidative refolding of human lysozyme and its two best characterised amyloidogenic variants, Ile56Thr and Asp67His, has been investigated in vitro by means of the concerted application of a range of biophysical techniques. The results show that in each case the ensemble of reduced denatured conformers initially collapses into a large number of unstructured intermediates with one or two disulphide bonds, the majority of which then fold to form the native-like three-disulphide intermediate, des-[77-95]. The slow step in the overall folding reaction involves the rearrangement of the latter to the fully oxidised native protein containing four disulphide bonds. The Ile56Thr and Asp67His variants were found to fold faster than the wild-type protein by a factor of 2 and 3 respectively, an observation that can be attributed primarily to the reduction in the barriers to conformational rearrangements that results from both the mutations. The efficient folding of these variants despite their enhanced propensities to aggregate when compared to the wild-type protein is consistent with their ability to be secreted in sufficient quantities to give rise to the systemic amyloidoses with which they are associated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号